首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Cyclin D3 is essential for megakaryocytopoiesis   总被引:13,自引:9,他引:13  
Wang  Z; Zhang  Y; Kamen  D; Lees  E; Ravid  K 《Blood》1995,86(10):3783-3788
A normal cell cycle in most eukaryotic cells consists of a tightly regulated sequence of phases including DNA synthesis (S) followed by a gap (G2), mitosis (M), and a gap (G1). In the megakaryocytic lineage, the cells undergo endomitosis, which involves DNA synthesis in the absence of mitosis, thus giving rise to polyploid cells. We aimed at defining whether the megakaryocytic cell cycle consists of a continuous S phase or of G1/S phases and at determining which cyclins are involved in this process. Studies were performed in primary cultures of mouse bone marrow cells. DNA synthesis in megakaryocytes was followed by determining incorporation of a DNA precursor, bromodeoxyuridine (BrdU), into the cells by in situ staining for BrdU. These experiments showed that no more than 15% of the recognizable megakaryocytes in normal bone marrow are in the process of endomitosis, including S phases interrupted by short gaps. Using immunohistochemistry, we showed that mature megakaryocytes express the G1 phase cyclin and cyclin D3, but not the mitotic cyclin, cyclin B1. Under culture conditions that selectively promote megakaryocytopoiesis, antisense oligonucleotides designed to suppress cyclin D3 expression, but not sense oligonucleotides or antisense oligonucleotides to cyclin B1, dramatically suppress endomitosis and abrogate megakaryocyte development. Our results indicate that endoreduplication in megakaryocytes is associated with low levels of or the absence of cyclin B1, whereas progression through this process depends on the G1 phase for which cyclin D3 is crucial.  相似文献   

2.
3.
Previous work has suggested that oncogenic transformation by the E1A gene products of adenovirus type 5 may be mediated through interactions with at least two cellular proteins, the 105-kDa product of the retinoblastoma growth suppressor gene (p105-Rb) and a 300-kDa protein (p300). By using viral mutants, we now show that the induction of cellular DNA synthesis in quiescent cells by E1A differs from transformation in that E1A products induce synthesis if they are able to bind to either p105-Rb or p300, and only mutant products that bind to neither are extremely defective. These results suggest that p105-Rb and p300 (or cellular proteins with similar E1A-binding properties) provide parallel means by which DNA synthesis can be regulated.  相似文献   

4.
Estrogens and antiestrogens influence the G(1) phase of the cell cycle. In MCF-7 breast cancer cells, estrogen stimulated cell cycle progression through loss of the kinase inhibitor proteins (KIPs) p27 and p21 and through G(1) cyclin-dependent kinase (cdk) activation. Treatment with antiestrogen drugs, Tamoxifen or ICI 182780, caused cell cycle arrest, with up-regulation of both p21 and p27 levels, an increase in their binding to cyclin E-cdk2, and kinase inhibition. The requirement for these KIPs in the arrests induced by estradiol depletion or by antiestrogens was investigated with antisense. Antisense inhibition of p21 or p27 expression in estradiol-depleted or antiestrogenarrested MCF-7 led to abrogation of cell cycle arrest, with loss of cyclin E-associated KIPs, activation of cyclin E-cdk2, and S phase entrance. These data demonstrate that depletion of either p21 or p27 can mimic estrogen-stimulated cell cycle activation and indicate that both of these KIPs are critical mediators of the therapeutic effects of antiestrogens in breast cancer.  相似文献   

5.
6.
7.
Liver cells from p21(Cip1-/-) mice subjected to partial hepatectomy (PH) progress into DNA synthesis faster than those from wild-type mice. These cells also show a premature induction of cyclin E/cyclin-dependent kinase (CDK) 2 activity. We studied the mechanisms whereby cells lacking p21(Cip1) showed a premature induction of this activity. Whereas the levels of CDK2, cyclin E, and p27(Kip1) were similar in both wild-type and p21(Cip1-/-) mice, those of the activator CDC25A were much higher in p21(Cip1-/-) quiescent and regenerating livers than in wild-type animals. Moreover, p21(Cip1-/-) cells also showed a premature translocation of CDC25A from cytoplasm into the nucleus. The ectopic expression of p21(Cip1) into mice embryo fibroblasts from p21(Cip1-/-) mice decreased the levels of CDC25A and delayed its nuclear translocation. The levels of CDC25A messenger RNA in p21(Cip1-/-) cells were higher than in wild-type cells, suggesting that this increase might be responsible, at least in part, for the high levels of CDC25A protein in these cells. Thus, the results reported here indicate that p21(Cip1) regulates the levels and the intracellular localization of CDC25A. We also found a good correlation between CDC25A nuclear translocation and cyclin E/CDK2 activation. In conclusion, premature translocation of CDC25A to the nucleus might be involved in the advanced induction of cyclin E/CDK2 activity and DNA replication in cells from animals lacking p21(Cip1).  相似文献   

8.
In G(0)/G(1) cell cycle-arrested mouse Y1 adrenocortical cells, short pulses (30 min to 2 h) of fibroblast growth factor-2 (FGF2) (5 pM to 1 nM) caused induction of cFos protein by 2 h and onset of DNA synthesis stimulation by 8-9 h. FGF2 dose-response curves for cFos induction (percent labeled nuclei with a specific anti-cFos antibody) and DNA synthesis stimulation (bromodeoxyuridine labeling index) were linearly correlated with a correlation coefficient of 0.969. Inhibition of cFos and cJun protein induction with antisense oligodeoxynucleotides (ODNs) to cfos and cjun mRNAs blocked DNA synthesis stimulation by FGF2. Pulses (up to 2 h) of synthetic ACTH(39) (1 pM to 1 nM) and natural porcine corticotropin A (10 pg/ml to 1 microg/ml) also induced cFos protein and DNA synthesis in G(0)/G(1)-arrested Y1 adrenal cells. ACTH dose-response curves for cFos induction and DNA synthesis stimulation were not correlated. But cfos and/or cjun antisense ODNs blocked DNA synthesis stimulation by ACTH. Thus, signals initiated in FGF2 and ACTH receptors appear to converge to the induction of cfos and cjun genes to trigger DNA synthesis stimulation.  相似文献   

9.
10.
The human CCND1 cyclin D1/PRAD1 gene was previously identified by a genetic screen for G1 cyclin function in Saccharomyces cerevisiae and also was identified as the putative BCL1 oncogene. However, its role in human cell proliferation is not known. To determine if expression of human D-type cyclin genes correlates with the state of cell growth, we examined the level of mRNAs for CCND1 and a related gene, CCND3, in normal human diploid fibroblasts (HDF). The levels of both mRNAs decrease upon serum depletion or at high cell densities. Following stimulation of quiescent fibroblasts with serum, the mRNA levels increase gradually to a peak at about 12 hr, prior to the onset of S phase. Induction of cyclin gene expression by serum is reduced concomitantly with the decline in FOS induction in aging HDFs, suggesting a possible relationship to the decrease in the proliferative response to mitogens during cellular senescence. Cycloheximide partially blocks the induction of CCND1 and CCND3 gene expression by serum, suggesting that both de novo protein synthesis-dependent and -independent pathways contribute to induction. Treatment of HDFs with defined growth factors suggests a correlation between CCND mRNA induction and DNA synthesis. However, induction of these genes is not sufficient for the transition from quiescence through G1 into S phase.  相似文献   

11.
Conditional expression of wild-type (wt) p53 protein in a glioblastoma tumor cell line has been shown to be growth inhibitory. We have now more precisely localized the position in the cell cycle where growth arrest occurs. We show that growth arrest occurs prior to or near the restriction point in late G1 phase of the cell cycle. The effect of wt p53 protein on the expression of four immediate-early genes (c-FOS, c-JUN, JUN-B, and c-MYC), one delayed-early gene (ornithine decarboxylase), and two late-G1/S-phase genes (B-MYB and DNA polymerase alpha) was also examined. Of this subset of growth response genes, only the expression of B-MYB and DNA polymerase alpha was significantly repressed. The possibility that decreased expression of B-MYB may be an important component of growth arrest mediated by wt p53 protein is discussed.  相似文献   

12.
We investigated the direct effects of LH-releasing hormone (LH-RH) antagonist, Cetrorelix, on the growth of HTOA human epithelial ovarian cancer cell line. RT-PCR revealed the expression of mRNA for LH-RH and its receptor in HTOA cells. Cetrorelix, at concentrations between 10(-9) and 10(-5) M, exerted a dose-dependent antiproliferative action on HTOA cells, as measured by 5-bromo-2'-deoxyuridine incorporation into DNA. Flow cytometric analysis indicated that Cetrorelix, at 10(-5) M, arrested cell cycle in HTOA cells, at G1 phase, after 24 h of treatment. Western blot analysis of cell cycle-regulatory proteins demonstrated that treatment with Cetrorelix (10(-5) M) for 24 h did not change the steady-state levels of cyclin D1, cyclin E, and cyclin-dependent kinase (Cdk)4 but decreased the levels of cyclin A and Cdk2. The protein levels of p21 (a Cdk inhibitor) and p53 (a suppressor of tumor cell growth and a positive regulator for p21 expression) were increased by Cetrorelix, but the levels of p27 (a Cdk inhibitor) did not change significantly. Flow cytometric analysis and terminal deoxynucleotidyltransferase-mediated deoxyuridine 5-triphosphate nick end labeling staining demonstrated that Cetrorelix (10(-5) M) induced apoptosis in HTOA cells. In conclusion, Cetrorelix directly inhibits the proliferation of human epithelial ovarian cancer cells through mechanisms mediated by LH-RH receptor and involving multiple events in cell cycle progression, including G1 phase cell cycle arrest coupled with down-regulation of cyclin A-Cdk2 complex levels, presumably attributable to an up-regulation of p53 and p21 protein levels and apoptosis.  相似文献   

13.
14.
tsAF8 cells are a temperature-sensitive (ts) mutant of BHK cells that are arrested in G1 at the nonpermissive temperature. When made quiescent by serum restriction, they can be stimulated to enter S phase by 10% serum at 34 degrees C but not at 40.6 degrees C. The same results can be obtained if quiescent cells are infected with polyoma virus or adenovirus 12 instead of serum. However, adenovirus 2 infection stimulates DNA synthesis in tsAF8 cells at both 34 degrees C and 40.6 degrees C. The DNA synthesized after adenovirus 2 infection has been shown to be cellular DNA by CsCl density centrifugation. By density labeling it can be shown that adenovirus 2-induced DNA synthesis is due to semiconservative replication. The difference between adenovirus 2 and polyoma (or serum) is also evident with another ts mutant of BHK cells, ts13 cells. These results open the possibility of identifying the viral or cellular mechanism at the basis of this difference in the induction of host DNA synthesis between adenovirus 2 and polyoma or serum.  相似文献   

15.
Serum-deprived quiescent human diploid cells (HDC) were fused to replicative HDC, and DNA synthesis was monitored in the resulting heterodikaryons. Quiescent HDC had an inhibitory effect on DNA synthesis in replicative HDC nuclei in heterodikaryons. The timing of the inhibitory effect suggests that entry into S phase was inhibited but ongoing DNA synthesis was not inhibited in the replicative HDC nuclei. When quiescent HDC were fused to T98G human glioblastoma cells or SUSM-1 chemically transformed human cells, entry into S phase was similarly inhibited. However, when quiescent HDC were fused to simian virus 40-transformed human cells, adenovirus 5-transformed human cells, or HeLa cells, DNA synthesis was induced in the quiescent HDC nuclei. A simple hypothesis to explain these results is that quiescent HDC contain an inhibitor of entry into S phase. Transformed cells with a dominant replicative phenotype may have gained a factor that overrides the putative inhibitor, perhaps through viral transformation, whereas recessive transformed cells may ahve lost the normal inhibitory mechanism, perhaps through mutation. Senescent HDC behave like quiescent HDC in heterodikaryons formed with the same types of replicative cells, which suggest that senescent HDC and quiescent HDC share elements of a common mechanism for cessation of proliferation.  相似文献   

16.
INTRODUCTIONStudiesonthefunctionsofcelularprotooncogenesandtumorsuppresorgenesindicatethatmostofthesegenesmediatesignaltrans...  相似文献   

17.
GADD45 induction of a G2/M cell cycle checkpoint   总被引:30,自引:0,他引:30       下载免费PDF全文
G1/S and G2/M cell cycle checkpoints maintain genomic stability in eukaryotes in response to genotoxic stress. We report here both genetic and functional evidence of a Gadd45-mediated G2/M checkpoint in human and murine cells. Increased expression of Gadd45 via microinjection of an expression vector into primary human fibroblasts arrests the cells at the G2/M boundary with a phenotype of MPM2 immunopositivity, 4n DNA content and, in 15% of the cells, centrosome separation. The Gadd45-mediated G2/M arrest depends on wild-type p53, because no arrest was observed either in p53-null Li-Fraumeni fibroblasts or in normal fibroblasts coexpressed with p53 mutants. Increased expression of cyclin B1 and Cdc25C inhibited the Gadd45-mediated G2/M arrest in human fibroblasts, indicating that the mechanism of Gadd45-mediated G2/M checkpoint is at least in part through modulation of the activity of the G2-specific kinase, cyclin B1/p34(cdc2). Genetic and physiological evidence of a Gadd45-mediated G2/M checkpoint was obtained by using GADD45-deficient human or murine cells. Human cells with endogenous Gadd45 expression reduced by antisense GADD45 expression have an impaired G2/M checkpoint after exposure to either ultraviolet radiation or methyl methanesulfonate but are still able to undergo G2 arrest after ionizing radiation. Lymphocytes from gadd45-knockout mice (gadd45 -/-) also retained a G2/M checkpoint initiated by ionizing radiation and failed to arrest at G2/M after exposure to ultraviolet radiation. Therefore, the mammalian genome is protected by a multiplicity of G2/M checkpoints in response to specific types of DNA damage.  相似文献   

18.
Replication of the single-stranded linear DNA genome of parvovirus minute virus of mice (MVM) starts with complementary strand synthesis from the 3'-terminal snap-back telomere, which serves as a primer for the formation of double-stranded replicative form (RF) DNA. This DNA elongation reaction, designated conversion, is exclusively dependent on cellular factors. In cell extracts, we found that complementary strand synthesis was inhibited by the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) and rescued by the addition of proliferating cell nuclear antigen, arguing for the involvement of DNA polymerase (Pol) delta in the conversion reaction. In vivo time course analyses using synchronized MVM-infected A9 cells allowed initial detection of MVM RF DNA at the G(1)/S phase transition, coinciding with the onset of cyclin A expression and cyclin A-associated kinase activity. Under in vitro conditions, formation of RF DNA was efficiently supported by A9 S cell extracts, but only marginally by G(1) cell extracts. Addition of recombinant cyclin A stimulated DNA conversion in G(1) cell extracts, and correlated with a concomitant increase in cyclin A-associated kinase activity. Conversely, a specific antibody neutralizing cyclin A-dependent kinase activity, abolished the capacity of S cell extracts for DNA conversion. We found no evidence for the involvement of cyclin E in the regulation of the conversion reaction. We conclude that cyclin A is necessary for activation of complementary strand synthesis, which we propose as a model reaction to study the cell cycle regulation of the Pol delta-dependent elongation machinery.  相似文献   

19.
Senescent human diploid fibroblasts are unable to enter S phase in response to mitogenic stimulation. One of the key deficiencies in mitogen-stimulated senescent cells is their failure to phosphorylate the retinoblastoma protein, which acts as an inhibitor of entry into S phase in its unphosphorylated form. Recent data suggest that cyclin-dependent kinases (Cdks) regulated by G1 cyclins (D type and E) are responsible for the primary phosphorylation of the retinoblastoma protein prior to the G1/S boundary. Surprisingly, we found 10- to 15-fold higher constitutive amounts of both cyclin E and cyclin D1 in senescent cells compared to quiescent early-passage cells. Nevertheless, cyclin E-associated kinase activity in senescent cells was very low and did not increase significantly upon mitogenic stimulation even though cyclin E-Cdk2 complexes were abundant. In contrast to early-passage cells in late G1 phase, senescent cells contained mainly underphosphorylated cyclin E and proportionally more unphosphorylated and inactive Cdk2, perhaps accounting for the low kinase activity. We also show that a majority of the Cdk2 in senescent cells, but not in early-passage cells, was complexed with cyclin D1. Cyclin D1-Cdk2 complexes, severalfold enriched in senescent cells, contained exclusively unphosphorylated Cdk2. Amounts of cyclin A, which ordinarily accumulates in S and G2 phases, were extremely low in stimulated senescent cells. We suggest that the failure to activate cyclin E-Cdk2 kinase activity in senescent cells may account for the inability of these cells to phosphorylate the retinoblastoma protein in late G1 phase, which in turn may block the expression of late G1 genes such as cyclin A that are required for entry into S phase.  相似文献   

20.
p18(INK4c) belongs to the family of cyclin-dependent kinase inhibitory proteins that target the cyclin-dependent kinases and inhibit their catalytic activity. The role of p18(INK4c) for cell cycle progression in vivo is characterized poorly. Therefore, we studied the expression and physiologic relevance of p18 in quiescent and proliferating hepatocytes during liver regeneration. For our analysis we used single- (p18[INK4c], p27[KIP1], p21[CIP1/WAF1]), and double-mutant (p18/p21, p18/p27) mice. p18 expression was found in quiescent hepatocytes and a slight up-regulation was evident after partial hepatectomy (PH). p18 knockout animals showed normal cell cycle progression after PH. However, when p18/p21 and p18/p27 double-mutant mice were used, differences in cell cycle progression were evident compared with wild-type (wt) and single knockout animals. In p18/p21 knockout animals, the G1 phase was shortened as evidenced by an earlier onset of cyclin D and proliferating cell nuclear antigen (PCNA) expression and cyclin-dependent kinase (CDK) activation after PH. In contrast, in p18/p27 knockout animals, the G1 phase was unchanged, but the amount of proliferating hepatocytes (5-bromo-2'-deoxyuridine [BrdU] and PCNA positive) 48 hours after PH was elevated. In conclusion, our results suggest that p18 is involved in cell cycle progression after PH. Additionally we provide evidence that timing and strength of DNA synthesis in hepatocytes after PH is regulated tightly through the collaboration of different cell cycle inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号