首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Contraction of urinary bladder smooth muscle (UBSM) is caused by the release of ATP and ACh from parasympathetic nerves. Although both purinergic and muscarinic pathways are important to contraction, their relative contributions and signalling mechanisms are not well understood. Here, the contributions of each pathway to urinary bladder contraction and the underlying electrical and Ca2+ signalling events were examined in UBSM strips from wild type mice and mice deficient in P2X1 receptors (P2X1−/−) before and after pharmacological inhibition of purinergic and muscarinic receptors. Electrical field stimulation was used to excite parasympathetic nerves to increase action potentials, Ca2+ flash frequency, and force. Loss of P2X1 function not only eliminated action potentials and Ca2+ flashes during stimulation, but it also led to a significant increase in Ca2+ flashes following stimulation and a corresponding increase in the force transient. Block of muscarinic receptors did not affect action potentials or Ca2+ flashes during stimulation, but prevented them following stimulation. These findings indicate that nerve excitation leads to rapid engagement of smooth muscle P2X1 receptors to increase action potentials (Ca2+ flashes) during stimulation, and a delayed increase in excitability in response to muscarinic receptor activation. Together, purinergic and muscarinic stimulation shape the time course of force transients. Furthermore, this study reveals a novel inhibitory effect of P2X1 receptor activation on subsequent increases in muscarinic-driven excitability and force generation.  相似文献   

2.
3.
4.
5.
6.
The recent availability of activators of the mitochondrial Ca2+ uniporter allows direct testing of the influence of mitochondrial Ca2+ uptake on the overall Ca2+ homeostasis of the cell. We show here that activation of mitochondrial Ca2+ uptake by 4,4',4"-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) or kaempferol stimulates histamine-induced Ca2+ release from the endoplasmic reticulum (ER) and that this effect is enhanced if the mitochondrial Na+–Ca2+ exchanger is simultaneously inhibited with CGP37157. This suggests that both Ca2+ uptake and release from mitochondria control the ability of local Ca2+ microdomains to produce feedback inhibition of inositol 1,4,5-trisphosphate receptors (InsP3Rs). In addition, the ability of mitochondria to control Ca2+ release from the ER allows them to modulate cytosolic Ca2+ oscillations. In histamine stimulated HeLa cells and human fibroblasts, both PPT and kaempferol initially stimulated and later inhibited oscillations, although kaempferol usually induced a more prolonged period of stimulation. Both compounds were also able to induce the generation of Ca2+ oscillations in previously silent fibroblasts. Our data suggest that cytosolic Ca2+ oscillations are exquisitely sensitive to the rates of mitochondrial Ca2+ uptake and release, which precisely control the size of the local Ca2+ microdomains around InsP3Rs and thus the ability to produce feedback activation or inhibition of Ca2+ release.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号