首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has a potent and selective inhibitory activity against influenza virus. We studied the effects of an infectious dose on the anti-influenza virus activities of T-705 and oseltamivir, a commercially available neuraminidase inhibitor, both in vitro and in vivo. Plaque formation of influenza A/PR/8/34 virus was completely inhibited by 10 microg/ml of T-705 after 72 h incubation, whereas visible plaque formation was detected in the plate treated with GS 4071, the active form of oseltamivir (10 microg/ml). The antiviral activity of T-705 was not influenced by an increase in multiplicity of infection (MOI) from 0.0001 to 1, but that of GS 4071 was influenced in a yield reduction assay. No increase in viral yield was seen in either culture supernatant or cells after removal of T-705 (10 microg/ml) but, in contrast, productive infection recurred in culture supernatant and in cells after removal of GS 4071. In mice infected with a high challenge dose of influenza A/PR/8/34 virus, orally administered T-705 (200 and 400 mg/kg/day) completely prevented the death of mice and the survival rates of mice were significantly higher than those in mice treated with oseltamivir (P<0.01). When the treatment was delayed at 1, 13 and 25 h post infection, oral administration of 200 mg/kg of T-705 significantly prevented the death of mice (P<0.01), and the survival rates of mice treated with T-705 were comparable to those of mice treated with oseltamivir. These results suggest that T-705 has the potential to be a potent inhibitor of human influenza virus infections.  相似文献   

2.
There is a need for the development of effective antivirals for the treatment of severe viral diseases caused by members of the virus families Bunyaviridae and Arenaviridae. The pyrazine derivative T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) has demonstrated remarkable antiviral activity against influenza virus and, to a lesser degree, against some other RNA viruses (Y. Furuta, K. Takahashi, Y. Fukuda, M. Kuno, T. Kamiyama, K. Kozaki, N. Nomura, H. Egawa, S. Minami, Y. Watanabe, H. Narita, and K. Shiraki, Antimicrob. Agents Chemother., 46:977-981, 2002). Here, we report that T-705 is highly active against a panel of bunyaviruses (La Crosse, Punta Toro, Rift Valley fever, and sandfly fever viruses) and arenaviruses (Junin, Pichinde, and Tacaribe viruses) by cytopathic effect and virus yield reduction cell-based assays. The 50% effective concentrations for T-705 ranged from 5 to 30 microg/ml and 0.7 to 1.2 microg/ml against the bunyaviruses and arenaviruses examined, respectively. We also demonstrate that orally administered T-705 is efficacious in treating Punta Toro virus in the mouse and hamster infection models, as well as Pichinde virus infection in hamsters. When administered twice daily for 5 to 6 days, beginning 4 h pre- or 24 h post-Punta Toro virus challenge, a 30-mg/kg of body weight/day dose provided complete protection from death and limited viral burden and liver disease. A dose of 50 mg/kg/day was found to be optimal for treating Pichinde infection and limiting viral replication and disease severity. In general, T-705 was found to be more active than ribavirin in cell-based assays and in vivo, as reflected by substantially greater therapeutic indexes. Our results suggest that T-705 may be a viable alternative for the treatment of life-threatening bunyaviral and arenaviral infections.  相似文献   

3.
Mechanism of action of T-705 against influenza virus   总被引:1,自引:0,他引:1       下载免费PDF全文
T-705, a substituted pyrazine compound, has been found to exhibit potent anti-influenza virus activity in vitro and in vivo. In a time-of-addition study, it was indicated that T-705 targeted an early to middle stage of the viral replication cycle but had no effect on the adsorption or release stage. The anti-influenza virus activity of T-705 was attenuated by addition of purines and purine nucleosides, including adenosine, guanosine, inosine, and hypoxanthine, whereas pyrimidines did not affect its activity. T-705-4-ribofuranosyl-5'-triphosphate (T-705RTP) and T-705-4-ribofuranosyl-5'-monophosphate (T-705RMP) were detected in MDCK cells treated with T-705. T-705RTP inhibited influenza virus RNA polymerase activity in a dose-dependent and a GTP-competitive manner. Unlike ribavirin, T-705 did not have an influence on cellular DNA or RNA synthesis. Inhibition of cellular IMP dehydrogenase by T-705RMP was about 150-fold weaker than that by ribavirin monophosphate, indicating the specificity of the anti-influenza virus activity and lower level of cytotoxicity of T-705. These results suggest that T-705RTP, which is generated in infected cells, may function as a specific inhibitor of influenza virus RNA polymerase and contributes to the selective anti-influenza virus activity of T-705.  相似文献   

4.
The novel antiviral protein cyanovirin-N (CV-N) was initially discovered based on its potent activity against the human immunodeficiency virus (HIV). Subsequent studies identified the HIV envelope glycoproteins gp120 and gp41 as molecular targets of CV-N. More recently, mechanistic studies have shown that certain high-mannose oligosaccharides (oligomannose-8 and oligomannose-9) found on the HIV envelope glycoproteins comprise the specific sites to which CV-N binds. Such selective, carbohydrate-dependent interactions may account, at least in part, for the unusual and unexpected spectrum of antiviral activity of CV-N described herein. We screened CV-N against a broad range of respiratory and enteric viruses, as well as flaviviruses and herpesviruses. CV-N was inactive against rhinoviruses, human parainfluenza virus, respiratory syncytial virus, and enteric viruses but was moderately active against some herpesvirus and hepatitis virus (bovine viral diarrhea virus) strains (50% effective concentration [EC(50)] = approximately 1 micro g/ml) while inactive against others. Remarkably, however, CV-N and related homologs showed highly potent antiviral activity against almost all strains of influenza A and B virus, including clinical isolates and a neuraminidase inhibitor-resistant strain (EC(50) = 0.004 to 0.04 micro g/ml). When influenza virus particles were pretreated with CV-N, viral titers were lowered significantly (>1,000-fold). Further studies identified influenza virus hemagglutinin as a target for CV-N, showed that antiviral activity and hemagglutinin binding were correlated, and indicated that CV-N's interactions with hemagglutinin involved oligosaccharides. These results further reveal new potential avenues for antiviral therapeutics and prophylaxis targeting specific oligosaccharide-comprised sites on certain enveloped viruses, including HIV, influenza virus, and possibly others.  相似文献   

5.
6.
T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide) was inhibitory to four strains of avian H5N1 influenza virus in MDCK cells, with the 90% effective concentrations ranging from 1.3 to 7.7 microM, as determined by a virus yield reduction assay. The efficacy was less than that exerted by oseltamivir carboxylate or zanamivir but was greater than that exerted by ribavirin. Experiments with mice lethally infected with influenza A/Duck/MN/1525/81 (H5N1) virus showed that T-705 administered per os once, twice, or four times daily for 5 days beginning 1 h after virus exposure was highly inhibitory to the infection. Dosages from 30 to 300 mg/kg of body weight/day were well tolerated; each prevented death, lessened the decline of arterial oxygen saturation (SaO(2)), and inhibited lung consolidation and lung virus titers. Dosages from 30 to 300 mg/kg/day administered once or twice daily also significantly prevented the death of the mice. Oseltamivir (20 mg/kg/day), administered per os twice daily for 5 days, was tested in parallel in two experiments; it was only weakly effective against the infection. The four-times-daily T-705 treatments at 300 mg/kg/day could be delayed until 96 h after virus exposure and still significantly inhibit the infection. Single T-705 treatments administered up to 60 h after virus exposure also prevented death and the decline of SaO(2). Characterization of the pathogenesis of the duck influenza H5N1 virus used in these studies was undertaken; although the virus was highly pathogenic to mice, it was less neurotropic than has been described for clinical isolates of the H5N1 virus. These data indicate that T-705 may be useful for the treatment of avian influenza virus infections.  相似文献   

7.
Favipiravir (T-705 [6-fluoro-3-hydroxy-2-pyrazinecarboxamide]) and oseltamivir were combined to treat influenza virus A/NWS/33 (H1N1), A/Victoria/3/75 (H3N2), and A/Duck/MN/1525/81 (H5N1) infections. T-705 alone inhibited viruses in cell culture at 1.4 to 4.3 μM. Oseltamivir inhibited these three viruses in cells at 3.7, 0.02, and 0.16 μM and in neuraminidase assays at 0.94, 0.46, and 2.31 nM, respectively. Oral treatments were given twice daily to mice for 5 to 7 days starting, generally, 24 h after infection. Survival resulting from 5 days of oseltamivir treatment (0.1 and 0.3 mg/kg/day) was significantly better in combination with 20 mg/kg of body weight/day of T-705 against the H1N1 infection. Treatment of the H3N2 infection required 50 mg/kg/day of oseltamivir for 7 days to achieve 60% protection; 25 mg/kg/day was ineffective. T-705 was ≥70% protective at 50 to 100 mg/kg/day but inactive at 25 mg/kg/day. The combination of inhibitors (25 mg/kg/day each) increased survival to 90%. The H5N1 infection was not benefited by treatment with oseltamivir (≤100 mg/kg/day for 7 days). T-705 was 30 to 70% protective at 25 to 100 mg/kg/day. Survival improved slightly with combination treatments. Increased activity was seen against H5N1 infection by starting treatments 2 h before infection. Oseltamivir was ineffective at ≤40 mg/kg/day. T-705 was 100% protective at 40 and 80 mg/kg/day and inactive at 20 mg/kg/day. Combining ineffective doses (20 mg/kg/day of T-705 and 10 to 40 mg/kg/day of oseltamivir) afforded 60 to 80% protection and improved body weights during infection. Thus, synergistic responses were achieved with low doses of T-705 combined with oseltamivir. These compounds may be viable candidates for combination treatment of human influenza infections.The emergence of swine influenza H1N1 virus infections in 2009 (2) highlights the need for effective antiviral therapy in a largely immune-naïve population. Treatment options for influenza are becoming more limited because viruses, including the 2009 swine H1N1 virus, are resistant to the antiviral drugs amantadine and rimantadine (3, 4, 11, 13, 20). Oseltamivir-resistant viruses are also becoming more common in the environment, particularly within the last 2 years (1, 5, 19). Thus, more potent and effective treatments are needed to combat these growing threats.More potent antiviral therapy can be achieved by using drugs in combination, as demonstrated in mouse models (10, 14-17, 24, 26, 27). Such treatment can slow down the emergence of drug-resistant viruses (12). The reported animal studies have primarily focused on the known-active antiviral agents amantadine, rimantadine, oseltamivir, peramivir, zanamivir, and ribavirin. The kinds of studies that can be performed have been limited based upon the number of active antiviral compounds that are available.In 2002, Furuta et al. reported a novel pyrazine molecule, T-705 (6-fluoro-3-hydroxy-2-pyrazinecarboxamide, now named favipiravir), as an inhibitor of influenza virus infections in cell culture and in mice (8). T-705 inhibits both influenza A and B viruses (8, 23, 29). The compound converts to nucleoside mono- (T-705 RMP [ribosylated, monophosphorylated]), di-, and triphosphate (T-705 RTP [ribosylated, triphosphorylated]) forms in cells (9). The mode of action of T-705 RTP is similar to that of ribavirin triphosphate as an inhibitor of influenza virus RNA polymerase (6, 9). Unlike ribavirin monophosphate, T-705 RMP is only weakly inhibitory to cellular inosine monophosphate (IMP) dehydrogenase (9, 28), and thus, it is less cytotoxic. These properties make T-705 a viable candidate for the treatment of influenza virus infections in humans. The compound is currently undergoing phase II clinical trials.The use of T-705 in combination with other antiviral substances has not been reported. The purpose of the present work was to evaluate whether the combination of T-705 with the widely used antiviral drug oseltamivir is more beneficial than either substance used alone against influenza virus infections in mice. We chose three mouse-adapted influenza viruses for these comparisons, A/NWS/33 (H1N1), A/Victoria/3/75 (H3N2), and A/Duck/MN/1525/81 (H5N1). The A/NWS and A/Victoria viruses are of seasonal origin and are confined to the respiratory tract following infection. The A/Duck virus is a low-pathogenicity avian virus from the United States that also does not spread beyond the respiratory tract of mice. The experimental influenza A/Duck mouse infection does not fully reflect the type of pathogenesis of the highly pathogenic avian influenza H5N1 viruses from the Old World. This is because the A/Duck virus lacks the multibasic amino acid R-X-R/K-R motif in the hemagglutinin protein, whereas the highly pathogenic avian H5N1 viruses contain it (7). This motif allows for the highly pathogenic viruses to be proteolytically activated by ubiquitous subtilisin-like cellular proteases, allowing the virus to spread in vivo beyond the respiratory tract and to cause multiorgan failure. Nevertheless, the A/Duck virus induces rapid, severe lung infections that are difficult to treat with conventional antiviral therapy. Using these three models, H1N1, H3N2, and H5N1, in mice, we were able to demonstrate the benefits of using oseltamivir and T-705 in combination to treat influenza virus infections.  相似文献   

8.
We have recently described GS 4071, a carbocyclic transition-state analog inhibitor of the influenza virus neuraminidase, which has potent inhibitory activity comparable to that of 4-guanidino-Neu5Ac2en (GG167; zanamivir) when tested against influenza A virus replication and neuraminidase activity in vitro. We now report that GS 4071 is active against several strains of influenza A and B viruses in vitro and that oral GS 4104, an ethyl ester prodrug which is converted to GS 4071 in vivo, is active in the mouse and ferret models of influenza virus infection. Oral administration of 10 mg of GS 4104 per kg of body weight per day caused a 100-fold reduction in lung homogenate viral titers and enhanced survival in mice infected with influenza A or B viruses. In ferrets, a 25-mg/kg dose of GS 4104 given twice daily reduced peak viral titers in nasal washings and eliminated constitutional responses to influenza virus infection including fever, increased nasal signs (sneezing, nasal discharge, mouth breathing), and decreased activity. Consistent with our demonstration that the parent compound is highly specific for influenza virus neuraminidases, no significant drug-related toxicity was observed after the administration of oral dosages of GS 4104 of up to 800 mg/kg/day for 14 days in nonclinical toxicology studies with rats. These results indicate that GS 4104 is a novel, orally active antiviral agent with the potential to be used for the prophylaxis and treatment of influenza A and B virus infections.  相似文献   

9.
Among the RNA viruses, other than the retroviruses (that is, HIV), which are dealt with separately in the current FactFile, the most important targets for the development of antiviral agents at the moment are the orthomyxoviruses (that is, influenza), the hepaciviruses (that is, hepatitis C virus [HCV]) and, to a lesser extent, the picornaviruses. Although the uncoating inhibitors amantadine and rimantadine were the first known inhibitors of influenza A, the neuraminidase inhibitors oseltamivir, zanamivir and peramivir have now become the prime antiviral drugs for the treatment of influenza A and B virus infections. For HCV infections, standard treatment consists of the combination of pegylated interferon-alpha with ribavirin, but several other antivirals targeted at specific viral functions such as the HCV protease and/ or polymerase may be expected to soon take an important share of this important market. Still untapped is the potential of a variety of uncoating inhibitors, as well as protease and/or polymerase inhibitors against the wide spectrum of picornaviruses. While ribavirin has been available for 35 years as a broad-spectrum anti-RNA virus agent, relatively new and unexplored is favipiravir (T-705) accredited with activity against influenza as well as flaviviruses, bunyaviruses and arenaviruses.  相似文献   

10.
A novel series of DL-galactan hybrids extracted from the red seaweed Gymnogongrus torulosus, was evaluated for its in vitro antiviral properties against herpes simplex virus type 2 (HSV-2) and dengue virus 2 (DEN-2). These compounds were very active against both viruses with inhibitory concentration 50% (IC50) values in the range 0.6-16 microg/ml for HSV-2 and 0.19-1.7 microg/ml for DEN-2, respectively, as determined in a virus plaque reduction assay in Vero cells. The DL-galactans lacked of cytotoxic effects, on stationary as well as on actively dividing cells, and anticoagulant properties. Some of the compounds showed a variable level of direct inactivating effect on both virions, with virucidal concentration 50% values exceeding the IC50s obtained by plaque reduction assay. Full inhibitory activity was achieved when the galactans were present during virus adsorption period, suggesting that the mode of action of these compounds is an interference in the binding of the surface envelope glycoprotein with the cell receptor.  相似文献   

11.
T-705 (favipiravir; 6-fluoro-3-hydroxy-2-pyrazinecarboxamide) selectively and strongly inhibits replication of the influenza virus in vitro and in vivo. T-705 has been shown to be converted to T-705-4-ribofuranosyl-5-triphosphate (T-705RTP) by intracellular enzymes and then functions as a nucleotide analog to selectively inhibit RNA-dependent RNA polymerase (RdRp) of the influenza virus. To elucidate these inhibitory mechanisms, we analyzed the enzyme kinetics of inhibition using Lineweaver-Burk plots of four natural nucleoside triphosphates and conducted polyacrylamide gel electrophoresis of the primer extension products initiated from 32P-radiolabeled 5′Cap1 RNA. Enzyme kinetic analysis demonstrated that T-705RTP inhibited the incorporation of ATP and GTP in a competitive manner, which suggests that T-705RTP is recognized as a purine nucleotide by influenza virus RdRp and inhibited the incorporation of UTP and CTP in noncompetitive and mixed-type manners, respectively. Primer extension analysis demonstrated that a single molecule of T-705RTP was incorporated into the nascent RNA strand of the influenza virus and inhibited the subsequent incorporation of nucleotides. These results suggest that a single molecule of T-705RTP is incorporated into the nascent RNA strand as a purine nucleotide analog and inhibits strand extension, even though the natural ribose of T-705RTP has a 3′-OH group, which is essential for forming a covalent bond with the phosphate group.  相似文献   

12.
4-[(1,2-Dihydro-2-oxo-3H-indol-3-ylidene)amino]-N-(4,6-dimethyl-2-pyrimidinyl)-benzenesulphonamide (SPIII-5H) and related compounds were tested for antiviral activity against influenza A (H1N1, H3N2, and H5N1) and B viruses in Madin Darby canine kidney (MDCK) cell culture. Among the compounds tested, SPIII-5H and four derivatives (5-chloro [SPill-5Cl], 5-bromo [SPIII-5Br], 5-methyl [SPIII-5Me] and N-acetyl [SPIII-NA]) showed similar antiviral potencies, with only the 5-fluoro (SPIII-5F) derivative being ineffective. Fifty percent effective concentration (EC50) values were determined in cytopathic effect (CPE) inhibition assays quantified by neutral red dye uptake. By this method, the active compounds were inhibitory to the H1N1 strain of influenza A at 2.7-5.2 microg/ml, to the H3N2 strain of influenza A at 13.8-26.0 microg/ml, to the H5N1 strain of influenza A at 3.1-6.3 microg/ml and to influenza B at 7.7-11.5 microg/ml. Confirmatory virus yield reduction studies against influenza A (H1N1) virus demonstrated antiviral activity (90% inhibition) at concentrations of 2-10 microg/ml. No cytotoxic effects were evident in actively growing uninfected cells or stationary monolayers at 100 microg/ml. Potencies of the compounds were similar to those of ribavirin, but much less than those of oseltamivir carboxylate against the various viruses. Time-of-addition studies indicated the compounds inhibited an early step in the virus replication cycle, probably virus adsorption/penetration, and no virucidal activity was evident. The basic molecule is amenable to diverse chemical modifications, which may improve water solubility and antiviral potency.  相似文献   

13.
A novel series of cyclopentane derivatives have been found to exhibit potent and selective inhibitory effects on influenza virus neuraminidase. These compounds, designated RWJ-270201, BCX-1827, BCX-1898, and BCX-1923, were tested in parallel with zanamivir and oseltamivir carboxylate against a spectrum of influenza A (H1N1, H3N2, and H5N1) and influenza B viruses in MDCK cells. Inhibition of viral cytopathic effect ascertained visually and by neutral red dye uptake was used, with 50% effective (virus-inhibitory) concentrations (EC(50)) determined. Against the H1N1 viruses A/Bayern/07/95, A/Beijing/262/95, A/PR/8/34, and A/Texas/36/91, EC(50)s (determined by neutral red assay) of the novel compounds were < or =1.5 microM. Twelve strains of H3N2 and two strains of avian H5N1 viruses were inhibited at <0.3 microM. Influenza B/Beijing/184/93 and B/Harbin/07/94 viruses were inhibited at <0.2 microM, with three other B virus strains inhibited at 0.8 to 8 microM. The novel inhibitors were comparable in potency to (or slightly more potent than) zanamivir and oseltamivir carboxylate. No cytotoxicity was seen with the compounds at concentrations of < or =1 mM in cell proliferation assays. The antiviral activity of RWJ-270201, chosen for clinical development, was studied in greater detail. Its potency and that of oseltamivir carboxylate decreased with increasing multiplicity of virus infection. Time-of-addition studies indicated that treatment with either compound needed to begin 0 to 12 h after virus exposure for optimal activity. Exposure of cells to RWJ-270201 caused most of the virus to remain cell associated, with extracellular virus decreasing in a concentration-dependent manner. This is consistent with its effect as a neuraminidase inhibitor. RWJ-270201 shows promise in the treatment of human influenza virus infections.  相似文献   

14.
The orally administered neuraminidase (NA) inhibitor RWJ-270201 was tested in parallel with zanamivir and oseltamivir against a panel of avian influenza viruses for inhibition of NA activity and replication in tissue culture. The agents were then tested for protection of mice against lethal H5N1 and H9N2 virus infection. In vitro, RWJ-270201 was highly effective against all nine NA subtypes. NA inhibition by RWJ-270201 (50% inhibitory concentration, 0.9 to 4.3 nM) was superior to that by zanamivir and oseltamivir carboxylate. RWJ-270201 inhibited the replication of avian influenza viruses of both Eurasian and American lineages in MDCK cells (50% effective concentration, 0.5 to 11.8 microM). Mice given 10 mg of RWJ-270201 per kg of body weight per day were completely protected against lethal challenge with influenza A/Hong Kong/156/97 (H5N1) and A/quail/Hong Kong/G1/97 (H9N2) viruses. Both RWJ-270201 and oseltamivir significantly reduced virus titers in mouse lungs at daily dosages of 1.0 and 10 mg/kg and prevented the spread of virus to the brain. When treatment began 48 h after exposure to H5N1 virus, 10 mg of RWJ-270201/kg/day protected 50% of mice from death. These results suggest that RWJ-270201 is at least as effective as either zanamivir or oseltamivir against avian influenza viruses and may be of potential clinical use for treatment of emerging influenza viruses that may be transmitted from birds to humans.  相似文献   

15.
16.
The inhibitory activities (50% inhibitory concentrations [IC(50)s]) of gatifloxacin and other quinolones against both DNA gyrase and topoisomerase IV of the wild-type Streptococcus pneumoniae IID553 were determined. The IC(50)s of 10 compounds ranged from 4.28 to 582 microg/ml against DNA gyrase and from 1.90 to 35.2 microg/ml against topoisomerase IV. The inhibitory activity against DNA gyrase was more varied than that against topoisomerase IV among fluoroquinolones. The IC(50)s for DNA gyrase of the 8-methoxy quinolones gatifloxacin and AM-1147 were approximately seven times lower than those of their 8-H counterparts AM-1121 and ciprofloxacin, whereas the IC(50)s for topoisomerase IV were 1.5 times lower. Moreover, the IC(50) ratios (IC(50) for DNA gyrase/IC(50) for topoisomerase IV) of gatifloxacin, AM-1147, and moxifloxacin, which possess 8-methoxy groups, were almost the same. The 8-methoxy quinolones showed higher antibacterial activity and less mutant selectivity against IID553 than their 8-H counterparts. These results suggest that the 8-methoxy group enhances both target inhibition, especially for DNA gyrase, leading to potent antipneumococcal activity and dual inhibition against both DNA gyrase and topoisomerase IV in the bacterial cell.  相似文献   

17.
SCH 48973: a potent, broad-spectrum, antienterovirus compound.   总被引:1,自引:0,他引:1       下载免费PDF全文
SCH 48973 is a novel molecule with potent, selective, antienterovirus activity. In assays of the cytopathic effect against five picornaviruses, SCH 48973 had antiviral activity (50% inhibitory concentrations [IC50s]) of 0.02 to 0.11 microg/ml, with no detectable cytotoxicity at 50 microg/ml. SCH 48973 inhibited 80% of 154 recent human enterovirus isolates at an IC50 of 0.9 microg/ml. The antiviral activity of SCH 48973 is derived from its specific interaction with viral capsid, as confirmed by competition binding studies. The affinity constant (Ki) for SCH 48973 binding to poliovirus was 8.85 x 10(-8) M. In kinetic studies, a maximum of approximately 44 molecules of SCH 48973 were bound to poliovirus capsid. SCH 48973 demonstrated efficacy in a murine poliovirus model of enterovirus disease. SCH 48973 increased the survival of infected mice when it was administered orally at dosages of 3 to 20 mg/kg of body weight/day. Oral administration of SCH 48973 also reduced viral titers in the brains of infected mice. On the basis of its in vitro and in vivo profiles, SCH 48973 represents a potential candidate for therapeutic intervention against enterovirus infections.  相似文献   

18.
The sialidase (neuraminidase) inhibitor 4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid (4-guanidino-Neu5Ac2en) has been examined for the ability to inhibit the growth of a wide range of influenza A and B viruses in vitro in comparison with amantadine, rimantadine, and ribavirin. 4-Guanidino-Neu5Ac2en inhibited plaque formation by laboratory-passaged strains of influenza A and B viruses, with 50% inhibitory concentrations ranging from 0.005 to 0.014 microM. A wider range of values (0.02 to 16 microM) was obtained with more recent clinical isolates, but in all cases 4-guanidino-Neu5Ac2en inhibited influenza A and B virus replication at lower concentrations than amantadine, rimantadine, or ribavirin. Inhibition by 4-guanidino-Neu5Ac2en was not obviously affected by the passage history of the viruses or by resistance to amantadine or rimantadine. 4-Guanidino-Neu5Ac2en was a very potent inhibitor of the sialidases of all the influenza viruses examined, with 50% inhibitory concentrations ranging from 0.00064 to 0.0079 microM. No cytotoxicity was observed with 4-guanidino-Neu5Ac2en at up to 10 mM. 4-Guanidino-Neu5Ac2en therefore represents a new potent and selective inhibitor of influenza A and B virus sialidase activity and replication in vitro.  相似文献   

19.
Treatment with the nucleoside analog T-1106 was previously shown to be effective in a hamster model of yellow fever virus (YFV) disease, even though it had only slight activity in cell culture. In the study described in this report, the activity of T-705, a chemically related compound currently undergoing clinical trials for the treatment of influenza (FDANews 4:1, 2007), was tested against YFV in cell culture and in the hamster model. The antiviral efficacy of T-705 in cell culture occurred at a concentration of 330 μM, which was more than threefold lower than the concentration at which T-1106 had antiviral efficacy, as determined by a virus yield reduction assay and confirmed by a luciferase-based ATP detection assay. Time-of-addition studies revealed that addition of T-705, T-1106, or ribavirin at 0, 4, 8, or 12 h after virus challenge was effective in inhibiting virus in Vero cells, suggesting that these three agents have similar mechanisms of action in cell culture. Because of its more potent activity in cell culture, it was anticipated that T-705 treatment of hamsters infected with YFV would result in protection from disease. Significant improvements in survival and disease parameters were seen in infected animals when T-705 was administered orally at a dose of 200 or 400 mg/kg of body weight per day when it was given twice a day for 8 days. Significant improvements were also observed with a dose of 400 mg/kg/day when treatment initiation was delayed as late as 3 days after virus inoculation. Although the dose of T-705 required for efficacy in hamsters is higher than that of T-1106 required for efficacy, T-705 treatment is effective in significantly improving disease parameters in YFV-infected hamsters, which may indicate its potential utility in the treatment of YFV disease in humans.  相似文献   

20.
A novel nucleoside analog, 4(5H)-oxo-1-beta-D- ribofuranosylpyrazolo[3,4-d]pyrimidine-3-thiocarboxamide (N10169), was evaluated in cell culture and in animals for antiviral activity against DNA and RNA viruses. The compound was highly active against strains of adeno-, vaccinia, influenza B, paramyxo-, picorna-, and reoviruses, with 50% inhibition of virus-induced cytopathology at 1 to 10 microM. Lesser or no antiviral effects were observed against herpes simplex, cytomegalo-, corona-, influenza A, vesicular stomatitis, and visna viruses. Drug potency against certain viruses was highly cell line dependent (N10169 was highly active in HeLa cells but was much less potent in Vero cells). This was correlated, in part, to differences in levels of adenosine kinase activity in these cell lines, since adenosine kinase appears to phosphorylate N10169 to its active form. N10169 was inhibitory to proliferating cells at antiviral concentrations, whereas stationary-phase monolayers tolerated higher concentrations (less than or equal to 100 microM). Exogenous uridine was able to reverse the virus-inhibitory effects of the compound, leading to the discovery that N10169 5'-monophosphate is a potent inhibitor of cellular orotidylate decarboxylase. N10169 was evaluated in mice that were infected intraperitoneally with banzi virus or inoculated intranasally with influenza B virus, and in hamsters that were infected intranasally with vaccinia virus. In each model, intraperitoneal injection of N10169 (100 to 300 mg/kg per day for 7 days) twice daily was ineffective, whereas intraperitoneal injection of ribavirin showed some benefit in the influenza B and banzi virus infection models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号