首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Engagement of Toll-like receptors (TLRs) on macrophages leads to activation of the mitogen-activated protein kinases (MAPKs), which contribute to innate immune responses. MAPK activity is regulated negatively by MAPK phosphatases (MKPs). MKP-1, the founding member of this family of dual-specificity phosphatases, has been implicated in regulating lipopolysaccharide (LPS) responses, but its role in TLR-mediated immune responses in vivo has not been defined. Here, we show that mice deficient in MKP-1 were highly susceptible to endotoxic shock in vivo, associated with enhanced production of proinflammatory cytokines TNF-alpha and IL-6 and an anti-inflammatory cytokine, IL-10. We further examined the regulation and function of MKP-1 in macrophages, a major cell type involved in endotoxic shock. MKP-1 was transiently induced by TLR stimulation through pathways mediated by both myeloid differentiation factor 88 (MyD88) and TIR domain-containing adaptor inducing IFN-beta (TRIF). MKP-1 deficiency led to sustained activation of p38 MAPK and c-Jun N-terminal kinase (JNK) in LPS-treated macrophages. In response to TLR signals, MKP-1-deficient macrophages produced 5- to 10-fold higher IL-10, which could be blocked by a p38 MAPK inhibitor. Thus, p38 MAPK plays a critical role in mediating IL-10 synthesis in TLR signaling. TNF-alpha was found to be more abundant in MKP-1-deficient macrophages within 2 hours of TLR stimulation, but its production was rapidly down-regulated by IL-10. Our studies demonstrate that MKP-1 attenuates the activities of p38 MAPK and JNK to regulate both pro- and anti-inflammatory cytokines in TLR signaling. These results highlight the complex mechanisms by which the MAPKs regulate innate immunity.  相似文献   

2.
BACKGROUND: Toll-like receptors (TLRs) are a family of proteins that orchestrate innate immune responses to microbes. Although pathogens are typically recognized by multiple TLRs, the specific roles of individual TLRs in mediating host protection during in vivo infection are not well understood. METHODS: We compared the roles of myeloid differentiation primary response gene (88) (MyD88), which regulates signaling through multiple TLRs, and TLR2 in mediating resistance to aerosolized Legionella pneumophila infection in vivo. RESULTS: In comparison with wild-type mice, MyD88-deficient (MyD88(-/-)) mice had dramatically higher bacterial counts in the lungs, with decreased neutrophil counts in the bronchoalveolar lavage fluid as well as absent cytokine and chemokine production at early time points. By day 6 of infection, the MyD88(-/-) mice developed organizing pneumonia with dissemination of L. pneumophila to the lymph nodes and spleen. TLR2(-/-) mice were also more susceptible to L. pneumophila, with higher bacterial counts in the lung. However, TLR2(-/-) mice produced proinflammatory cytokines, recruited neutrophils to the lung alveoli, and cleared the infection without progression to organizing pneumonia and disseminated disease. CONCLUSIONS: These results suggest that a MyD88-dependent pathway is required for eradication of L. pneumophila and prevention of organizing pneumonia. TLR2 mediates partial resistance to L. pneumophila, which indicates that additional MyD88-dependent, TLR2-independent pathways are essential for full protection.  相似文献   

3.
The Toll-like receptor 4 (TLR4) that recognizes endotoxin, a trigger of inflammation in alcoholic liver disease (ALD), activates two signaling pathways utilizing different adapter molecules: the common TLR adapter, myeloid differentiation factor 88 (MyD88), or Toll/interleukin immune-response-domain-containing adaptor inducing interferon (IFN)-beta. The MyD88 pathway induces proinflammatory cytokine activation, a critical mediator of ALD. Here we evaluated the role of MyD88 in alcohol-induced liver injury in wild-type, TLR2-deficient, TLR4-deficient, or MyD88-deficient (knockout [KO]) mice after administration of the Lieber-De-Carli diet (4.5% volume/volume ethanol) or an isocaloric liquid control diet for 5 weeks. Alcohol feeding resulted in a significant increase in serum alanine aminotransferase levels, liver steatosis and triglyceride levels suggesting liver damage in WT, TLR2-KO, and MyD88-KO but not in TLR4-KO mice. Expression of inflammatory mediators (tumor necrosis factor-alpha and interleukin-6) and TLR4 coreceptors (CD14 and MD2) was significantly higher in livers of alcohol-fed WT, TLR2-KO, or MyD88-KO, but not in TLR4-KO mice, compared to controls. Reactive oxygen radicals produced by cytochrome P450 and the nicotinamide adenine dinucleotide phosphate complexes contribute to alcoholic liver damage. Alcohol feeding-induced expression and activation of cytochrome P450 and the nicotinamide adenine dinucleotide phosphate complex were prevented by TLR4-deficiency but not by MyD88-deficiency. Liver expression of interferon regulatory factor 3 (IRF3), a MyD88-independent signaling molecule, was not affected by chronic alcohol treatment in whole livers of WT mice or in any of the KO mice. However, the induction of IRF7, an IRF3-inducible gene, was found in Kupffer cells of alcohol-fed WT mice. Alcohol feeding also induced nuclear factor-kappaB activation in a TLR4-dependent MyD88-independent manner. CONCLUSION: While TLR4 deficiency was protective, MyD88 deficiency failed to prevent alcohol-induced liver damage and inflammation. These results suggest that the common TLR adapter, MyD88, is dispensable in TLR4-mediated liver injury in ALD.  相似文献   

4.
Yadav M  Schorey JS 《Blood》2006,108(9):3168-3175
Pattern recognition receptors (PRRs) play an essential role in a macrophage's response to mycobacterial infections. However, how these receptors work in concert to promote this macrophage response remains unclear. In this study, we used bone marrow-derived macrophages isolated from mannose receptor (MR), complement receptor 3 (CR3), MyD88, Toll-like receptor 4 (TLR4), and TLR2 knockout mice to examine the significance of these receptors in mediating a macrophage's response to a mycobacterial infection. We determined that mitogen-activated protein kinase (MAPK) activation and tumor necrosis factor-alpha (TNF-alpha) production in macrophage infected with Mycobacterium avium or M smegmatis is dependent on myeloid differentiation factor 88 (MyD88) and TLR2 but not TLR4, MR, or CR3. Interestingly, the TLR2-mediated production of TNF-alpha by macrophages infected with M smegmatis required the beta-glucan receptor dectin-1. A similar requirement for dectin-1 in TNF-alpha production was observed for macrophages infected with M bovis Bacillus Calmette-Guerin (BCG), M phlei, M avium 2151-rough, and M tuberculosis H37Ra. The limited production of TNF-alpha by virulent M avium 724 and M tuberculosis H37Rv was not dependent on dectin-1. Furthermore, dectin-1 facilitated interleukin-6 (IL-6), RANTES (regulated on activation, normal T expressed and secreted), and granulocyte colony-stimulating factor (G-CSF) production by mycobacteria-infected macrophages. These are the first results to establish a significant role for dectin-1, in cooperation with TLR2, to activate a macrophage's proinflammatory response to a mycobacterial infection.  相似文献   

5.
6.
Toll-like receptors (TLRs) play an important role in host defense against a variety of microbial pathogens. We addressed the mechanism by which TLRs contribute to host defense against the lethal parasite Toxoplasma gondii by using mice with targeted inactivation of the TLR adaptor protein myeloid differentiation primary response gene 88 (MyD88) in different innate cell types. Lack of MyD88 in dendritic cells (DCs), but not in macrophages or neutrophils, resulted in high susceptibility to the T. gondii infection. In the mice deficient in MyD88 in DCs, the early IL-12 response by DCs was ablated, the IFN-γ response by natural killer cells was delayed, and the recruited inflammatory monocytes were incapable of killing the T. gondii parasites. The T-cell response, although attenuated in these mice, was sufficient to eradicate the parasite during the chronic stage, provided that defects in DC activation were compensated by IL-12 treatment early after infection. These results demonstrate a central role of DCs in orchestrating the innate immune response to an intracellular pathogen and establish that defects in pathogen recognition by DCs can predetermine sensitivity to infection.  相似文献   

7.
BACKGROUND AND AIMS: Recent evidence suggests that toll-like receptors (TLRs) recognize certain viruses. We reported that hepatitis C virus (HCV) core and nonstructural 3 (NS3) proteins activate inflammatory pathways in monocytes. The aim of this study was to investigate the role of TLRs in innate immune cell activation by core and NS3 proteins. METHODS: Human monocytes, human embryonic kidney cells transfected with TLR2, and peritoneal macrophages from TLR2, MyD88 knockout, and wild-type mice were studied to determine intracellular signaling and proinflammatory cytokine induction by HCV proteins. RESULTS: HCV core and NS3 proteins triggered inflammatory cell activation via the pattern recognition receptor TLR2 and failed to activate macrophages from TLR2 or MyD88-deficient mice. HCV core and NS3 induced interleukin (IL)-1 receptor-associated kinase (IRAK) activity, phosphorylation of p38, extracellular regulated (ERK), and c-jun N-terminal (JNK) kinases and induced AP-1 activation. Activation of nuclear factor-kappaB by core and NS3 was associated with increased IkappaBalpha phosphorylation. TLR2-mediated cell activation was dependent on the conformation of core and NS3 proteins and required sequences in the regions of aa 2-122 in core and aa 1450-1643 in NS3. Although cellular uptake of core and NS3 proteins was independent of TLR2 expression, cell activation required TLR2. HCV core protein and TLR2 showed intracellular colocalization. The hyper-elevated TNF-alpha induction by TLR2 ligands in monocytes of HCV-infected patients was not due to increased TLR2 expression. CONCLUSIONS: HCV core and NS3 proteins trigger inflammatory pathways via TLR2 that may affect viral recognition and contribute to activation of the innate immune system.  相似文献   

8.
Toll-like receptors (TLRs) expressed on both immune cells and hepatocytes recognize microbial danger signals and regulate immune responses. Previous studies showed that TLR9 and TLR2 mediate Propionibacterium acnes-induced sensitization to lipopolysaccharide-triggered acute liver injury in mice. Ligand-specific activation of TLR2 and TLR9 are dependent on the common TLR adaptor, myeloid differentiation factor 88 (MyD88). Here, we dissected the role of MyD88 in parenchymal and bone marrow (BM)-derived cells in liver sensitization. Using chimeric mice with green fluorescent protein-expressing BM cells, we identified that P. acnes-induced liver inflammatory foci are of BM origin. Chimeras with MyD88-deficient BM showed no inflammatory foci after P. acnes or TLR2+TLR9 challenge, suggesting that recruitment of inflammatory cells to the liver required MyD88 expression in BM-derived cells. Further, selective MyD88 deficiency in parenchymal cells in mice with wild-type BM failed to prevent inflammatory cell infiltration. These results demonstrate that MyD88 in immune cells rather than in liver parenchymal cells plays an important role in inflammatory cell recruitment and liver injury.  相似文献   

9.
Toll-like receptors (TLRs) are phylogenetically conserved receptors that recognize pathogen associated molecular patterns (PAMPS). We previously generated mice lacking TLR2 and TLR4 and showed the differential role of TLR2 and TLR4 in microbial recognition. TLR4 functions as the transmembrane component of the lipopolysaccharide (LPS) receptor, while TLR2 recognizes peptidoglycan from Gram-positive bacteria and lipoprotein. We also generated mice lacking MyD88, an adaptor involved in IL-1R/TLR signalings. The responses to a variety of bacterial components were completely abrogated in MyD88-deficient cells. However, unlike the signaling mediated by other bacterial components such as lipoprotein and bacterial DNA, activation of NF-kappaB and MAP kinases was induced in response to LPS even in the absence of MyD88, which indicates the existence of a MyD88-independent pathway. We have recently found that the MyD88-independent pathway is involved in LPS-induced maturation of dendritic cells (DCs).  相似文献   

10.
Toll-like receptors (TLRs) play an essential role in the detection of invading pathogens in the body. Individual TLRs recognize distinct components derived from pathogens, which is followed by cytokine production. The TLR family harbors extracellular leucine-rich repeat domains and a cytoplasmic domain that is homologous to that of the interleukin (IL)-1 receptor (IL-1R) family. After stimulation, TLR recruits IL-1R-associated kinase via adaptor myeloid differentiation factor 88 (MyD88) and induces activation of NF-kappaB and mitogen-activated protein kinases. Cytokine production in response to each TLR ligand is completely abrogated in MyD88-deficient cells, which indicates that MyD88 is an essential shared signaling molecule in the IL-1R/Toll family. The TLR4 signal has an MyD88-independent pathway that is involved in induction of type I interferons (IFNs) and IFN-inducible genes via IFN regulatory factor-3 activation. A recently identified adaptor molecule, Toll-IL receptor domain-containing adaptor protein/MyD88 adaptor-like, may participate in the MyD88-independent pathway.  相似文献   

11.
To stuck the effect of chemotherapy on parasite-macrophage interaction we used the wild-type Y strain (drug-susceptible) of Trypanosoma cruzi and a drug-resistant parasite population derived from the same strain. Trypomastigotes isolated from untreated infected mice, as well as, 3 h after treatment with BZ were incubated with inflammatory macrophages and used to study phagocytosis, parasite destruction, cytokine release and reactive nitrogen intermediates (RN!) synthesis. Phagocytosis and destruction of the drug-susceptible parasites were significant/v enhanced by drug treatment. These enhancements were accompanied by an increase in cytokines [interleukin (IL)-12 and tumour necrosis factor (TNF)alpha] and RNI release by murine inflammatory macrophages primed with IFN-gamma. In contrast, BZ treatment of mice infected with drug-resistant T. cruzi population showed no effect whatsoever. The synthesis of IFN-gamma and RNI by splenocytes of mice infected with either susceptible and drug-resistant parasite populations, before and after treatment with BZ were also studied. On/v the splenocytes from mice infected with the drug-susceptible parasites treated with BZ produced high levels of IFN-gamma and RNI. Our findings indicate that BZ acts on the drug-susceptible T. cruzi parasites by enhancing the phagocytosis and the production of cytokines and RN!, thus, favouring the destruction of the intracellular parasites by the cellular compartment of the immune system.  相似文献   

12.
13.
Infection with Plasmodium berghei ANKA is a well-established model of human cerebral malaria (CM). We show herein that Toll-like receptor (TLR) signaling influences the development of lethal CM in P. berghei ANKA-infected mice. Modulation of outcome was dependent on genetic background, such that deletion of myeloid differentiation factor (MyD) 88 on the susceptible C57BL/6 background resulted in resistance to CM, whereas deletion of MyD88 on the resistant BALB/c background led to increased mortality. Our data show that MyD88 influenced the production of T helper-polarizing cytokines, including interferon (IFN)- gamma, interleukin (IL)-4, and IL-17, as well as the total number of Foxp3(+) regulatory T (T(reg)) cells in a manner dependent on host genetic background. In addition, mRNA levels of IFN- gamma, CXCL10, and CXCL9 were strongly up-regulated in the brains of susceptible wild-type but not MyD88(-/-) infected mice. These results suggest that TLR signaling and host genetic background influences the pathogenesis of CM via modulation of cytokine production and T(reg) cell numbers.  相似文献   

14.
OBJECTIVE: Pertussis toxin (PT) has the capacity to activate dendritic cells (DCs) for the augmentation of cell-mediated immune responses. To investigate the mechanism(s) by which PT activates DCs, we investigated the effects of PT and its B-oligomer (PTB) on the maturation of human and mouse DCs and determined whether PT could act as a pathogen-associated molecular pattern to activate one of the Toll-like receptors (TLRs). METHODS: The effects of PT and PTB on the maturation of human and mouse DCs were analyzed in terms of surface marker expression, cytokine production, antigen-presenting capacity, and intracellular signaling. The participation of TLR4 in PT-induced signaling was determined by comparing the effect of PT on DCs derived from TLR4-deficient and wild-type mice, as well as by measuring PT-induced NF-kappaB activation in HEK293 cells transiently transfected to express various TLRs. RESULTS: Although both promoted phenotypic and functional maturation DCs, however, unlike PT that induced DC production of interleukin (IL)-6, tumor necrosis factor-alpha, IL-12, and interferon-inducible protein, PTB was capable of stimulating the production of interferon-inducible protein. Bone marrow-derived DCs from C3H/HeJ mice with defective TLR-4 alleles were unresponsive to PT and PTB, whereas DCs from C3H/HeN mice responded. In addition, PT induced NF-kappaB activation and IL-8 production in HEK293 cells transfected with a combination of TLR4 and MD2 but not in nontransfected or TLR2-transfected HEK293 cells. Comparison of the patterns of cytokine induction and intracellular signaling events in DCs treated by PT and PTB revealed that although PT, like lipopolysaccharide, triggered both MyD88-dependent and -independent pathways, PTB preferentially triggered MyD88-independent pathways. Interestingly, mouse splenocyte proliferation in response to PT and PTB was only partially dependent on TLR4. CONCLUSION: The data identify PT as another pathogen-associated molecular pattern that induces DC maturation in a TLR4-dependent manner. Unlike PT, which triggers both MyD88-dependent and -independent pathways, PTB only triggers the MyD88-independent pathway in DCs.  相似文献   

15.
16.
BACKGROUND/AIMS: Toll-like receptors (TLR) recognize pathogens and regulate innate immune activation. Here, we investigated the roles of TLR9 and the common TLR adaptor, MyD88, in liver injury. METHODS: C57BL6, TLR9(-/-), IFNgamma(-/-) or MyD88(-/-) mice were primed with Propionibacterium acnes, TLR9 (CpG) or TLR2 (lipoteichoic acid) ligands followed by LPS challenge. ALT, cytokines and liver histology were assessed. RESULTS: Selective priming through TLR9 but not TLR2 induced granulomas, elevated serum ALT, and sensitized C57BL6 mice to increased LPS-induced serum IL-6, IL-12 and IFNgamma levels. Further, TLR2 and TLR9 ligands synergized in induction of granulomas and sensitization to LPS-induced inflammation. IFNgamma induction by P. acnes, TLR2 and TLR9 ligands required MyD88. In MyD88(-/-) mice P. acnes failed to induce granulomas and both MyD88 and TLR9 deficiency prevented P. acnes-induced sensitization to LPS. Increased mRNA expression of genes of the TLR4 signaling complex (TLR4, CD14, MD-2, and MyD88) and the NADPH complexes (p47phox, p67phox, gp91phox, and p22phox) was induced by priming with P. acnes or TLR9 plus TLR2 suggesting mechanisms for LPS sensitization and liver injury. CONCLUSIONS: TLR9+/-TLR2 activation via MyD88-dependent pathways plays a pivotal role in liver sensitization and granuloma formation.  相似文献   

17.

Objective

In gout, incompletely defined molecular factors alter recognition of dormant articular and bursal monosodium urate monohydrate (MSU) crystal deposits, thereby inducing self‐limiting bouts of characteristically severe neutrophilic inflammation. To define primary determinants of cellular recognition, uptake, and inflammatory responses to MSU crystals, we conducted a study to test the role of Toll‐like receptor 2 (TLR‐2), TLR‐4, and the cytosolic TLR adapter protein myeloid differentiation factor 88 (MyD88), which are centrally involved in innate immune recognition of microbial pathogens.

Methods

We isolated bone marrow–derived macrophages (BMDMs) in TLR‐2−/−, TLR‐4−/−, MyD88−/−, and congenic wild‐type mice, and assessed phagocytosis and cytokine expression in response to endotoxin‐free MSU crystals under serum‐free conditions. MSU crystals also were injected into mouse synovium‐like subcutaneous air pouches.

Results

TLR‐2−/−, TLR‐4−/−, and MyD88−/− BMDMs demonstrated impaired uptake of MSU crystals in vitro. MSU crystal–induced production of interleukin‐1β (IL‐1β), tumor necrosis factor α, keratinocyte‐derived cytokine/growth‐related oncogene α, and transforming growth factor β1 also were significantly suppressed in TLR‐2−/− and TLR‐4−/− BMDMs and were blunted in MyD88−/− BMDMs in vitro. Neutrophil influx and local induction of IL‐1β in subcutaneous air pouches were suppressed 6 hours after injection of MSU crystals in TLR‐2−/− and TLR‐4−/− mice and were attenuated in MyD88−/− mice.

Conclusion

The murine host requires TLR‐2, TLR‐4, and MyD88 for macrophage activation and development of full‐blown neutrophilic, air pouch inflammation in response to MSU crystals. Our findings implicate innate immune cellular recognition of naked MSU crystals by specific TLRs as a major factor in determining the inflammatory potential of MSU crystal deposits and the course of gouty arthritis.
  相似文献   

18.
Toll-like receptors (TLRs) and the downstream adaptor molecule myeloid differentiation factor 88 (MyD88) play an essential role in the innate immune responses. Here, we demonstrate that genetic deficiency of TLR4 or MyD88 is associated with a significant reduction of aortic plaque areas in atherosclerosis-prone apolipoprotein E-deficient mice, despite persistent hypercholesterolemia, implying an important role for the innate immune system in atherogenesis. Apolipoprotein E-deficient mice that also lacked TLR4 or MyD88 demonstrated reduced aortic atherosclerosis that was associated with reductions in circulating levels of proinflammatory cytokines IL-12 or monocyte chemoattractant protein 1, plaque lipid content, numbers of macrophage, and cyclooxygenase 2 immunoreactivity in their plaques. Endothelial-leukocyte adhesion in response to minimally modified low-density lipoprotein was reduced in aortic endothelial cells derived from MyD88-deficient mice. Taken together, our results suggest an important role for TLR4 and MyD88 signaling in atherosclerosis in a hypercholesterolemic mouse model, providing a pathophysiologic link between innate immunity, inflammation, and atherogenesis.  相似文献   

19.
OBJECTIVE: In gout, incompletely defined molecular factors alter recognition of dormant articular and bursal monosodium urate monohydrate (MSU) crystal deposits, thereby inducing self-limiting bouts of characteristically severe neutrophilic inflammation. To define primary determinants of cellular recognition, uptake, and inflammatory responses to MSU crystals, we conducted a study to test the role of Toll-like receptor 2 (TLR-2), TLR-4, and the cytosolic TLR adapter protein myeloid differentiation factor 88 (MyD88), which are centrally involved in innate immune recognition of microbial pathogens. METHODS: We isolated bone marrow-derived macrophages (BMDMs) in TLR-2-/-, TLR-4-/-, MyD88-/-, and congenic wild-type mice, and assessed phagocytosis and cytokine expression in response to endotoxin-free MSU crystals under serum-free conditions. MSU crystals also were injected into mouse synovium-like subcutaneous air pouches. RESULTS: TLR-2-/-, TLR-4-/-, and MyD88-/- BMDMs demonstrated impaired uptake of MSU crystals in vitro. MSU crystal-induced production of interleukin-1beta (IL-1beta), tumor necrosis factor alpha, keratinocyte-derived cytokine/growth-related oncogene alpha, and transforming growth factor beta1 also were significantly suppressed in TLR-2-/- and TLR-4-/- BMDMs and were blunted in MyD88-/- BMDMs in vitro. Neutrophil influx and local induction of IL-1beta in subcutaneous air pouches were suppressed 6 hours after injection of MSU crystals in TLR-2-/- and TLR-4-/- mice and were attenuated in MyD88-/- mice. CONCLUSION: The murine host requires TLR-2, TLR-4, and MyD88 for macrophage activation and development of full-blown neutrophilic, air pouch inflammation in response to MSU crystals. Our findings implicate innate immune cellular recognition of naked MSU crystals by specific TLRs as a major factor in determining the inflammatory potential of MSU crystal deposits and the course of gouty arthritis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号