首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptors for platelet-derived growth factor (PDGF) have not been identified previously to our knowledge in human myeloid cells that also produce PDGF. Here we report that phorbol ester-treated myeloid cells differentiated along the monocytic lineage express both a full-length 5.5-kilobase (kb) mRNA and a predominant, truncated 4.6-kb mRNA coding for the PDGF B-chain receptor (PDGF-BR). PDGF-BR was identified in phorbol ester-differentiated myeloid cells by indirect immunofluorescence with an antibody specific to PDGF-BR. This anti-PDGF-BR was also used in immunoprecipitation studies to demonstrate that lysates of phorbol ester-differentiated myeloid cells contain PDGF-BR molecules of 37 kDa to 130 kDa. The results also show that the tandemly linked genes for PDGF-BR and the macrophage colony-stimulating factor 1 receptor are coexpressed in the phorbol ester-differentiated myeloid cells. Expression of these two receptor genes has not been shown previously in any cell type to our knowledge.  相似文献   

2.
The c-fms protooncogene encodes the receptor for macrophage-colony-stimulating factor (CSF-1). Expression vectors containing either normal or oncogenic point-mutated human c-fms genes were transfected into interleukin 3 (IL-3)-dependent 32D cells in order to determine the effects of CSF-1 signaling in this murine clonal myeloid progenitor cell line. CSF-1 was shown to trigger proliferation in association with monocytic differentiation of the 32D-c-fms cells. Monocytic differentiation was reversible upon removal of CSF-1, implying that CSF-1 was required for maintenance of the monocyte phenotype but was not sufficient to induce an irrevocable commitment to differentiation. Human CSF-1 was also shown to be a potent chemoattractant for 32D-c-fms cells, suggesting that CSF-1 may serve to recruit monocytes from the circulation to tissue sites of inflammation or injury. Although c-fms did not release 32D cells from factor dependence, point-mutated c-fms[S301,F969] (Leu-301----Ser, Tyr-969----Phe) was able to abrogate their IL-3 requirement and induce tumorigenicity. IL-3-independent 32D-c-fms[S301,F969] cells also displayed a mature monocyte phenotype, implying that differentiation did not interfere with progression of these cells to the malignant state. All of these findings demonstrate that a single growth factor receptor can specifically couple with multiple intracellular signaling pathways and play a critical role in modulating cell proliferation, differentiation, and migration.  相似文献   

3.
4.
5.
We studied seven cases of myeloid leukemia at various differentiation stages to investigate the response of leukemic cells to phorbol 12- myristate 13-acetate (PMA) and various biological factors. gamma- Interferon (gamma-IFN)-treated cells expressed higher amounts of Fc receptors on leukemic cells in five out of seven cases. Expression of HLA-DR antigen of gamma-IFN-treated leukemic cells was significantly enhanced in three cases. PMA did not induce Fc receptors or HLA-DR antigen on these cells. Induction of Tac antigen, a putative interleukin 2 (IL 2) receptor, was observed in two cases after cultivation with PMA or with a novel lymphokine, adult T cell leukemia- derived factor (ADF). Cells from one of these patients expressed Tac antigen immediately after cell separation, and expression of Tac antigen was augmented by PMA and ADF. Interleukin 1 (IL 1) or IL 2 did not induce Tac antigen. Leukemic cells from this patient also proliferated vigorously in the presence of ADF but not PMA, IL 1, or IL 2.  相似文献   

6.
Tomida M  Heike T  Yokota T 《Blood》1999,93(6):1934-1941
Leukemia inhibitory factor (LIF) induces growth arrest and macrophage differentiation of mouse myeloid leukemic cells through the functional LIF receptor (LIFR), which comprises a heterodimeric complex of the LIFR subunit and gp130. To identify the regions within the cytoplasmic domain of LIFR that generate the signals for growth arrest, macrophage differentiation, and STAT3 activation independently of gp130, we constructed chimeric receptors by linking the transmembrane and intracellular regions of mouse LIFR to the extracellular domains of the human granulocyte macrophage colony-stimulating factor receptor (hGM-CSFR) alpha and betac chains. Using the full-length cytoplasmic domain and mutants with progressive C-terminal truncations or point mutations, we show that the two membrane-distal tyrosines with the YXXQ motif of LIFR are critical not only for STAT3 activation, but also for growth arrest and differentiation of WEHI-3B D+ cells. A truncated STAT3, which acts in a dominant negative manner was introduced into WEHI-3B D+ cells expressing GM-CSFRalpha-LIFR and GM-CSFRbetac-LIFR. These cells were not induced to differentiate by hGM-CSF. The results indicate that STAT3 plays essential roles in the signals for growth arrest and differentiation mediated through LIFR.  相似文献   

7.
SUMMARY. Rates of factor X activation on endothelial cells were compared with activation rates on other vascular cells, platelets, monocytes and negatively charged phospholipid vesicles. Factor VIIa-mediated factor X activation was observed on smooth muscle cells and fibroblasts in the absence of cell-perturbing agents, whereas endothelial cells required activation in order to allow extrinsic activation of factor X. On the other hand, unperturbed endothelial cells did promote intrinsic, factor VIII/IXa-dependent activation of factor X. The rate of factor X activation on these cells was about one-sixth of that on ionophore A23187-stimulated platelets. Also, smooth muscle cells and fibroblasts were able to activate factor X through the intrinsic pathway, altough to a lesser extent than endothelial cells. Monocytes were ineffective in this respect. Prothrombin fragment 1, the prothrombin fragment containing the γ-carboxyglutamic acid domain known to mediate binding of vitamin K-dependent coagulation factors to phospholipid surfaces, inhibited factor VIII/IXa-dependent factor X activation on endothelial cells (IC50 3.2 μM) to a lesser extent than on phospholipid vesicles (IC50 0.2 μM). Therefore, besides negatively charged phospholipids, other membrane constituents seem to be involved in endothelial cell mediated, intrinsic activation of factor X. Perturbation of endothelial cells with phorbol myristate acetate (PMA) or lipopoly-saccharide (LPS) was without effect on intrinsic activation of factor X. This observation indicates that membrane constituents of endothelial cells involved in factor VIII/IXa-dependent activation of factor-X are constitutively expressed.  相似文献   

8.
Simon  DI; Rao  NK; Xu  H; Wei  Y; Majdic  O; Ronne  E; Kobzik  L; Chapman  HA 《Blood》1996,88(8):3185-3194
The leukocyte integrin Mac-1 (CD11b/CD18) and the urokinase receptor (uPAR, CD87) mediate complementary functions in myelomonocytic cells. Both receptors promote degradation of fibrin(ogen) and also confer adhesive properties on cells because Mac-1 and uPAR bind fibrin and vitronectin, respectively. Staining of lung biopsy specimens from patients with acute lung injury indicated that fibrin and vitronectin colocalize at exudative sites in which macrophages bearing these receptors accumulate. Because of the parallel roles and physical proximity of Mac-1 and uPAR, the capacity of these receptors to functionally interact was explored. Induction of Mac-1 and uPAR expression on monocytic cell lines by transforming growth factor- beta 1 and 1.25-(OH)2 vitamin D3 conferred urokinase and uPAR-dependent adhesion to vitronectin, which was further promoted by engagement of Mac-1. Vitronectin attachment promoted subsequent Mac-1-mediated fibrinogen degradation threefold to fourfold. In contrast, enhancement of uPAR occupancy by exogenous urokinase or receptor binding fragments thereof inhibited Mac-1 function. Addition of urokinase progressively inhibited Mac-1-mediated fibrinogen binding and degradation (maximal inhibition, 91% +/- 14% and 72% +/- 15%, respectively). Saturation of uPAR with urokinase also inhibited binding of the procoagulant Mac-1 ligand, Factor X. These inhibitory effects of uPAR were reproduced in fresh monocytes, cultured monocytic cells, and in Chinese hamster ovary (CHO) cells transfected with both human Mac-1 and human uPAR. These data show that the procoagulant and fibrinolytic potential of monocytic cells is co-ordinately regulated by ligand binding to both Mac-1 and uPAR and identify uPAR as a regulator of integrin function. Vitronectin- enhanced fibrin(ogen) turnover by Mac-1 may operate as a salvage pathway in the setting of urokinase and plasmin inhibitors to promote clearance of the provisional matrix and subsequent healing.  相似文献   

9.
Endothelial cells are able to support the activation of coagulation factor X by activated factor IX in the presence of its cofactor, factor VIII. We have previously reported that this reaction is persistent on endothelial cells, but transient on activated platelets and phospholipid vesicles when activated factor X (Xa) is used as activator of factor VIII. Aim of the present study was to explore the influence of von Willebrand factor and that of the factor VIII activator, either factor Xa or thrombin, on the decay of factor X activation on the endothelial cell surface. Kinetics of factor X activation on human umbilical vein endothelial cells was compared with that on phospholipid vesicles employing purified coagulation factors from plasma as well as recombinant factor VIII variants. Employing factor Xa as factor VIII activator, rate constants for decay of membrane-bound factor X activation were consistently low on endothelial cells (0.02 min) as compared with phospholipid vesicles (0.2 min). Activation of factor VIII by thrombin resulted in two-fold increased decay rates. In the presence of excess of von Willebrand factor over factor VIII, decay rates were not significantly changed. Factor VIII variants with and without a Tyr to Phe substitution, which abolishes high-affinity binding to von Willebrand factor, displayed the same factor X activation decay kinetics. Although previous studies have shown that von Willebrand factor modulates factor VIII activation and stabilisation, this apparently does not affect the progression of factor X activation at the endothelium.  相似文献   

10.
During Gram-negative septic shock, lipopolysaccharide (LPS, endotoxin) induces tissue factor (TF) expression. TF expression is mediated by nuclear factor kappaB and amplified by activated platelets. TF forms a highly procoagulant complex with activated coagulation factor VII (FVIIa). Hence, we hypothesized that aspirin, which inhibits LPS-induced, nuclear factor kappaB-dependent TF expression in vitro and platelet activation in vivo, may suppress LPS-induced coagulation in humans. Therefore, we studied the effects of aspirin on systemic coagulation activation in the established and controlled setting of the human LPS model. Thirty healthy volunteers were challenged with LPS (4 ng/kg IV) after intake of either placebo or aspirin (1000 mg). Acetaminophen (1000 mg) was given to a third group to control for potential effects of antipyresis. Neither aspirin nor acetaminophen inhibited LPS-induced coagulation. However, LPS increased the percentage of circulating TF(+) monocytes by 2-fold. This increase was associated with a decrease in FVIIa levels, which reached a minimum of 50% 24 hours after LPS infusion. Furthermore, LPS-induced thrombin generation increased plasma levels of circulating polymerized, but not cross-linked, fibrin (ie, thrombus precursor protein), whereas levels of soluble fibrin were unaffected. In summary, a single 1000-mg dose of aspirin did not decrease LPS-induced coagulation. However, our study showed, for the first time, that LPS increases TF(+) monocytes, substantially decreases FVIIa levels, and enhances plasma levels of thrombus precursor protein, which may be a useful marker of fibrin formation in humans.  相似文献   

11.
Anticoagulants have gained increasing attention in the treatment of sepsis. This study used danaparoid to investigate the role of factor Xa in endotoxin-induced coagulation and inflammation and its effectiveness when coagulation activation has already occurred. Thirty healthy volunteers were enrolled in the randomized, placebo-controlled trial. Subjects received 2 ng/kg endotoxin and danaparoid 10 min or 3 h thereafter or placebo. Endotoxin increased prothrombin fragment 1+2 (F(1+2)) levels from 0.5 to 7.0 nmol/L at 5 h in the placebo group. Early danaparoid infusion inhibited endotoxin-induced thrombin formation: maximum F(1+2) levels reached only 1.8 nmol/L (P<.01, vs. baseline or placebo). Delayed danaparoid infusion effectively blocked further thrombin formation. However, danaparoid did not alter endotoxin-induced changes in the fibrinolytic system, cytokine levels, activation of leukocytes, or tissue factor expression on monocytes. Danaparoid therefore selectively attenuates endotoxin-induced coagulopathy, even with delayed administration when coagulation activation is well under way.  相似文献   

12.
Steinman  RA; Tweardy  DJ 《Blood》1994,83(1):119-127
The identification of early markers of myeloid differentiation can facilitate an understanding of how differentiation is arrested in leukemogenesis. Using murine bone marrow and the granulocyte-precusor cell line 32Dc13, we show that message for the granulocyte colony- stimulating factor receptor (G-CSFR) is upregulated by G-CSF in an immediate early fashion that is specific to the differentiation pathway and is antagonized by interleukin-3. We further show that G-CSFR message is superinduced by cycloheximide and that these patterns of regulation are altered in leukemic cell lines. In particular, the v-abl oncogene product supresses both ligand-mediated upregulation and superinduction of the G-CSFR gene.  相似文献   

13.
14.
Full-length murine fibroblast growth factor (FGF) receptor 1 (FGFR-1L) cDNA was introduced into the FDC-P1 mouse myeloid progenitor cell line, which lacks FGF receptors and depends on interleukin 3 (IL-3) or granulocyte/macrophage colony-stimulating factor (GM-CSF) for its proliferation and survival. The expression of the FGFR-1L gene in FDC-P1 cells allowed these cells to grow in the presence of FGF and heparin. The resulting cell line, designated FD FGFR-1L.A, exhibited a more mature myeloid phenotype than did the parental FD FGFR-1L cells or uninfected FDC-P1 cells. They formed mainly dispersed colonies in soft-agar cultures when grown in the presence of FGF and heparin, suggestive of myeloid differentiation. The cells can be switched between growth on FGF/heparin and IL-3. Northern blot analysis and cytochemical staining demonstrated that FD FGFR-1L.A cells expressed myeloperoxidase mRNA and protein, biochemical markers specifically expressed during differentiation from the promyelocytic to the granulocytic stages, whereas the parental FD FGFR-1L cells and FDC-P1 cells failed to express this marker. These results indicate that the expression of FGFR-1L by FDC-P1 cells transmitted signals for growth in the presence of FGF and heparin and generated an additional signal for early myeloid differentiation but failed to commit FD FGFR-1L.A cells to terminal differentiation. This in vitro culture system can be used for molecular analysis of the regulation of cellular growth and differentiation mediated by the FGFs and their receptors.  相似文献   

15.
The effect of factors VIII and IX on the ability of the tissue factor-factor VIIa complex to activate factor X was studied in a continuous-flow tubular enzyme reactor. Tissue factor immobilized in a phospholipid bilayer on the inner surface of the tube was exposed to a perfusate containing factors VIIa, VIII, IX, and X flowing at a shear rate of 57, 300, or 1130 sec-1. Factor Xa in the effluent was determined by chromogenic assay. The flux of factor Xa (moles formed per unit surface area per unit time) was strongly dependent on wall shear rate, increasing about 3-fold as wall shear rate increased from 57 to 1130 sec-1. The addition of factors VIII and IX at their respective plasma concentrations resulted in a further 2- to 3-fold increase. The direct activation of factor X by tissue factor-factor VIIa could be virtually eliminated by the lipoprotein-associated coagulation inhibitor; however, when factors VIII and IX were present at their approximate plasma concentrations, factor Xa production rates were enhanced 15- to 20-fold. These results suggest that the tissue factor pathway, mediated through factors VIII and IX, produces significant levels of factor Xa even in the presence of an inhibitor of the tissue factor-factor VIIa complex; moreover, the activation is dependent on local shear conditions. These findings are consistent both with a model of blood coagulation in which initiation of the system results from tissue factor and with the bleeding observed in hemophilia.  相似文献   

16.
Human umbilical vein endothelial cells (HUVECs) produce a property that impairs the generation of coagulant and amidolytic activity initiated when normal human plasma is exposed to glass. This inhibitory property blocks the adsorption of Hageman factor (factor XII) to glass, thereby preventing the activation of Hageman factor, but does not impair the coagulant or amidolytic activity of already activated Hageman factor (factor XIIa). This property in HUVEC lysates could be neutralized by a purified preparation of Hageman factor but not by purified prekallikrein or high molecular mass kininogen. A partially purified inhibitory fraction from cell lysates exhibited a single homogeneous band in SDS/PAGE of approximately 22.5 kDa. Inhibitory activity was also found in concentrates of conditioned media from HUVECs, which also impaired the binding of Hageman factor to a surface; it may not be identical with that found in cell lysates.  相似文献   

17.
Receptor tyrosine kinases remain dormant until activated by ligand binding to the extracellular domain. Two mechanisms have been proposed for kinase activation: (i) ligand binding to the external domain of a receptor monomer may induce a conformational change that is transmitted across the cell membrane (intramolecular model) or (ii) the ligand may facilitate oligomerization, thereby allowing interactions between the juxtaposed kinase domains (intermolecular model). The receptor for colony-stimulating factor 1 was used to test these models. Large insertions at the junction between the external and transmembrane domains of the receptor, introduced by site-directed mutagenesis of the cDNA, were positioned to isolate the external domain and prevent transmembrane conformational propagation while allowing for receptor oligomerization. Such mutant receptors were expressed on the cell surface, bound ligand with high affinity, exhibited ligand-stimulated autophosphorylation, and signaled mitogenesis and cellular proliferation in the presence of ligand. A second experimental strategy directly tested the intermolecular model of ligand activation. A hybrid receptor composed of the external domain of human glycophorin A and the transmembrane and cytoplasmic domains of the colony-stimulating factor 1 receptor exhibited anti-glycophorin antibody-induced kinase activity that supported mitogenesis. Our data strongly support a mechanism of receptor activation based on ligand-induced receptor oligomerization.  相似文献   

18.
Olweus  J; Thompson  PA; Lund-Johansen  F 《Blood》1996,88(10):3741-3754
The present study investigated the possibility that macrophage colony- stimulating factor (M-CSF) responsiveness of hematopoietic progenitor cells is regulated at the level of receptor expression and that M-CSF receptor (M-CSFR) may be used as an early marker of monocyte lineage commitment. Immunofluorescence measurements with an anti-M-CSFR antibody showed that 44% +/- 5% of CD34hi cells expressed the receptor. The M-CSFR was present on progenitor cells that were positive for the granulo-monocytic marker CD64, but not on primitive, erythroid, or lymphoid progenitors. The CD34hiCD64+ population could be divided into subsets of M-CSFRhi and M-CSFRlo cells. In addition, a subset of CD34hiCD64-M-CSFRhi cells was found. CD34+ cells that were positive for M-CSFR, CD64, or both gave rise exclusively to granulo-monocytic cells, and 65% of the granulomonocytic colony-forming cells in the CD34+ population were recovered from these cells. Approximately 70% of the colony-forming cells (CFCs) derived from CD34hiM-CSFRhi cells were macrophage colony-forming units (CFU-M), whereas 91% of the CFCs in the CD34hiCD64+M-CSFRlo population were granulocyte colony-forming units (CFU-G). The M-CSFRhi cells with the highest frequency of colony- forming and bipotent cells and largest average colony size were found in the CD64- subset, indicating that M-CSFR appears earlier than CD64 during monocyte development. After 60 hours in culture, a subset of the CD34hiM-CSFRhi cells had downmodulated M-CSFR (29% to 38%). This population gave rise almost exclusively to granulocytes, whereas the cells that remained M-CSFRhi gave rise exclusively to monocytes. In all experiments, the M-CSFRhi population responded to M-CSF, whereas minimal responses were observed among M-CSFRlo cells. These results suggest that M-CSF target specificity among human hematopoietic progenitor cells is determined by lineage-specific regulation of the M- CSFR and show that M-CSFR is a useful marker to discriminate between monocytic and granulocytic progenitor cells.  相似文献   

19.
目的观察髓样分化因子88在姜黄素促进肝星状细胞(HSC)凋亡中的作用。方法体外培养大鼠肝星状细胞株HSCT6,并分为空白对照组、Control siRNA组、MyD88 siRNA干扰组、姜黄素组、姜黄素+Control siRNA组、姜黄素+MyD88 siRNA干扰组,siRNA处理组给予siRNA干扰48 h后,姜黄素组加入姜黄素作用24 h,各组均在收集细胞前12 h给予LPS诱导,收集各组细胞,Western blotting法检测MyD88蛋白表达;流式细胞术检测细胞凋亡。结果 MyD88 siRNA干扰、姜黄素均可降低MyD88蛋白的表达(P0.05),同时给予MyD88 siRNA干扰和姜黄素作用时与单独给予姜黄素比较,MyD88蛋白下降更明显(P0.05)。MyD88siRNA干扰后HSCs凋亡率无明显增加(P0.05),给予姜黄素处理HSCs凋亡率增加(P0.05),且姜黄素+MyD88 siRNA干扰组的凋亡率升高更明显。结论降低MyD88表达可加强姜黄素促进HSCs凋亡的作用。  相似文献   

20.
Colony-stimulating factor 1 (CSF-1) can act on mature macrophages to modulate their production of inflammatory cytokines. A cDNA encoding the interleukin-1 receptor antagonist (IL-1Ra) was cloned by subtractive hybridization from a CSF-1-stimulated murine macrophage cell line, sequenced, and expressed in mammalian and bacterial cells. Mouse IL-1Ra is a 22-Kd glycoprotein that is 76% identical to its human counterpart, shows considerably less similarity to IL-1 alpha and IL-1 beta, and competes with IL-1 alpha for binding to the type I IL-1 receptor normally expressed on T cells and fibroblasts. CSF-1 treatment of mouse bone marrow-derived macrophages led to a rapid and sustained increase in IL-1Ra mRNA during the G1 phase of the cell cycle as well as to increases in mRNAs encoding IL-1 alpha and IL-1 beta. Cycloheximide inhibited CSF-1-induced IL-1 alpha mRNA synthesis, but augmented IL-1 beta mRNA production and did not affect induction of IL-1Ra mRNA. No IL-1Ra mRNA was observed in CSF-1-stimulated mouse fibroblasts engineered to express CSF-1 receptors, demonstrating that its regulation depends on cell context and can be dissociated from the proliferative response. In agreement, bacterial lipopolysaccharide, a nonmitogenic activator, also induced IL-1Ra and IL-1 mRNAs in macrophages. Unlike IL-1 alpha and beta, IL-1Ra contains a signal peptide. The kinetics of its induction and its ability to gain access to the secretory compartment imply that IL-1Ra may be secreted more efficiently than IL-1, and suggest that macrophages both positively and negatively regulate the IL-1 response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号