首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder characterized by deficits in social interaction, communication, and repetitive behaviors. A key role for immune dysfunction has been suggested in ASD. Recent studies have indicated that inflammatory mediators and Notch-1 signaling may contribute to the development of ASD. Methylmercury chloride (MeHgCl) is an environmental pollutant that primarily affects the central nervous system, causing neurological alterations. Its effects on immunological responses have not been fully investigated in ASD. In this study, we examined the influence of MeHgCl exposure on inflammatory mediators and Notch-1 signaling in BTBR T+ Itpr3tf/J (BTBR) mice, a model of ASD. We examined the effects of MeHgCl on the IL-6-, GM-CSF-, NF-κB p65-, Notch-1-, and IL-27-producing CD14+ and CD40+ cells in the spleen. We assessed the effect of MeHgCl on IL-6, GM-CSF, NF-κB p65, Notch-1, and IL-27 mRNA levels in brain tissue. We also measured IL-6, GM-CSF, and NF-κB p65 protein expression levels in brain tissue. MeHgCl exposure of BTBR mice significantly increased IL-6-, GM-CSF-, NF-κB p65-, and Notch-1-, and decreased IL-27-producing CD14+, and CD40+ cells in the spleen. MeHgCl exposure of BTBR mice upregulated IL-6, GM-CSF, NF-κB p65, and Notch-1, and decreased IL-27 mRNA expression levels in brain tissue. Moreover, MeHgCl resulted in elevated expression of the IL-6, GM-CSF, and NF-κB p65 proteins in brain tissue. Taken together, these results indicate that MeHgCl exposure aggravates proinflammatory mediators and Notch-1 signaling which are associated with imbalance of neuroimmune function in BTBR mice.  相似文献   

2.
Autism is a neurodevelopmental disorder categorized by qualitative impairments in social interaction, communication, and repetitive stereotypic behavior. Emerging evidence increasingly suggests that chemokine receptors have a pivotal role in the central nervous system and are involved in the pathogenesis of numerous neuroinflammatory diseases. Resveratrol is widely used to treat neurodegenerative diseases, but its effect on autism has not been investigated. We investigated the effect of resveratrol (20 and 40 mg/kg) in the spleen and brain tissues of BTBR T + tf/J (BTBR) and C57BL/6J (B6) mice as well as on the C-C chemokine receptor (CCR) and C-X-C motif chemokine receptor (CXCR) (CCR3+, CCR5+, CCR7+ and CCR9+, CXCR3+ and CXCR5+) in cluster of differentiation 4-positive (CD4+) T cells in the spleen. We also assessed the mRNA expression of CCR and CXCR receptors in the spleen and brain tissues. Our study revealed that the BTBR and B6 control mice showed different immune profiles. The BTBR mice showed characteristic higher levels of both CCR and CXCR production and expression in CD4+ T cells than the B6 control mice did. Treatment of B6 and BTBR mice with resveratrol (20 and 40 mg/kg) induced a substantial decrease in the CCR and CXCR production and expression in CD4+ T cells compared with the respective untreated control groups. Moreover, resveratrol treatment decreased the mRNA expression levels of CCR and CXCR in the spleen and brain tissues. Resveratrol downregulated the chemokine receptor levels, which might provide unique targets for future therapies for autism.  相似文献   

3.

Introduction

Sciatica causes intense pain. No satisfactory therapeutic drugs exist to treat sciatica. This study aimed to probe the potential mechanism of ferulic acid in sciatica treatment.

Methods

Thirty-two SD rats were randomly divided into 4 groups: sham operation, chronic constriction injury (CCI), mecobalamin, and ferulic acid. We conducted RNA sequencing, behavioral tests, ELISA, PCR, western blotting, and immunofluorescence analysis. TAK-242 and JSH23 were administered to RSC96 and GMI-R1 cells to explore whether ferulic acid can inhibit apoptosis and alleviate inflammation.

Results

RNA sequencing showed that TLR4/NF-κB pathway is involved in the mechanism of sciatica. CCI induced cold and mechanical hyperalgesia; destroyed the sciatic nerve structure; increased IL-1β, IL-6, TNF-α, IL-8, and TGF-β protein levels and IL-1β, IL-6, TNF-α, TGF-β, TLR4, and IBA-1 mRNA levels; and decreased IL-10 and INF-γ protein levels and IL-4 mRNA levels. Immunohistochemistry showed that IBA-1, CD32, IL-1β, iNOS, nNOS, COX2, and TLR4 expression was increased while S100β and Arg-1 decreased. CCI increased TLR4, IBA-1, IL-1β, iNOS, Myd88, p-NF-κB, and p-p38MAPK protein levels. Treatment with mecobalamin and ferulic acid reversed these trends. Lipopolysaccharide (LPS) induced RSC96 cell apoptosis by reducing Bcl-2 and Bcl-xl protein and mRNA levels and increasing Bax and Bad mRNA and IL-1β, TLR4, Myd88, p-NF-κB, and p-p38MAPK protein levels, while ferulic acid inhibited cell apoptosis by decreasing IL-1β, TLR4, Myd88, p-NF-κB, and p-p38MAPK levels and increasing Bcl-2 and Bcl-xl levels. In GMI-R1 cells, Ferulic acid attenuated LPS-induced M1 polarization by decreasing the M1 polarization markers IL-1β, IL-6, iNOS, and CD32 and increasing the M2 polarization markers CD206, IL-4, IL-10 and Arg-1. After LPS treatment, IL-1β, iNOS, TLR4, Myd88, p-p38MAPK, and p-NF-κB levels were obviously increased, and Arg-1 expression was reduced, while ferulic acid reversed these changes.

Conclusion

Ferulic acid can promote injured sciatic nerve repair by reducing neuronal cell apoptosis and inflammatory infiltration though the TLR4/NF-κB pathway.  相似文献   

4.
5.
Ubiquitin-specific protease 8 (USP8) regulates inflammation in vitro; however, the mechanisms by which USP8 inhibits neuroinflammation and its pathophysiological functions are not completely understood. In this study, we aimed to determine whether USP8 exerts neuroprotective effects in a mouse model of lipopolysaccharide (LPS)-induced cognitive and motor impairment. We commenced intracerebroventricular USP8 administration 7 days prior to i.p. injection of LPS (750 μg/kg). All treatments and behavioral experiments were performed once per day for 7 consecutive days. Behavioral tests and pathological/biochemical assays were performed to evaluate LPS-induced hippocampal damage. USP8 attenuated LPS-induced cognitive and motor impairments in mice. Moreover, USP8 downregulated several pro-inflammatory cytokines [nitric oxide (NO), tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), and interleukin-1β (IL-1β)] in the serum and brain, and the relevant protein factors [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2)] in the brain. Furthermore, USP8 upregulated the anti-inflammatory mediators interleukin (IL)-4 and IL-10 in the serum and brain, and promoted a shift from pro-inflammatory to anti-inflammatory microglial phenotypes. The LPS-induced microglial pro-inflammatory phenotype was abolished by TLR4 inhibitor and in TLR4−/− mice; these effects were similar to those of USP8 treatment. Mechanistically, we found that USP8 increased the expression of neuregulin receptor degradation protein-1 (Nrdp1), potently downregulated the expression of TLR4 and myeloid differentiation primary response protein 88 (MyD88) protein, and inhibited the phosphorylation of IκB kinase (IKK) β and kappa B-alpha (IκBα), thereby reducing nuclear translocation of p65 by inhibiting the activation of the nuclear factor-kappaB (NF-κB) signaling pathway in LPS-induced mice. Our results demonstrated that USP8 exerts protective effects against LPS-induced cognitive and motor deficits in mice by modulating microglial phenotypes via TLR4/MyD88/NF-κB signaling.  相似文献   

6.
The adolescent brain undergoes important dynamic and plastic cell changes, including overproduction of axons and synapses, followed by rapid pruning along with ongoing axon myelination. These developmental changes make the adolescent brain particularly vulnerable to neurotoxic and behavioral effects of alcohol. Although the mechanisms of these effects are largely unknown, we demonstrated that ethanol by activating innate immune receptors toll-like receptor 4 (TLR4), induces neuroinflammation and brain damage in adult mice. The present study aims to evaluate whether intermittent ethanol treatment in adolescence promotes TLR4-dependent pro-inflammatory processes, leading to myelin and synaptic dysfunctions, and long-term cognitive impairments. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3.0 g/kg) for 2 weeks, we show that binge-like ethanol treatment activates TLR4 signaling pathways (MAPK, NFκB) leading to the up-regulation of cytokines and pro-inflammatory mediators (COX-2, iNOS, HMGB1), impairing synaptic and myelin protein levels and causing ultrastructural alterations. These changes were associated with long-lasting cognitive dysfunctions in young adult mice, as demonstrated with the object recognition, passive avoidance and olfactory behavior tests. Notably, elimination of TLR4 receptors prevented neuroinflammation along with synaptic and myelin derangements, as well as long-term cognitive alterations. These results support the role of the neuroimmune response and TLR4 signaling in the neurotoxic and behavioral effects of ethanol in adolescence.  相似文献   

7.
目的 探讨微小RNA-146a(MicroRNA-146a, miR-146a)在缺血性脑卒中小胶质细胞/巨噬细胞极化中的作用及其潜在机制。方法 构建大脑中动脉闭塞(Middle cerebral artery occlusion, MCAO)模型,脑内注射阴性对照物(Negative control mimic, NC mimic)或miR-146a mimic;构建BV2小鼠小胶质细胞(BV2 mouse microglia, BV2)缺血缺氧(Oxygen glucose deprivation, OGD)模型,将NC mimic, miR-146a mimic转染至OGD处理的BV2细胞中,进行改良神经功能缺损评分(Modified neurological severity scores, mNSS)评估神经功能;2,3,5-氯化三苯基四氮唑(2,3,5-Triphenyltetrazolium chloride, TTC)染色检测脑梗死体积;实时荧光定量聚合酶链反应(Real time quantification polymerase chain reaction, RT...  相似文献   

8.
Severe hyperhomocysteinemia is caused by increased plasma levels of homocysteine (Hcy), a methionine derivative, and is associated with cerebral disorders. Creatine supplementation has emerged as an adjuvant to protect against neurodegenerative diseases, due to its potential antioxidant role. Here, we examined the effects of severe hyperhomocysteinemia on brain metabolism, and evaluated a possible neuroprotective role of creatine in hyperhomocysteinemia, by concomitant treatment with Hcy and creatine (50 mg/Kg body weight). Hyperhomocysteinemia was induced in young rats (6-day-old) by treatment with homocysteine (0.3–0.6 µmol/g body weight) for 23 days, and then the following parameters of rat amygdala were evaluated: (1) the activity of the respiratory chain complexes succinate dehydrogenase, complex II and cytochrome c oxidase; (2) mitochondrial mass and membrane potential; (3) the levels of necrosis and apoptosis; and (4) the activity and immunocontent of Na+,K+-ATPase. Hcy treatment decreased the activities of succinate dehydrogenase and cytochrome c oxidase, but did not alter complex II activity. Hcy treatment also increased the number of cells with high mitochondrial mass, high mitochondrial membrane potential, and in late apoptosis. Importantly, creatine administration prevented some of the key effects of Hcy administration on the amygdala. We also observed a decrease in the activity and immunocontent of the α1 subunit of the Na+,K+-ATPase in amygdala after Hcy- treatment. Our findings support the notion that Hcy modulates mitochondrial function and bioenergetics in the brain, as well as Na+,K+-ATPase activity, and suggest that creatine might represent an effective adjuvant to protect against the effects of high Hcy plasma levels.  相似文献   

9.
CD133 positive (CD133+) cells are cancer stem cells in glioblastoma that are associated with poor prognosis and resistance to radiotherapy. However, the role of CD133 in chemoresistance is inconclusive, although recent studies suggest that increased CD133 expression may lead to increased cisplatin resistance under certain circumstances. In this study, we further explored the mechanism underlying CD133-mediated cisplatin resistance in glioblastoma stem cells. We sorted human glioblastoma T98G and U87MG cells into CD133+ and CD133? pools and measured apoptosis and CD133 expression levels in response to cisplatin treatment. We predicted candidate microRNAs that might target CD133 and assessed their levels in cisplatin-treated CD133+ cells. Finally, we overexpressed miR-29a in CD133+ cells and tested its effects in cisplatin-mediated apoptosis and survival of CD133+ tumor bearing mice receiving cisplatin treatment. We found that CD133+ glioblastoma stem cells showed more resistance to cisplatin treatment. Cisplatin increased CD133 expression by suppressing miR-29a levels. MiR-29a overexpression improved sensitivity of cisplatin in CD133+ cells and significantly suppressed tumor growth in CD133+ tumor bearing mice in response to cisplatin treatment. Our data show that miR-29a ameliorates CD133-mediated chemoresistance in glioblastoma stem cells, suggesting it as a potential therapeutic target for treating glioblastoma.  相似文献   

10.
11.
目的 研究创伤性脑损伤(TBI)后损伤灶周围脑组织Toll样受体4(TLR4)的表达,探讨TLR4/NF-κB信号通路在TBI中的作用机制.方法 SD大鼠36只按随机数字表法分为对照组(n=12)、TBI后1d组(n=6)、TBI后3d组(n=12)和TBI后7d组(n=6),后3组采用Feeney自由落体撞击法制作TBI模型,对照组仅行右侧顶部开窗而无TBI.应用RT-PCR、凝胶电泳迁移率实验(EMSA)、ELISA分别检测4组大鼠挫伤脑组织TLR4 mRNA、NF-κB活性、TNF-α和IL-6浓度的变化;免疫组化染色检测对照组和TBI后3d组大鼠挫伤脑组织TLR4的表达.结果 与对照组比较,TBI后1d、3d、7d组TLR4 mRNA表达、NF-κB活性、TNF-α和IL-6浓度均增加,差异有统计学意义(P<0.05);对照组脑组织TLR4表达较少,TBI后3d组创伤灶周围可见大量TLR4阳性细胞,主要表达在皮层胶质细胞、神经元中;NF-κB活性与TLR4 mRNA的表达呈正相关关系(r=0.786,P=-0.000).TNF-α、IL-6与TLR4的表达也呈正相关关系(r=0.517,P=0.010;r=0.503,P=0.012).结论 TBI可引起损伤区脑组织TLR4的表达和下游NF-κB、促炎症因子水平的增加,TLR4/NF-κB信号通路可能在脑组织的继发性损害中起重要作用.  相似文献   

12.
Microglia activation plays an important role in the pathogenesis of various neurodegenerative diseases by producing neurotoxic factors, such as proinflammatory cytokines and nitric oxide (NO); therefore, suppression of microglia activation is a potential therapeutic approach against these diseases. Previous study showed that alismol, a sesquiterpenoid isolated from the roots of Vladimiria souliei inhibits interferon-γ-induced NO production in murine macrophage RAW264.7 cells. In the present study, we found that alismol reduced NO and prostaglandin E2 (PGE2) levels and suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated primary and cultured microglia. Alismol also inhibited the mRNA and protein expression of proinflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Further mechanistic studies revealed that alismol inhibited LPS-induced nuclear factor-κB (NF-κB) activation but not mitogen-activated protein kinase (MAPK) pathway. Finally, we demonstrated the neuroprotective effects of alismol in microglia-neuron coculture systems. Collectively, these results suggest that the inhibition of microglia activation by alismol may provide potential therapeutic strategy for various neuroinflammatory diseases.  相似文献   

13.
Trans-cinnamaldehyde (TCA), an essential oil in cinnamon powder, may have beneficial effects as a treatment for stroke which is the second leading cause of death worldwide. Post-ischemic inflammation induces neuronal cell damage after stroke, and activation of microglia, in particular, has been thought as the main contributor of proinflammatory and neurotoxic factors. The purpose of this study was to investigate the neuroprotective effects of TCA in an animal model of ischemia/reperfusion (I/R)-induced brain injury and the neuroprotective mechanism was verified in LPS-induced inflammation of BV-2 microglial cells. Our results showed that TCA (10–30 mg/kg, p.o.) significantly reduced the infarction area, neurological deficit score and decreased iNOS and COX-2 protein expression level in I/R-induced injury brain tissue. It inhibited 0.5 µg/ml LPS-induced NO production in BV-2 microglial cells without affecting cell viability, reduced protein expression of iNOS and COX-2, and attenuated inhibition of p53 protein. TCA also suppressed the effects of LPS-induced nuclear translocation of NF-κB p65 and p50 and increased cytosolic IκBα. It also reduced LPS-induced mRNA expression of iNOS, COX-2, and TNFα. We concluded that TCA has a potential neuroprotective effect to against the ischemic stroke, which may be via the inhibition of neuroinflammation through attenuating iNOS, COX-2 expression and NF-κB signaling pathway.  相似文献   

14.
Perinatal brain injury can cause death in the neonatal period and lifelong neurodevelopmental deficits. Stem cell transplantation had been proved to be effective approach to ameliorate neurological deficits after brain damage. In this study we examine the effect of human umbilical cord blood CD34+ cells on model of neonatal rat hypoxic–ischemic brain damage and compared the neuroprotection of transplantation of CD34+ cells to mononuclear cells from which CD34+ cells isolated on neonatal hypoxic-ischemia rat model. Seven-day-old Sprague-Dawley rats were subjected to hypoxic-ischemic (HI) injury, CD34+ cells (1.5?×?104?cells) or mononuclear cells (1.0?×?106?cells) were transplanted into mice by tail vein on the 7?day after HI. The transplantation of CD34+ cells significantly improved motor function of rat, and reduced cerebral atrophy, inhibited the expression of glial fibrillary acidic protein (GFAP) and apoptosis-related genes: TNF-α, TNFR1, TNFR2, CD40, Fas, and decreased the activation of Nuclear factor kappa B (NF-κB) in damaged brain. CD34+ cells treatment increased the expression of DCX and lectin in ipsilateral brain. Moreover, the transplantation of CD34+ cells and MNCs which were obtained from the same amount of human umbilical cord blood had similar effects on HI. Our data demonstrated that transplantation of human umbilical cord blood CD34+ cells can ameliorate the neural functional defect and reduce apoptosis and promote nerve and vascular regeneration in rat brain after HI injury and the effects of transplantation of CD34+ cells were comparable to that of MNCs in neonatal hypoxic-ischemia rat model.  相似文献   

15.
Resveratrol, a naturally occurring polyphenol has received significant attention as a potent anti-inflammatory agent. Inflammatory bowel disease (IBD) is a chronic intestinal inflammation caused by hyperactivated effector immune cells that produce proinflammatory cytokines. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population characterized by the co-expression of CD11b+ and Gr-1+ and have long been known for their immunosuppressive function. We report that resveratrol effectively attenuated overall clinical scores as well as various pathological markers of colitis in IL-10−/− mice by down regulating Th1 responses. Resveratrol lessened the colitis-associated decrease in body weight and increased levels of serum amyloid A (SAA), CXCL10 and colon TNF-α, IL-6, RANTES, IL-12 and IL-1β concentrations. After resveratrol treatment, the percentage of CXCR3 expressing T cells was decreased in the spleen, mesenteric lymph nodes (MLN), and intestinal lamina propria (LP). However, the percentage and absolute numbers of CD11b+ and Gr-1+cells in the lamina propria (LP) and spleen were increased after resveratrol treatment as compared with the vehicle treatment. Co-culture of resveratrol-induced CD11b+ Gr-1+ cells with T cells, attenuated T cell proliferation, and most importantly reduced IFN-γ and GM-CSF production by LP derived T cells from vehicle treated IL-10−/− mice with chronic colitis. The current study suggests that administration of resveratrol into IL-10−/− mice induces immunosuppressive CD11b+ Gr-1+ MDSCs in the colon, which correlates with reversal of established chronic colitis, and down regulation of mucosal and systemic CXCR3+ expressing effector T cells as well as inflammatory cytokines in the colon. The induction of immunosuppressive CD11b+ Gr-1+ cells by resveratrol during colitis is unique, and suggests an as-yet-unidentified mode of anti-inflammatory action of this plant polyphenol.  相似文献   

16.
We evaluated Na+,K+-ATPase activity in hippocampus of rats submitted to an animal model of mania which included the use of lithium and valproate. In the acute treatment, amphetamine or saline was administered to rats for 14 days, between day 8 and 14, rats were treated with lithium, valproate or saline. In the maintenance treatment, rats were treated with lithium, valproate or saline, between day 8 and 14, amphetamine or saline were administered. Locomotor activity was assessed by open field test and Na+,K+-ATPase activity was measured. Our results showed that mood stabilizers reversed and prevented amphetamine-induced behavioral effects. Moreover, amphetamine (acute treatment) increased Na+,K+-ATPase activity, and administration of lithium or valproate reversed this effect. In the maintenance treatment, amphetamine increased Na+,K+-ATPase activity in saline-pretreated rats. Amphetamine administration in lithium- or valproate-pretreated animals did not alter Na+,K+-ATPase activity. The findings suggest that amphetamine-induced hyperactivity may be associated with an increase in Na+,K+-ATPase.  相似文献   

17.
Methylphenidate is a central nervous system stimulant used for the treatment of attention-deficit hyperactivity disorder. Na+, K+-ATPase is a membrane-bound enzyme necessary to maintain neuronal excitability. Considering that methylphenidate effects on central nervous system metabolism are poorly known and that Na+, K+-ATPase is essential to normal brain function, the purpose of this study was to evaluate the effect of this drug on Na+, K+-ATPase activity in the cerebrum of young and adult rats. For acute administration, a single injection of methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline was given to rats on postnatal day 25 or postnatal day 60, in the young and adult groups, respectively. For chronic administration, methylphenidate (1.0, 2.0, or 10.0 mg/Kg) or saline injections were given to young rats starting at postnatal day 25 once daily for 28 days. In adult rats, the same regimen was performed starting at postnatal day 60. Our results showed that acute methylphenidate administration increased Na+, K+-ATPase activity in hippocampus, prefrontal cortex, and striatum of young and adult rats. In young rats, chronic administration of methylphenidate also enhanced Na+, K+-ATPase activity in hippocampus and prefrontal cortex, but not in striatum. When tested in adult rats, Na+, K+-ATPase activity was increased in all cerebral structures studied. The present findings suggest that increased Na+, K+-ATPase activity may be associated with neuronal excitability caused by methylphenidate.  相似文献   

18.
19.
Human umbilical cord blood (HUCB) transplantation has become an alternative cell therapy for hematological and oncological malignancies in the clinic and is considered for neurological disorders. The heterogeneity in the content of the different stem and progenitor cells composing HUCB mononuclear cells (MNC) may influence their engraftment and neurotherapeutic effect. We hypothesized that CD45 pan-hematopoietic marker expression is heterogeneous in MNC, and therefore, CD45+ subpopulation enrichment for neurotherapy may provide a tool to overcome cellular variance in different HUCB units. We employed an immunomagnetic separation method to isolate and characterize HUCB CD45+ pan-hematopoietic subpopulation and to investigate whether the vaginal or cesarean deliveries influence their neurotherapeutic effect in a traumatic brain injury (TBI) mouse model. Adult C57BL/6J male mice were subjected to moderate TBI and intravenously xenotransplanted with 1?×?106 CD45+ cells derived from either vaginal or cesarean HUCB units. A large heterogeneity in the expression of CD45 marker in MNC, both in vaginal and cesarean HUCB units, was found, regardless of the number of live births. A higher expression of hematopoietic markers was found in the CD45+ subpopulation while low expressional levels of typical mesenchymal markers were detected. Neurotherapeutic effects, evaluated with an established neurological severity score and novel object recognition test, indicated improved functional motor and memory recovery and found independent of delivery type. Cytokine analysis in extracts of TBI brain cortices indicated an acute immunomodulatory effect by HUCB CD45+ subpopulation upon xenotransplantation. These results may provide insights to CD45 marker as a predictor of HUCB units’ quality for neurotherapy in TBI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号