首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
During meiosis, the formation of viable haploid gametes from diploid precursors requires that each homologous chromosome pair be properly segregated to produce an exact haploid set of chromosomes. Genetic recombination, which provides a physical connection between homologous chromosomes, is essential in most species for proper homologue segregation. Nevertheless, recombination is repressed specifically in and around the centromeres of chromosomes, apparently because rare centromeric (or pericentromeric) recombination events, when they do occur, can disrupt proper segregation and lead to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination. Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis.  相似文献   

2.
During meiosis, crossovers occur at a high level, but the level of noncrossover recombinants is even higher. The biological rationale for the existence of the latter events is not known. It has been suggested that a noncrossover-specific pathway exists specifically to mediate chromosome pairing. Using a physical assay that monitors both crossovers and noncrossovers in cultures of yeast undergoing synchronous meiosis, we find that both types of products appear at essentially the same time, after chromosomes are fully synapsed at pachytene. We have also analyzed a situation in which commitment to meiotic recombination and formation of the synaptonemal complex are coordinately suppressed (mer1 versus mer1 MER2++). We find that suppression is due primarily to restoration of meiosis-specific double-strand breaks, a characteristic of the major meiotic recombination pathway. Taken together, the observations presented suggest that there probably is no noncrossover-specific pathway and that restoration of intermediate events in a single pairing/recombination pathway promotes synaptonemal complex formation. The biological significant of noncrossover recombination remains to be determined, however.  相似文献   

3.
Homologous chromosomes pair, and then migrate to opposite poles of the spindle at meiosis I. In most eukaryotic organisms, reciprocal recombinations (crossovers) between the homologs are critical to the success of this process. Individuals with defects in meiotic recombination typically produce high levels of aneuploid gametes and exhibit low fertility or are sterile. The experiments described here were designed to test whether different crossovers are equally able to contribute to the fidelity of meiotic chromosome segregation in yeast. These experiments were performed with model chromosomes with which it was possible to control and measure the distributions of meiotic crossovers in wild-type cells. Physical and genetic approaches were used to map crossover positions on model chromosomes and to correlate crossover position with meiotic segregation behavior. The results show that crossovers at different chromosomal positions have different abilities to enhance the fidelity of meiotic segregation.  相似文献   

4.
Double strand breaks (DSBs) have been found at several meiotic recombination hot spots in Saccharomyces cerevisiae; more global studies have found that they occur at many places along several yeast chromosomes during meiosis. Indeed, the number of breaks found is consistent with the number of recombination events predicted from the genetic map. We have previously demonstrated that the HIS2 gene is a recombination hot spot, exhibiting a high frequency of gene conversion and associated crossing over. This paper shows that DSBs occur in meiosis at a site in the coding region and at a site downstream of the HIS2 gene and that the DSBs are dependent upon genes required for recombination. The frequency of DSBs at HIS2 increases when the gene conversion frequency is increased by alterations in the DNA around HIS2, and vice versa. A deletion that increases both DSBs and conversion can stimulate both when heterozygous; that is, it is semidominant and acts to stimulate DSBs in trans. These data are consistent with the view that homologous chromosomes associate with each other before the formation of the DSBs.  相似文献   

5.
Meiosis in haploid yeast   总被引:15,自引:2,他引:15       下载免费PDF全文
Haploid yeast cells normally contain either the MATa or MATα mating-type allele and cannot undergo meiosis and spore formation. If both mating-type alleles are present as a consequence of chromosome III disomy (MATa/MATα), haploids initiate meiosis but do not successfully form spores, probably because the haploid chromosome complement is irregularly partitioned during meiotic nuclear division. We have demonstrated that the ochre-suppressible mutation spo13-1 enables haploid yeast cells disomic for chromosome III and heterozygous at the mating-type locus to complete meiosis and spore formation, yielding two haploid spores. Previous studies have shown that the absence of the wild-type SPO13 gene function permits diploid cells to bypass homologous chromosome segregation at meiosis I and proceed directly to meiosis II. During spo13-1 haploid meiosis, cells enter prophase of meiosis I. Genetic recombination, monitored on the chromosome III disome, occurs at levels similar to those seen in diploids, indicating that the level of exchange between homologs is an autonomous property of individual chromosomes and not dependent on exchange elsewhere in the genome. Exchange is then followed by a single meiosis II equational chromosome division. Recombination in spo13-1 haploids is blocked by the spo11-1 mutation, which also eliminates recombination between homologous chromosomes during conventional diploid meiosis. We conclude that Spo+ haploids expressing both a and α mating-type information attempt a SPO13-dependent meiosis I division, and that this division, in the absence of paired homologous chromosomes, is responsible for the failure of such haploids to complete normal gametogenesis. Our observations support the conclusion that initiation and completion of meiosis II and spore formation are not dependent on either completion of meiosis I or the presence of a diploid chromosome complement.  相似文献   

6.
Diploid cells of the yeast Saccharomyces cerevisiae induced to undergo meiosis accumulate single-strand scissions in both template and newly synthesized DNA during commitment to genetic recombination. No evidence for accumulation of double-strand breaks during meiosis was obtained. When commitment to recombination is at the full meiotic level there are approximately 70 to 200 single-strand scissions per meiotic cell in which approximately 150 recombination events have been reported to occur.  相似文献   

7.
The regulation of higher-order chromosome structure is central to cell division and sexual reproduction. Heterochromatin assembly at the centromeres facilitates both kinetochore formation and sister chromatid cohesion, and the formation of specialized chromatin structures at telomeres serves to maintain the length of telomeric repeats, to suppress recombination, and to aid in formation of a bouquet-like structure that facilitates homologous chromosome pairing during meiosis. In fission yeast, genes encoding the Argonaute, Dicer, and RNA-dependent RNA polymerase factors involved in RNA interference (RNAi) are required for heterochromatin formation at the centromeres and mating type region. In this study, we examine the effects of deletions of the fission yeast RNAi machinery on chromosome dynamics during mitosis and meiosis. We find that the RNAi machinery is required for the accurate segregation of chromosomes. Defects in mitotic chromosome segregation are correlated with loss of cohesin at centromeres. Although the telomeres of RNAi mutants maintain silencing, length, and localization of the heterochromatin protein Swi6, we discovered defects in the proper clustering of telomeres in interphase mitotic cells. Furthermore, a small proportion of RNAi mutant cells display aberrant telomere clustering during meiotic prophase. This study demonstrates that the fission yeast RNAi machinery is required for the proper regulation of chromosome architecture during mitosis and meiosis.  相似文献   

8.
Construction of telocentric chromosomes in Saccharomyces cerevisiae.   总被引:11,自引:2,他引:9       下载免费PDF全文
We describe a simple method for the construction of large chromosomal deletions in yeast. Diploid yeast cells were transformed with DNA fragments that replace large regions of the chromosomes by homologous recombination. Using this method, we have constructed a telocentric chromosome III in which approximately equal to 100 kilobases (kb) of DNA has been removed from the left arm of the chromosome, so that the centromere is 12 kb from the left telomere. This telocentric chromosome is mitotically stable. Its rate of loss in a diploid strain is 2.5-7.4 X 10(-4) per cell division compared to a rate of loss of 0.36-1.8 X 10(-4) per cell division for a normal chromosome III. It also segregates 2+:2- with fidelity during meiosis. The construction of systematic deletions in a chromosome should be useful in determining the essential features for proper chromosomal segregation and replication.  相似文献   

9.
Caenorhabditis elegans DNA that directs segregation in yeast cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
We have isolated seven DNA fragments from Caenorhabditis elegans that enhance the mitotic segregation of autonomously replicating plasmids in the yeast Saccharomyces cerevisiae. These segregators, designated SEG1-SEG7, behave like isolated yeast chromosomes: they increase the stability and simultaneously lower the copy number of circular plasmids during mitotic growth in yeast. During meiosis, plasmids containing the C. elegans segregators show higher levels of precocious or aberrant disjunction than do plasmids bearing isolated yeast centromeres. Yet one of the segregators improved the meiotic segregation of the parental plasmid. We estimate that there may be as many as 30 segregator sequences in the C. elegans genome, a value that is consistent with the polycentric nature of C. elegans chromosomes. Five of the seven segregators are linked to sequences that are repeated in the worm genome, and four of these five segregators cross-hybridize. Other members of this family of repetitive DNA do not contain segregator function. Segregator sequences may prove useful for probing the structure of centromeres of both C. elegans and S. cerevisiae chromosomes.  相似文献   

10.
During meiosis homologous chromosomes normally pair, undergo reciprocal recombination, and then segregate from each other. Distributive disjunction is the meiotic segregation that is observed in the absence of homologous recombination and can occur for both nonrecombinant homologous chromosomes and completely nonhomologous chromosomes. While the mechanism of distributive disjunction is not known, several models have been presented that either involve or are completely independent of interactions between the segregating chromosomes. In this report, we demonstrate that distributive disjunction in Saccharomyces cerevisiae is preceded by an interaction between nonhomologous chromosomes.  相似文献   

11.
We have developed a system that utilizes human DNA-derived yeast artificial chromosomes (YACs) as marker chromosomes to study factors that contribute to the fidelity of meiotic chromosome transmission. Since aneuploidy for the YACs does not affect spore viability, different classes of meiotic missegregation can be scored accurately in four-viable-spore tetrads including precocious sister separation, meiosis I nondisjunction, meiotic chromatid loss, and meiosis II nondisjunction. Segregation of the homologous pair of 360-kilobase marker YACs was shown to occur with high fidelity in the first meiotic division and was associated with a high frequency of recombination within the human DNA segment. By using this experimental system, a series of YAC deletion derivatives ranging in size from 50 to 225 kilobases was analyzed to directly assess the relationship between meiotic recombination and meiosis I disjunction in a genotypically wild-type background. The relationship between physical distance and recombination frequency within the human DNA segment was measured to be comparable to that of endogenous yeast chromosomal DNA--ranging from less than 2.0 to 7.7 kilobases/centimorgan. Physical analysis of recombinant chromosomes detected no unequal crossing-over at dispersed repetitive elements distributed along the YACs. Recombination between YACs containing unrelated DNA segments was not observed. Furthermore, the segregational data indicated that meioses in which YAC pairs failed to recombine exhibited dramatically increased levels of meiosis I missegregation, including both precocious sister chromatid separation and nondisjunction.  相似文献   

12.
Crossing over establishes connections between homologous chromosomes that promote their proper segregation at the first meiotic division. However, there exists a backup system to ensure the correct segregation of those chromosome pairs that fail to cross over. We have found that, in budding yeast, a mutation eliminating the synaptonemal complex protein, Zip1, increases the meiosis I nondisjunction rate of nonexchange chromosomes (NECs). The centromeres of NECs become tethered during meiotic prophase, and this tethering is disrupted by the zip1 mutation. Furthermore, the Zip1 protein often colocalizes to the centromeres of the tethered chromosomes, suggesting that Zip1 plays a direct role in holding NECs together. Zip3, a protein involved in the initiation of synaptonemal complex formation, is also important for NEC segregation. In the absence of Zip3, both the tethering of NECs and the localization of Zip1 to centromeres are impaired. A mutation in the MAD3 gene, which encodes a component of the spindle checkpoint, also increases the nondisjunction of NECs. Together, the zip1 and mad3 mutations have an additive effect, suggesting that these proteins act in parallel pathways to promote NEC segregation. We propose that Mad3 promotes the segregation of NECs that are not tethered by Zip1 at their centromeres.  相似文献   

13.
In Saccharomyces cerevisiae meiosis, recombination occurs frequently between sequences at the same location on homologs (allelic recombination) and can take place between dispersed homologous sequences (ectopic recombination). Ectopic recombination occurs less often than does allelic, especially when homologous sequences are on heterologous chromosomes. To account for this, it has been suggested that homolog pairing (homolog colocalization and alignment) either promotes allelic recombination or restricts ectopic recombination. The latter suggestion was tested by examining ectopic recombination in two cases where normal interhomolog relationships are disrupted. In the first case, one member of a homolog pair was replaced by a homologous (related but not identical) chromosome that has diverged sufficiently to prevent allelic recombination. In the second case, ndj1 mutants were used to delay homolog pairing and synapsis. Both circumstances resulted in a substantial increase in the frequency of ectopic recombination between arg4-containing plasmid inserts located on heterologous chromosomes. These findings suggest that, during normal yeast meiosis, progressive homolog colocalization, alignment, synapsis, and allelic recombination restrict the ability of ectopically located sequences to find each other and recombine. In the absence of such restrictions, the meiotic homology search may encompass the entire genome.  相似文献   

14.
The maintenance of genome integrity and the generation of biological diversity are important biological processes, and both involve homologous recombination. In yeast and animals, homologous recombination requires the function of the RAD51 recombinase. In vertebrates, RAD51 seems to have acquired additional functions in the maintenance of genome integrity, and rad51 mutations cause lethality, but it is not clear how widely these functions are conserved among eukaryotes. We report here a loss-of-function mutant in the Arabidopsis homolog of RAD51, AtRAD51. The atrad51-1 mutant exhibits normal vegetative and flower development and has no detectable abnormality in mitosis. Therefore, AtRAD51 is not necessary under normal conditions for genome integrity. In contrast, atrad51-1 is completely sterile and defective in male and female meioses. During mutant prophase I, chromosomes fail to synapse and become extensively fragmented. Chromosome fragmentation is suppressed by atspo11-1, indicating that AtRAD51 functions downstream of AtSPO11-1. Therefore, AtRAD51 likely plays a crucial role in the repair of DNA double-stranded breaks generated by AtSPO11-1. These results suggest that RAD51 function is essential for chromosome pairing and synapsis at early stages in meiosis in Arabidopsis. Furthermore, major aspects of meiotic recombination seem to be conserved between yeast and plants, especially the fact that chromosome pairing and synapsis depend on the function of SPO11 and RAD51.  相似文献   

15.
We describe fractionation of the Plasmodium falciparum genome into 14 chromosomal DNA molecules by pulsed-field gel electrophoresis. This number agrees with the number of chromosomes observed by electron microscopic visualization of kinetochores. The assignment of 25 markers to 12 of the 14 chromosomes in three cloned parasite lines demonstrates that chromosomal size variation can greatly change the relative migration of genetically equivalent chromosomes. Deletions that include genes for three different histidine-rich proteins, located on chromosomes 2, 8, and 13, contribute to size differences in some clones. Other karyotypic differences result from chromosome segregation and/or recombination during meiosis.  相似文献   

16.
In most eukaryotes during prophase I of meiosis, homologous chromosomes pair and recombine by coordinated molecular and cellular processes. To directly test whether or not the early steps of the initiation of recombination depend on the presence of a homologous chromosome, we have examined the formation and processing of DNA double-strand breaks (DSBs, the earliest physical landmark of recombination initiation) in various haploid Saccharomyces cerevisiae strains capable of entering meiosis. We find that DSBs occur in haploid meiosis, showing that the presence of a homolog is not required for DSB formation. DSBs occur at the same positions in haploid and diploid meioses. However, these two types of meiosis exhibit subtle differences with respect to the timing of formation and levels of DSBs. In haploid meiosis, a slower rate of DSB formation and a reduction in the frequency of DSB (at one of the three sites analyzed) were observed. These results might indicate that interactions between homologs play a role in the formation of meiotic DSBs. Furthermore, haploid strains exhibit a pronounced delay in the disappearance of meiotic DSBs compared to diploid strains, which suggests that sister chromatid interactions for DSB repair are inhibited in haploid meiosis.  相似文献   

17.
18.
In the yeast Saccharomyces cerevisiae, origins of replication (autonomously replicating sequences; ARSs), centromeres, and telomeres have been isolated and characterized. The identification of these structures allows the construction of artificial chromosomes in which the architecture of eukaryotic chromosomes may be studied. A common feature of most, and possibly all, natural yeast chromosomes is that they have an ARS within 2 kilobases of their physical ends. To study the effects of such telomeric ARSs on chromosome maintenance, we introduced artificial chromosomes of approximately 15 and 60 kilobases into yeast cells and analyzed the requirements for telomeric ARSs and the effects of ARS-free chromosomal arms on the stability of these molecules. We find that terminal blocks of telomeric repeats are sufficient to be recognized as telomeres. Moreover, artificial chromosomes containing telomere-associated Y' sequences and telomeric ARSs were no more stable during both mitosis and meiosis than artificial chromosomes lacking terminal ARSs, indicating that yeast-specific blocks of telomeric sequences are the only cis-acting requirement for a functional telomere during both mitotic growth and meiosis. The results also show that there is no requirement for an origin of replication on each arm of the artificial chromosomes, indicating that a replication fork may efficiently move through a functional centromere region.  相似文献   

19.
Genetic Recombination and Commitment to Meiosis in Saccharomyces   总被引:27,自引:4,他引:27       下载免费PDF全文
Diploid cells of the yeast Saccharomyces cerevisiae become committed to recombination at meiotic levels without becoming committed to the meiotic disjunction of chromosomes. These two events of the meiotic process can be separated by removing cells from a meiosis-inducing medium and returning them to a medium that promotes vegetative cell division. Cells removed at an appropriate time remain diploid, revert to mitosis, and display recombination with meiotic-like frequencies. Those removed after this time are committed to the completion of meiosis. Diploids of three conditional sporulation-deficient mutants (spo1-1, spo2-1, and spo3-1) have been examined for recombination at restrictive temperatures. All exhibit commitment to recombination without commitment to meiotic disjunction as in the wild type. Cells of spo1-1/spo1-1 do not replicate the spindle pole body for meiosis I; thus, recombination ability can be acquired by cells that do not proceed beyond this cytological stage.  相似文献   

20.
Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号