首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal muscle capillarity expressed as capillary density (CD), and number of capillaries per fibre (C/F), as well as the mean fibre cross-sectional area (FCSA), were determined in the extensor digitorum longus (EDL), plantaris (PLA) and soleus (SOL) muscles of four groups of eight rodents trained on a swimming exercise programme (T) or maintained sedentary (S), at sea level (SL) or at simulated altitude (HA), barometric pressure 61.7 kPa (463 torr) for 12 weeks. It was shown that both HA exposure and endurance training decreased body and skeletal muscles weights (P<0.001). However, neither HA exposure nor endurance training induce any variation in relative importance in the skeletal muscle mass. Altitude exposure and endurance training had increasing effects on CD in all muscles studied (P<0.001). This study confirms the fact that altitude exposure has no direct effect on capillary development. On the other hand, the capillary supply of the several slow- and fast- twitch skeletal muscles studied is increased by endurance training. This real enhancement in capillary network is ascertained by an increase in the C/F ratio (+7%, +26%, +16%, in PLA, EDL, and SOL muscles, respectively at sea level, and +19.5%, +30%, and +14% respectively at HA). These results indicate that the effects of chronic exercise on skeletal muscle capillarity estimated by the C/F ratio, are greater in an hypobaric environment than in a SL environment.  相似文献   

2.
The aims of this study were (i) to assess the differences between men and women in maximal activities of selected enzymes of aerobic and anaerobic pathways involved in skeletal muscle energy production, and (ii) to assess the relationships between maximal enzyme activities, body composition, muscle cross‐sectional area (CSA) and fibre type composition. Muscle biopsies were obtained from the tibialis anterior (TA) muscle of 15 men and 15 women (age 20–31 years) with comparable physical activity levels. The muscle CSA was determined by magnetic resonance imaging (MRI). Maximal activities of lactate dehydrogenase (LDH), phosphofructokinase (PFK), β‐hydroxyacyl‐coenzyme A dehydrogenase (HAD), succinate dehydrogenase (SDH) and citrate synthase (CS), were assayed spectrophotometrically. The proportion, mean area and relative area (proportion × area) of type 1 and type 2 fibres were determined from muscle biopsies prepared for enzyme histochemistry [myofibrillar adenosine triphosphatase (mATPase)]. The men were significantly taller (+6.6%; P < 0.001) and heavier (+19.1%; P < 0.001), had significantly larger muscle CSA (+19.0%; P < 0.001) and significantly larger areas and relative areas of both type 1 and type 2 fibres (+20.5–31.4%; P = 0.007 to P < 0.001). The men had significantly higher maximal enzyme activities than women for LDH (+27.6%; P = 0.007) and PFK (+25.5%; P = 0.003). There were no significant differences between the men and the women in the activities of HAD (+3.6%; ns), CS (+21.1%; P = 0.084) and SDH (+7.6%; ns). There were significant relationships between height and LDH (r = 0.41; P = 0.023), height and PFK (r = 0.41; P = 0.025), weight and LDH (r = 0.45; P = 0.013), and weight and PFK (r = 0.39; P = 0.032). The relationships were significant between the muscle CSA and the activities of LDH (r = 0.61; P < 0.001) and PFK (r = 0.56; P = 0.001), and between the relative area of type 2 fibres and the activities of LDH (r = 0.49; P = 0.006) and PFK (r = 0.42; P = 0.023). There were no significant relationships between HAD, CS and SDH, and height, weight, muscle CSA and fibre type composition, respectively. These data indicate that the higher maximal activities of LDH and PFK in men are related to the height, weight, muscle CSA and the relative area of type 2 fibres, which are all significantly larger in men than women.  相似文献   

3.
This study primarily examined how intermittent versus continuous endurance training, using similar or dissimilar volumes, affected muscle fibre enzyme activities in the triceps brachii muscle. Thirty-two subjects performed either intermittent (60% of 1RM) or continuous (30% of 1RM) elbow extensions 3 times week−1 in a training apparatus. Training was performed until either a low (five) or a high volume (8 weeks) was accumulated. Muscle biopsies from the m. triceps brachii were taken pre- and post training and following 8 weeks of detraining. Marker enzymes for muscle fibre oxidative (succinate dehydrogenase SDH) and glycolytic (glycerophosphate dehydrogenase; α-GPDH) capacity was assessed by histochemistry, and the resulting enzyme activities measured by image analysis. The type of training affected enzyme activities differently. In type 1 fibres, continuous and intermittent training was equally effective in increasing SDH activity, while intermittent training increased SDH activity more than continuous training in type 2 fibres (P < 0.05). Intermittent training increased α-GPDH activity more than continuous training both in type 1 (P < 0.001) and type 2 fibres (P < 0.05), but the increase in glycolytic capacity following intermittent training was larger in type 1 (54%) than in type 2 fibres (23%). There was no effect of training volume on oxidative or glycolytic capacity in either fibre type. Thus, when training intensity is sufficient to stimulate to increases in oxidative and glycolytic capacity, the SDH and α-GPDH response seems to be volume independent. Detraining reduced Post-T enzyme activities to baseline (all; P < 0.01).  相似文献   

4.
The present study examined the effect of 14 days of exposure to microgravity during the Spacelab Life Sciences-2 (SLS-2) space shuttle mission on the myosin heavy-chain (MHC) content, fibre size and type distributions and metabolic properties of rat diaphragm. Five adult male Sprague-Dawley rats were exposed to 14 days of microgravity (SF, spaceflight) and compared to five ground-based controls (C). Immunohistochemical analyses using isoform-specific anti-MHC monoclonal antibodies revealed that 14 days of SF did not alter the proportions of type-I, -IIA, -IID/X or -IIB fibres within the crural, sternal or lateral costal regions of the diaphragm; the electrophoretically quantified MHC-isoform contents also remained unchanged. In contrast, the medial gastrocnemius (MG) and tibialis anterior (TA) muscles displayed slow-to-fast fibre type transitions: within the MG the proportion of type-IID/X fibres was reduced by 59% (P<0.04) and corresponded to a 51% increase (P<0.03) in type-IIB fibres. Within the TA, the sum of type-IID/X+IIB fibres was elevated by 24% (P<0.02) at the expense of the slower type-IIA fibres, which decreased by 33% (P<0.04). Electrophoretic analyses yielded qualitatively similar patterns of transformation. SF did not induce atrophic changes within the diaphragm, MG or TA. Succinate dehydrogenase activity remained unchanged in the crural diaphragm (P>0.96) but was 34% lower (P<0.0001) in the TA. We conclude that 14 days of SF did not alter structural or metabolic factors that are known to underlie functional properties of the diaphragm. The findings of the present study show that 14 days of SF does not induce deleterious adaptive changes in the rat diaphragm that occur in hindlimb muscles.  相似文献   

5.
This study investigated the effect of strength training, endurance training, and combined strength plus endurance training on fibre-type transitions, fibre cross-sectional area (CSA) and MHC isoform content of the vastus lateralis muscle. Forty volunteers (24 males and 16 females) were randomly assigned to one of four groups: control (C), endurance training (E), strength training (S), or concurrent strength and endurance training (SE). The S and E groups each trained three times a week for 12 weeks; the SE group performed the same S and E training on alternate days. The development of knee extensor muscle strength was S>SE>E (P<0.05) and has been reported elsewhere. The reduction in knee extensor strength development in SE as compared to S corresponded to a 6% increase in MHCIIa content (P<0.05) in SE at the expense of the faster MHCIId(x) isoform (P<0.05), as determined by electrophoretic analyses; reductions in MHCIId/x content after S or E training were attenuated by comparison. Both S and SE induced three- to fourfold reductions (P<0.05) in the proportion of type IIA/IID(X) hybrid fibres. S also induced fourfold increases in the proportion of type I/IIA hybrid fibres within both genders, and in a population of fibres expressing a type I/IID(X) hybrid phenotype within the male subjects. Type I/IIA hybrid fibres were not detected after SE. Both S and SE training paradigms induced similar increases (16–19%, P<0.05) in the CSA of type IIA fibres. In contrast, the increase in CSA of type I fibres was 2.9-fold greater (P<0.05) in S as compared to SE after 12 weeks. We conclude that the interference of knee extensor strength development in SE versus S was related to greater fast-to-slow fibre-type transitions and attenuated hypertrophy of type I fibres. Data are given as mean (SEM) unless otherwise stated.  相似文献   

6.
We investigated training-induced changes in biochemical properties and myosin heavy chain (MHC) composition of regenerated (cardiotoxin-injected) plantaris muscles (PLA) in rats either maintained sedentary (S, n = 9) or endurance trained on a treadmill over a 8-week period (T, n = 7). Both endurance training and regeneration altered the pattern of fast MHC expression. An analysis of the two-way interaction between training and regeneration showed that the relative content of type IIa MHC was affected (P < 0.05). The 140% increase in type IIa MHC observed in regenerated PLA from T rats compared with nontreated muscle of S rats, exceeded the 102% increase resulting from the combination of regeneration alone (26%) and training alone (61%). A similar interaction between training and regeneration was shown for the percentage of fibres expressing either type IIa or type IIb MHC (P < 0.05). In contrast, a significant increase in the citrate synthase (CS) activity was shown in PLA as a result of endurance training, without specific effect of regeneration. Furthermore, training-induced changes in CK and LDH isoenzyme distribution occurred to a similar extent in regenerated and non-treated PLA muscles, and thus did not follow the changes in MHC isoforms. An increase in the mitochondrial CK isozyme activity (mi-CK) was shown in both non-treated and previously degenerated PLA muscles (123 and 117%, P < 0.01, respectively), without specific effect of regeneration. The ratio of mi-CK to CS activity, an estimate of the mitochondrial specific activity of mi-CK was significantly increased by training (P < 0.02) and decreased by regeneration (P < 0.05). Taken together, these data suggest that while training and regeneration have cumulative effects on the pattern of fast MHC expression, the training-induced changes in the energy metabolism shown in mature non-treated myofibres are similar to those observed in regenerated fibres.  相似文献   

7.
This study determined the effects of exercise training on adaptations of skeletal muscle including fibre composition, capillarity, intra-muscular triglyceride concentration (IMTG), as well as glucose transporter 4 protein (GLUT4) and metabolic enzyme activities. Percutaneous muscle biopsies from the vastus lateralis muscle were obtained from non-obese elderly Korean men (n=10; age range 58–67 years) with impaired glucose tolerance. Subjects performed 12 weeks of endurance exercise training (60–70% of the heart rate reserve). The training program improved the total GLUT4 protein expression (P<0.01), decreased the IMTG, increased the fatty acid oxidation capacity, and the number of capillaries around type 1 fibres (P<0.05), whereas no significant alteration was observed around type II fibres. All data are presented as the means together with the standard deviation. The results suggest that endurance training evokes morphological and biochemical changes in the skeletal muscle of elderly men with impaired glucose tolerance that may be considered to limit the development of type 2 diabetes.  相似文献   

8.
9.
Summary Total creatine kinase (CK), creatine kinase MB (CK-MB) and citrate synthase (CS) were determined in isolated and pooled type I and type II skeletal muscle fibres. Determinations were made on biopsies from 3 sedentary men, 3 junior cyclists and 2 elite cyclists. CS and CK-MB activities were higher in the trained groups in both fibre types. The total CK activity was not related to training status, although it was lower in type I fibres than in type II fibres (p<0.05). The reverse relation was observed for CS and CK-MB activities (p<0.01). The ratio of type I/type II for CS was not related to training status, while the corresponding ratio for CK-MB increased with a greater degree of endurance training. For a given increase in CS activity, the increase in CK-MB activity was greater in type I fibres than in type II fibres (p<0.01). Thus, with endurance training there seems to be a specific adaptation for CK-MB, particularly in type I fibres.  相似文献   

10.
The aim of this study was to determine, in the rat, the effects of chronic exposure (7–9 weeks) to normobaric hypoxia (FIO2 = 0.13, equivalent to 3700 m altitude) on cardiac and skeletal muscle properties, on maximal oxygen uptake (VO2max), and endurance time to exhaustion (ETE). In addition, we evaluated the impact of endurance training (90 min of treadmill running per day, 5 days per week, for 9 weeks) on these parameters. The results were compared to normoxic rats fed ad libitum (NAL) and to normoxic pair-weight (NPW) animals in order to take into account the influence of hypoxia on growth rate. It was found that, in sedentary rats, hypoxia results in stunted growth, adrenal atrophy, a significant reduction of cross-sectional area of fast-twitch (type II) fibres, a reduced capillary-to-fibre ratio (C/F), and a reduced oxidative capacity (decreases in citrate synthase and 3-hydroxy-Acyl CoA dehydrogenase activities) of the plantaris muscle. These effects are mainly related to the anorexic effects of prolonged exposure to hypoxia. Nevertheless, hypoxic (H) rats displayed higher VO2max and ETE values when compared either to NAL or to NPW animals. Endurance training resulted, in all groups (H, NAL, NPW), in a significant change of the fibre type distribution of the plantaris which displayed an increased number of type IIA fibres and a decreased proportion of type IIB fibres. In addition, the C/F ratio and cross-sectional area of fast-twitch fibres were normalized by superimposition of training on hypoxia. Both VO2max and ETE were significantly higher in trained H rats than in NAL, but these improvements were mainly related to the reduced body weight induced by hypoxia. These data suggest that the greater aerobic capacity and tolerance for prolonged exercise induced by chronic exposure to hypoxia can be mainly accounted for by the anorexic effects of hypoxia, although other factors (e.g. increase in oxygen carrying capacity induced by hypoxia acclimatization) may play a significant role in some circumstances (e.g. in sedentary rats). Received: 30 March 1995/Received after revision: 30 August 1995/Accepted: 4 September 1995  相似文献   

11.
Response of ventilatory muscles of the rat to endurance training   总被引:2,自引:0,他引:2  
The effect of endurance training on the oxidative and glycolytic potentials of the diaphragm and intercostal muscles of rats has been studied. Training consisted of treadmill running (28 m/min, 60 min/day, 5 days/wk) for periods ranging from 8–26 weeks. Exercise of similar duration and intensity produced a glycogen depletion in the diaphragm and intercostal muscles of nontrained rats. Oxidative potential was estimated from the activity of the mitochondrial marker enzyme succinate dehydrogenase (SDH). The activities of phosphorylase (PHOS), hexokinase (HK), and lactate dehydrogenase (LDH) were determined as well as the distribution of the LDH isozymes. SDH activity averaged 44 (42–51) and 17 (10–22)% (P<0.01) greater in the plantaris and diaphragm muscles, respectively, after 8–12 weeks of endurance running as compared to the sedentary animals. There was no change in the SDH activity of the intercostal muscles or in the activities of the glycolytic enzymes. There was also no change in the distribution of the isozymes of LDH. Extending the duration of the training program to 26 weeks did not produce any additional alteration in the magnitude of the adaptation observed after the initial training period. Comparative studies of different types of muscles demonstrated that the diaphragm, although having a fiber composition somewhat similar to that of a fast-twitch skeletal muscle, has a metabolic profile that is intermediate between pure slow twitch skeletal muscle and cardiac muscle.  相似文献   

12.
Fifteen male physical education students were studied. The subjects trained for 4–6 weeks, 2–3 days per week, on a mechanically braked bicycle ergometer. A training session consisted of repeated 30-s ‘all-out’ sprints on a Wingate bicycle ergometer, on which the brake band of the flywheel was loaded with 75 g kg-1 body wt, with rest periods of 15–20 min between consecutive sprints. Thigh muscle biopsies were taken before and after the training period and were analysed for fibre types using a myofibrillar ATPase stain. The proportion of type I fibres decreased from 57 to 48% (P < 0.05) and type IIA fibres increased from 32 to 38% (P < 0.05). This study indicates that it is possible to achieve a fibre type transformation with high-intensity training. The effect of two-legged ‘sprint’ training on muscle fibre type composition may be related to a changed pattern of muscle fibre activation (e.g. an increased stimulation frequency). A change in fibre activation frequency may induce an increased synthesis of type II fibre myosin (fast myosin). Hormonal influences such as enhanced adrenergic stimulation of the muscle fibres cannot be excluded as a contributing factor, however.  相似文献   

13.
The effects of long-term endurance exercise on the contractile properties of single skinned muscle fibres from adult rats, were investigated. Adult (4-month-old) male rats were subjected to a 16-week, high-intensity endurance swimming programme, where animals carried a load (corresponding to 2% of body wt), during all 2-h training sessions. At the conclusion of the training period, muscle fibres isolated from the extensor digitorum longus (EDL), and soleus (SOL), could be classified into distinct classes or fibre types on the basis of their Ca2+- and Sr2+-activated contractile characteristics. The fast-twitch EDL comprised two fibre populations, while the slow-twitch SOL was found to be composed of three distinct fibre types. Endurance swimming modified the contractile characteristics of fibres from both the EDL and SOL, but exerted greater influence on those of the SOL. This was illustrated by significant increases in the sensitivity to Ca2+ and Sr2+, and a lower threshold for contraction by these activating ions, in the exercised group. Not one of the total of 272 fibres sampled, exhibited mixed fast- and slow-twitch contractile characteristics, often associated with exercise-induced fibre type transformations. Thus, high-intensity endurance swimming induced changes in some single muscle fibre contractile properties of adult rats, but did not cause major changes in fibre type distribution.  相似文献   

14.
The purpose of this study was to investigate the effect of concurrent strength and endurance training on strength, endurance, endocrine status and muscle fibre properties. A total of 45 male and female subjects were randomly assigned to one of four groups; strength training only (S), endurance training only (E), concurrent strength and endurance training (SE), or a control group (C). Groups S and E trained 3 days a week and the SE group trained 6 days a week for 12 weeks. Tests were made before and after 6 and 12 weeks of training. There was a similar increase in maximal oxygen consumption (O2 max) in both groups E and SE (P < 0.05). Leg press and knee extension one repetition maximum (1 RM) was increased in groups S and SE (P < 0.05) but the gains in knee extension 1 RM were greater for group S compared to all other groups (P < 0.05). Types I and II muscle fibre area increased after 6 and 12 weeks of strength training and after 12 weeks of combined training in type II fibres only (P < 0.05). Groups SE and E had an increase in succinate dehydrogenase activity and group E had a decrease in adenosine triphosphatase after 12 weeks of training (P < 0.05). A significant increase in capillary per fibre ratio was noted after 12 weeks of training in group SE. No changes were observed in testosterone, human growth hormone or sex hormone binding globulin concentrations for any group but there was a greater urinary cortisol concentration in the women of group SE and decrease in the men of group E after 12 weeks of training (P < 0.05). These findings would support the contention that combined strength and endurance training can suppress some of the adaptations to strength training and augment some aspects of capillarization in skeletal muscle. Accepted: 10 November 1998  相似文献   

15.
We investigated the effects of endurance training (20 m/min, 60 min/day, 5 days/week) on myosin heavy-chain (MHC) isoforms and succinic dehydrogenase (SDH) activity in rat crural and costal diaphragms, and plantaris muscles. Although the 4-week endurance training produced significant (P<0.05) increases, both in SDH activity and the percentage of isoform HCIIa in the plantaris of the trained rat compared with the sedentary control rat, these alterations did not occur in either the crural or costal diaphragms. After 10 weeks of endurance training, trained animals had significantly (P<0.05) higher SDH activity in the costal diaphragm and the plantaris. Moreover, a significant (P<0.05) decrease occurred in the percentage of HCIIb in the costal diaphragm, and a significant (P<0.01) decrease in the percentage of HCIIb concomitant with a significant (P<0.05) increase of HCIIa resulted in the plantaris. However, the crural diaphragm did not show any significant changes after 10 weeks of endurance training. These results indicate that endurance training induces an alteration in the expression of an MHC phenotype, in addition to causing an increase in oxidative enzyme activity. However, the alterations in response to endurance training are apparently not uniform, varying between regions and/or kinds of muscles.  相似文献   

16.
Three groups of sedentary male rats were exposed to intermittent hypobaric hypoxia (IHH) for 22 days (4 h/day, 5 days/week) in a hypobaric chamber at a simulated altitude of 5,000 m. Tibialis anterior (TA) and diaphragm (DG) were removed at the end of the programme (H group), and 20 or 40 days later (P20 and P40 groups). A control group (C) was maintained at sea-level pressure and their TA and DG were compared to those of the experimental rats at the end of the IHH programme, and also 20 and 40 days later. We measured the fibre morphometry and capillaries of each muscle. Our results demonstrate that IHH does not change the fibre type composition (with reference to either their contractile or oxidative properties) for most muscle regions of the muscles analysed analysed. We found few significant differences in muscle capillarity and fibre morphometry for TA after IHH. However, IHH did induce some statistically significant changes in DG: capillary density of the H rats (736 capillaries/mm2) increased compared to C animals (610 capillaries/mm2). Although IHH did not change the fibre capillarization or morphometric parameters of fast fibre types, we observed reductions ranging from 7 to 13% in fibre area, perimeter and diffusion distances between C and H for slow fibres. Moreover, these morphometric changes accounted for increases of 10–20% in capillarization, fibre unit area and fibre unit perimeter. This indicates that SO fibres are more sensitive to IHH than both fast fibre types.  相似文献   

17.
The aims of this study were (i) to assess the differences between men and women in maximal activities of selected enzymes of aerobic and anaerobic pathways involved in skeletal muscle energy production, and (ii) to assess the relationships between maximal enzyme activities, body composition, muscle cross-sectional area (CSA) and fibre type composition. Muscle biopsies were obtained from the tibialis anterior (TA) muscle of 15 men and 15 women (age 20-31 years) with comparable physical activity levels. The muscle CSA was determined by magnetic resonance imaging (MRI). Maximal activities of lactate dehydrogenase (LDH), phosphofructokinase (PFK), beta-hydroxyacyl-coenzyme A dehydrogenase (HAD), succinate dehydrogenase (SDH) and citrate synthase (CS), were assayed spectrophotometrically. The proportion, mean area and relative area (proportion x area) of type 1 and type 2 fibres were determined from muscle biopsies prepared for enzyme histochemistry [myofibrillar adenosine triphosphatase (mATPase)]. The men were significantly taller (+6.6%; P < 0.001) and heavier (+19.1%; P < 0.001), had significantly larger muscle CSA (+19.0%; P < 0.001) and significantly larger areas and relative areas of both type 1 and type 2 fibres (+20.5-31.4%; P = 0.007 to P < 0.001). The men had significantly higher maximal enzyme activities than women for LDH (+27.6%; P = 0.007) and PFK (+25.5%; P = 0.003). There were no significant differences between the men and the women in the activities of HAD (+3.6%; ns), CS (+21.1%; P = 0.084) and SDH (+7.6%; ns). There were significant relationships between height and LDH (r = 0.41; P = 0.023), height and PFK (r = 0.41; P = 0.025), weight and LDH (r = 0.45; P = 0.013), and weight and PFK (r = 0.39; P = 0.032). The relationships were significant between the muscle CSA and the activities of LDH (r = 0.61; P < 0.001) and PFK (r = 0.56; P = 0.001), and between the relative area of type 2 fibres and the activities of LDH (r = 0.49; P = 0.006) and PFK (r = 0.42; P = 0.023). There were no significant relationships between HAD, CS and SDH, and height, weight, muscle CSA and fibre type composition, respectively. These data indicate that the higher maximal activities of LDH and PFK in men are related to the height, weight, muscle CSA and the relative area of type 2 fibres, which are all significantly larger in men than women.  相似文献   

18.
These experiments tested the hypothesis that short-term endurance exercise training would rapidly improve (within 5 days) the diaphragm oxidative/antioxidant capacity and protect the diaphragm against contraction-induced oxidative stress. To test this postulate, male Sprague-Dawley rats (6 weeks old) ran on a motorized treadmill for 5 consecutive days (40–60 min · day−1) at approximately 65% maximal oxygen uptake. Costal diaphragm strips were excised from both sedentary control (CON, n=14) and trained (TR, n=13) animals 24 h after the last exercise session, for measurement of in vitro contraction properties and selected biochemical parameters of oxidative/antioxidant capacity. Training did not alter diaphragm force-frequency characteristics over a full range of submaximal and maximal stimulation frequencies (P > 0.05). In contrast, training improved diaphragm resistance to fatigue as contraction forces were better-maintained by the diaphragms of the TR animals during a submaximal 60-min fatigue protocol (P < 0.05). Following the fatigue protocol, diaphragm strips from the TR animals contained 30% lower concentrations of lipid hydroperoxides compared to CON (P < 0.05). Biochemical analysis revealed that exercise training increased diaphragm oxidative and antioxidant capacity (citrate synthase activity +18%, catalase activity +24%, total superoxide dismutase activity +20%, glutathione concentration +10%) (P < 0.05). These data indicate that short-term exercise training can rapidly elevate oxidative capacity as well as enzymatic and non-enzymatic antioxidant defenses in the diaphragm. Furthermore, this up-regulation in antioxidant defenses would be accompanied by a reduction in contraction-induced lipid peroxidation and an increased fatigue resistance. Accepted: 6 August 1999  相似文献   

19.
In this study the effects of administration of cortisone acetate (100 mg kg-1 body weight subcutaneously for 11 days) on distribution and cross-sectional area of different fibre types of rat skeletal muscles were investigated. Diaphragm, parasternal intercostal (PI), extensor digitorum longus (EDL) and soleus muscles were examined in cortisone treated animals (CA) in comparison with ad libitum controls (CTRL) and pair-fed (PF) controls. Four fibre types (I or slow and IIA, IIX, IIB or fast) were identified on the basis of their myosin heavy chain composition using a set of monoclonal antibodies. In CA rats the reduction of cross-sectional area was above 30% in IIX fibres of diaphragm, IIB fibres of PI and in all fast fibres of EDL. In all muscles slow fibres were spared from atrophy. Significant variations in fibre type distribution were found in the muscles of CA rats when compared to CTRL. The percentage of IIB fibres decreased in EDL, PI and diaphragm. This decrease was accompanied by an increase in the percentage of IIA fibres in the same muscles. No changes in the percentage of slow fibres and of fast IIX fibres were observed in EDL, PI and diaphragm of CA rats in comparison with CTRL. In soleus of CA rats the proportion of IIA fibres was lower than in CTRL. In EDL of PF rats atrophy of IIA fibres and changes in fibre type distribution were similar to those observed in CA rats. In diaphragm, PI and soleus of PF rats no significant decrease in fibre cross-sectional area nor significant changes in fibre distribution were found in comparison with CTRL rats.  相似文献   

20.
Hypoxia-induced fibre type transformation in rat hindlimb muscles   总被引:1,自引:0,他引:1  
Summary Twelve male Sprague-Dawley rats (21 days old) were randomly assigned into two experimental groups: sea level control (CONT) and hypobaric hypoxia (HYPO). The HYPO rats were kept in an hypobaric chamber maintaining a simulated altitude of 4000 m (61.1 kPa). After 10 weeks of treatment, the rat hindlimb muscles [soleus (SOL) and extensor digitorum longus (EDL)] were subjected to histochemical and electro-mechanical analyses. Results indicated that compared to CONT the HYPO SOL muscle had a significantly greater relative distribution of fast-twitch-oxidative-glycolytic (FOG) fibres (28.9% SEM 2.0 vs 18.3% SEM 1.8,P<0.01) with a significant decrease in slow twitch oxidative fibre distribution (69.5% SEM 2.4 vs 82.9% SEM 3.1,P<0.01). Compared to CONT the HYPO EDL muscle also manifested a significant increase in FOG fibre distribution (51.6% SEM 0.8 vs 46.6% SEM 1.1,P<0.01), but this was accompanied by a significant decrease in fast twitch glucolytic fibres (44.3% SEM 0.9 vs 49.2% SEM 1.7,P<0.05). These histochemical fibre type transformations accompanied significant and expected changes in the electro-mechanical parameters tested in situ, e.g. maximal twitch force, maximal rate of force development, contraction time, half relaxation time, force:frequency curve, and fatigability. It was concluded that chronic hypobaric hypoxia could have a potent influence upon the phenotype expression of muscle fibres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号