首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
目的:利用蒙特卡罗方法研究医用直线加速器产生的6 MV-X射线在有均整器和无均整器状态下,光子能谱和空间分布的差异。方法:使用Geant4蒙特卡罗模拟程序计算医用加速器射野大小分别为5 cm×5 cm、10 cm×10 cm、15 cm×15 cm和20 cm×20 cm的6 MV-X射线在具备均整器和移除均整器条件下,初始光子的能谱和空间分布。结果:均整器移除后光子能谱光子注量变大,且随着射野的增大,射野内光子通量比值都明显减小,而且平均能量明显降低。此外,均整器的移除改变光子的相对分布,射野外光子数在整个相空间平面内光子中所占份额明显减少,而且与射野大小有关,5cm×5 cm时减少6.00%,10 cm×10 cm时减少4.42%,15 cm×15 cm时减少3.48%,20 cm×20 cm时减少2.28%,这表明移除均整器对于尺寸较小的射野意义重大。结论:均整器的移除可以优化射野的能谱分布,特别是对于调强放射治疗无均整器模式成为更有益模式。但是,由于均整器移除后导致的高剂量率在提高治疗增益的同时也带来了治疗风险,因此需要更进一步的研究和论证。  相似文献   

2.
目的:研究Varian Edge均整(FF)和非均整(FFF)模式下6 MV和10 MV光子线能谱并对比其差异。方法:利用蒙特卡洛程序软件包EGSnrc/Beamnrc建立Varian Edge 6 MV FF和FFF、10 MV FF和FFF的加速器模型,模拟所对应的相空间文件,而后以相空间作为输入源,利用DOSXYZnrc计算其在水体模中的剂量分布,并与三维水箱的测量数据比对,当模拟值与测量值之间的差异在1%之内时,利用Beamdp分析此时的相空间文件,得到对应的光子线能谱,并比较相互之间的差异。结果:模拟的百分深度剂量曲线和离轴比曲线与测量值之间的差异在1%之内。相对于FF模式,FFF模式的能谱"软化",其中6 MV FFF的平均能量从1.587 MeV下降至1.172 MeV,低能(能量≤1 MeV)光子所占的份额由41.06%上升至60.04%;而10 MV FFF的平均能量从2.796 MeV下降至1.956 MeV,低能光子所占的份额由21.22%上升至44.63%。同一射野内FFF模式的能谱随离轴距离的改变较小,同时每初始粒子所引起的能量注量是FF模式的2~4倍,射野内的能量注量分布变得不均匀,非平坦度F上升;分析不同射野下的能谱发现FFF模式的机头散射较少。结论:本研究结果对理解FFF模式下光子线的物理特性提供了非常好的参考价值。  相似文献   

3.
目的:对比分析6 MV光子束均整与非均整模式在空气和标准水模中特定深度处的能谱分布。 方法:利用BEAMnrc程序建立美国Varian公司TrueBeam加速器均整和非均整模式的机头模型,分别计算(40×40) cm2照射野下空气和标准水模中SSD=110 cm深度处的相空间文件,并利用BEAMDP程序对射野内不同区域的能谱分布进行对比分析。 结果:空气中(40×40) cm2射野内SSD=110 cm深度处,均整模式能谱分布低能部分随着统计区域增大而增大,与非均整模式分布规律相反;在标准水模体中Depth=10 cm深度处,有无反散的情况下两种模式的能谱分布相差较大,主要在小于0.511 MeV的区域;射野内不同位置的能谱分布均整模式在离轴方向低能部分逐渐减少,而非均整模式分布情况相反;相对于电子和正电子来说,相同射野内光子对能谱分布影响较大。 结论:该研究为医用直线加速器临床剂量学数据的测量和校正提供依据。  相似文献   

4.
目的:探讨臂架或准直器角度的改变对均整(FF)与非均整(FFF)两种模式的射线剂量的影响。方法:选用Versa HD直线加速器配备的6 MV/10 MV光子束FF/FFF模式4档能量在设定好九点位置的10 cm×10 cm标准射野内进行实验。首先,借助IMF等中心夹具将Mapcheck2固定于治疗机机头,并用Mapcheck2测量相同臂架与准直器角度条件下4种光子束输出的平面剂量值;其次,用Mapcheck2测量在相同臂架角度、不同准直器角度与相同准直器角度、不同臂架角度两种条件下4种光子束的中心轴剂量值;最后,固定准直器为0°,设立两组臂架对穿射野(0°与180°,90°与270°)。拆除Mapcheck2,采用固体水和FC65-G电离室建立一个测量模体来测量4种光子束在两组等中心对穿野的剂量。运用SPSS统计软件对该实验收集到的数据进行对比分析。结果:在相同臂架与准直器角度条件下,4种光子束辐照9个点的平面剂量之间均存在明显统计学差异(P6 MV FF =0.020, P6 MV FFF=0.017, P10 MV FF =0.030, P10 MV FFF=0.016);而不同臂架角度或不同准直器角度条件下,4种能量光子束的中心轴点剂量值均无统计学差异。在0°与180°的对穿野,4种能量光子束的输出剂量存在统计学差异(P6 MV FF =0.001, P6 MV FFF=0.002, P10 MV FF =0.003, P10 MV FFF=0.001),而在90°与270°的对穿野无统计学差异。结论:Versa HD直线加速器拥有优良的机械等中心性能。在实际工作时,臂架和准直器的旋转,均不影响光子束的中心轴剂量的准确输出。在FF模式下,射线能量越高,受治疗床影响越小;FFF模式射线由于射线质软,能量越高,更易受到治疗床的衰减作用,在实际中应引起重视。  相似文献   

5.
目的:探讨Varian 2300 C/D直线加速器高能电子束射野输出因子变化规律。方法:用电离室法实测在各种能量下对四种限光筒的不同铅挡野的射野输出因子。结果:铅挡野输出因子随射野边长及限光筒大小变化没有明显的规律;铅挡野输出因子与能量有关。结论:射线能量、限光铜和铅挡野大小时输出因子的影响较大,临床应用时需要针对性地精确测量。  相似文献   

6.
目的:研究Varian Edge加速器不同工作状态下射野外辐射剂量水平以及铅防护用品的防护效果。方法:利用实验测量的方法,研究加速器在不同工作能量、不同线束均整状态、使用不同防护用品,测量距射野边缘不同距离及不同深度下辐射剂量水平的变化情况。结果:射野外辐射剂量随距射野边缘距离增加(5~40 cm)近似呈指数规律下降,距射野边缘20 cm范围内低能量射束(6 MV、6 MV FFF)的辐射剂量低于高能射束(10 MV、10 MV FFF)的辐射剂量,且随测量深度增加(1~2 cm)而降低。非均整模式下射野外剂量测量结果低于均整模式射束。在相同能量条件下,铅防护用品的防护效果与线束的均整状态无关。对高能射束的防护效果要优于低能射束且随深度增加防护效果迅速下降。深度为1 cm,射束能量10 MV FFF,距射野边缘5~30 cm条件下,防护效果最强,射野外辐射剂量水平降低50%以上。测量深度为2 cm,射束能量为6 MV FFF,距离射野边缘5~30 cm的条件下,防护效果最差,仅能降低10%以下。结论:在实现临床目标的前提下,治疗过程中若无铅防护用品进行保护,推荐采用低能非均整模式进行计划设计;若使用铅防护用品进行保护,可以采用高能非均整模式射束,此时铅防护用品效果最佳,射野外浅层器官所受剂量最低,可有效降低二次肿瘤发生几率。  相似文献   

7.
目的:探讨和比较瓦里安(Varian)2100C/D与医科达(Elekta)Synergy直线加速器配备的多叶准直器的半影特性,为临床设野提供参数供参考。方法:利用CRS三维水箱和PTW电离室测量6 MV和10 MV X线的射野离轴比曲线,测量从4 cm×4 cm到20 cm×20 cm各方野的半影;同时针对两种加速器多叶准直器的设计特点,分析利用不同准直器形成射野对半影宽度的影响。结果:(1)对于不同能量和不同大小射野,设野时靶区外扩的范围应综合半影大小等因素;(2)Varian 2100C/D加速器采用准直器三层结构,采用"MLC+JAW"方式形成射野能减少半影,即应注意形成射野时JAW必须跟随MLC;(3)Elekta Synergy加速器形成射野时MLC方向半影较大,重要器官可采用JAW来保护。  相似文献   

8.
目的:对高能电子线总输出因子、百分深度剂量、深度剂量分布的剂量学参数进行测量并分析讨论。方法:在Varian23EX直线加速器上,利用9606剂量测量仪和0.6cc指型电离室测量不同能量、不同限光筒及不同射野下的输出剂量并作归一,得到我们所要的剂量学参数,然后分析数据。结果:总输出因子在不同能量下与正方形射野边长的关系可满足等式:y=a·e^bx+c·e^dx。水模体百分剂量分布中,6MeV电子线各限光筒的90%、85%等剂量深度基本不变,9MeV-15MeV下90%、85%等剂量深度随着限光筒尺寸增大而变深。对于水模体的深度剂量分布情况,6MeV和12MeV能量的10cmx10cm、15cmxl5cm限光筒均整区内对称点的最大相对剂量差分别都为0.04%、O.03%。结论:通过测量掌握实际照射中的剂量学特点.对于电子线剂量的准确计算以及临床计划制定具有很大的参考价值。  相似文献   

9.
目的 研究直线加速器去掉均整器后6 MV光子束的剂量学特性,并与有均整器的情况下比较,为临床应用提供依据。方法 采集瓦里安Trilogy 6 MV光子束在有均整器(FF)(用6X FF表示)和去掉均整器(FFF)(用6X FFF表示)后的剂量学数据,比较两者百分深度剂量(PDD)、离轴剂量分布(Profile)、表面相对剂量(PDD1 mm)、射野外相对剂量、总输出因子(Scp)。结果 6X FF的最大剂量深度(dmax)在3 cm×3 cm至15 cm×15 cm射野时为1.4 cm,在20 cm×20 cm射野后变为1.2 cm,30 cm×30 cm后变为1.0 cm,而6X FFF的dmax为1.2 cm且不随射野大小变化。在大于dmax后,同一深度6X FFF的PDD比6X FF的小,但两者差距随射野和深度变化不明显,在3 cm×3 cm射野5 cm深度处6X FFF的PDD比6X FF的小2.4,在40 cm×40 cm射野30 cm深度处6X FFF的PDD比6X...  相似文献   

10.
目的:利用蒙特卡罗方法分别模拟True Beam直线加速器6 MV均整和非均整(Flattening Filter-Free,FFF)模式,计算其射线质和射野输出因子,并比较上述参数与实际测量结果的差异。方法:利用Beamnrc和Dosxyznrc程序建立加速器机头模型并计算两档能量在参考条件下不同射野的剂量学数据。输出上述数据,计算各个射野射线质与实际测量值的相对偏差,对其绝对值做统计分析;利用各个射野中心轴上水下10 cm处的剂量值获取射野输出因子,并计算与测量值的相对偏差,绝对化后做统计分析。结果:6 MV和6FFF两档能量射线质相对偏差绝对值分别为(0.459±0.462)%和(0.486±0.300)%,射野输出因子相对偏差绝对值分别为(1.315±1.868)%和(0.904±1.214)%。结论:该模型的射线质和输出因子与测量结果相对偏差较小,基本可用于临床剂量学研究。  相似文献   

11.
A Monte Carlo model of an Elekta Precise linear accelerator has been built and verified by measured data for a 6 and 10 MV photon beam running with and without a flattening filter in the beam line. In this study the flattening filter was replaced with a 6 mm thick copper plate, provided by the linac vendor, in order to stabilize the beam. Several studies have shown that removal of the filter improves some properties of the photon beam, which could be beneficial for radiotherapy treatments. The investigated characteristics of this new beam included output, spectra, mean energy, half value layer and the origin of scattered photons. The results showed an increased dose output per initial electron at the central axis of 1.76 and 2.66 for the 6 and 10 MV beams, respectively. The number of scattered photons from the accelerator head was reduced by (31.7 ± 0.03)% (1 SD) for the 6 MV beam and (47.6 ± 0.02)% for the 10 MV beam. The photon energy spectrum of the unflattened beam was softer compared to a conventional beam and did not vary significantly with the off-axis distance, even for the largest field size (0-20 cm off-axis).  相似文献   

12.
Photon beams of 4, 6 and 15 MV from Varian Clinac 2100C and 2300C/D accelerators were simulated using the EGS4/BEAM code system. The accelerators were modelled as a combination of component modules (CMs) consisting of a target, primary collimator, exit window, flattening filter, monitor chamber, secondary collimator, ring collimator, photon jaws and protection window. A full phase space file was scored directly above the upper photon jaws and analysed using beam data processing software, BEAMDP, to derive the beam characteristics, such as planar fluence, angular distribution, energy spectrum and the fractional contributions of each individual CM. A multiple-source model has been further developed to reconstruct the original phase space. Separate sources were created with accurate source intensity, energy, fluence and angular distributions for the target, primary collimator and flattening filter. Good agreement (within 2%) between the Monte Carlo calculations with the source model and those with the original phase space was achieved in the dose distributions for field sizes of 4 cm x 4 cm to 40 cm x 40 cm at source surface distances (SSDs) of 80-120 cm. The dose distributions in lung and bone heterogeneous phantoms have also been found to be in good agreement (within 2%) for 4, 6 and 15 MV photon beams for various field sizes between the Monte Carlo calculations with the source model and those with the original phase space.  相似文献   

13.
In conventional clinical linear accelerators, the flattening filter scatters and absorbs a large fraction of primary photons. Increasing the beam-on time, which also increases the out-of-field exposure to patients, compensates for the reduction in photon fluence. In recent years, intensity modulated radiation therapy has been introduced, yielding better dose distributions than conventional three-dimensional conformal therapy. The drawback of this method is the further increase in beam-on time. An accelerator with the flattening filter removed, which would increase photon fluence greatly, could deliver considerably higher dose rates. The objective of the present study is to investigate the dosimetric properties of 6 and 18 MV photon beams from an accelerator without a flattening filter. The dosimetric data were generated using the Monte Carlo programs BEAMnrc and DOSXYZnrc. The accelerator model was based on the Varian Clinac 2100 design. We compared depth doses, dose rates, lateral profiles, doses outside collimation, total and collimator scatter factors for an accelerator with and without a flatteneing filter. The study showed that removing the filter increased the dose rate on the central axis by a factor of 2.31 (6 MV) and 5.45 (18 MV) at a given target current. Because the flattening filter is a major source of head scatter photons, its removal from the beam line could reduce the out-of-field dose.  相似文献   

14.
In some linear accelerators, the charge collected by the monitor ion chamber is partly caused by backscattered particles from accelerator components downstream from the chamber. This influences the output of the accelerator and also has to be taken into account when output factors are derived from Monte Carlo simulations. In this work, the contribution of backscattered particles to the monitor ion chamber response of a Varian 2100C linac was determined for photon beams (6, 10 MV) and for electron beams (6, 12, 20 MeV). The experimental procedure consisted of charge integration from the target in a photon beam or from the monitor ion chamber in electron beams. The Monte Carlo code EGS4/BEAM was used to study the contribution of backscattered particles to the dose deposited in the monitor ion chamber. Both measurements and simulations showed a linear increase in backscatter fraction with decreasing field size for photon and electron beams. For 6 MV and 10 MV photon beams, a 2-3% increase in backscatter was obtained for a 0.5 x 0.5 cm2 field compared to a 40 x 40 cm2 field. The results for the 6 MV beam were slightly higher than for the 10 MV beam. For electron beams (6, 12, 20 MeV), an increase of similar magnitude was obtained from measurements and simulations for 6 MeV electrons. For higher energy electron beams a smaller increase in backscatter fraction was found. The problem is of less importance for electron beams since large variations of field size for a single electron energy usually do not occur.  相似文献   

15.
The purpose of this investigation is to study the feasibility of using an alternative method to commission stereotactic radiosurgery beams shaped by micro multi-leaf collimators by using Monte Carlo simulations to obtain beam characteristics of small photon beams, such as incident beam particle fluence and energy distributions, scatter ratios, depth-dose curves and dose profiles where measurements are impossible or difficult. Ionization chambers and diode detectors with different sensitive volumes were used in the measurements in a water phantom and the Monte Carlo codes BEAMnrc/DOSXYZnrc were used in the simulation. The Monte Carlo calculated data were benchmarked against measured data for photon beams with energies of 6 MV and 10 MV produced from a Varian Trilogy accelerator. The measured scatter ratios and cross-beam dose profiles for very small fields are shown to be not only dependent on the size of the sensitive volume of the detector used but also on the type of detectors. It is known that the response of some detectors changes at small field sizes. Excellent agreement was seen between scatter ratios measured with a small ion chamber and those calculated from Monte Carlo simulations. The values of scatter ratios, for field sizes from 6 x 6 mm2 to 98 x 98 mm2, range from 0.67 to 1.0 and from 0.59 to 1.0 for 6 and 10 MV, respectively. The Monte Carlo calculations predicted that the incident beam particle fluence is strongly affected by the X-Y-jaw openings, especially for small fields due to the finite size of the radiation source. Our measurement confirmed this prediction. This study demonstrates that Monte Carlo calculations not only provide accurate dose distributions for small fields where measurements are difficult but also provide additional beam characteristics that cannot be obtained from experimental methods. Detailed beam characteristics such as incident photon fluence distribution, energy spectra, including composition of primary and scattered photons, can be independently used in dose calculation models and to improve the accuracy of measurements with detectors with an energy-dependent response. Furthermore, when there are discrepancies between results measured with different detectors, the Monte Carlo calculated values can indicate the most correct result. The data set presented in this study can be used as a reference in commissioning stereotactic radiosurgery beams shaped by a BrainLAB m3 on a Varian 2100EX or 600C accelerator.  相似文献   

16.
Basic dosimetric properties of 6 MV and 18 MV photon beams from a Varian Clinac 21EX accelerator operating without the flattening filter have been measured. These include dose rate data, depth dose dependencies and lateral profiles in a water phantom, total scatter factors and transmission factors of a multileaf collimator. The data are reviewed and compared with measurements for the flattened beams. The unflattened beams have the following: a higher dose rate by factors of 2.3 (6 MV) and 5.5 (18 MV) on the central axis; lower out-of-field dose due to reduced head scatter and softer spectra; less variation of the total scatter factor with field size; and less variation of the shape of lateral dose profiles with depth. The findings suggest that with a flattening filter free accelerator better radiation treatments can be developed, with shorter delivery times and lower doses to normal tissues and organs.  相似文献   

17.
The purpose of this study is to provide detailed characteristics of incident photon beams for different field sizes and beam energies. This information is critical to the future development of accurate treatment planning systems. It also enhances our knowledge of radiotherapy photon beams. The EGS4 Monte Carlo code, BEAM, has been used to simulate 6 and 18 MV photon beams from a Varian Clinac-2100EX accelerator. A simulated realistic beam is stored in a phase space data file, which contains details of each particle's complete history including where it has been and where it has interacted. The phase space files are analysed to obtain energy spectra, angular distribution, fluence profile and mean energy profiles at the phantom surface for particles separated according to their charge and history. The accuracy of a simulated beam is validated by the excellent agreement between the Monte Carlo calculated and measured dose distributions. Measured depth-dose curves are obtained from depth-ionization curves by accounting for newly introduced chamber fluence corrections and the stopping-power ratios for realistic beams. The study presents calculated depth-dose components from different particles as well as calculated surface dose and contribution from different particles to surface dose across the field. It is shown that the increase of surface dose with the increase of the field size is mainly due to the increase of incident contaminant charged particles. At 6 MV, the incident charged particles contribute 7% to 21% of maximum dose at the surface when the field size increases from 10 x 10 to 40 x 40 cm2. At 18 MV, their contributions are up to 11% and 29% of maximum dose at the surface for 10 x 10 cm2 and 40 x 40 cm2 fields respectively. However, the fluence of these incident charged particles is less than 1% of incident photon fluence in all cases.  相似文献   

18.
Several studies have shown that removal of the flattening filter from the treatment head of a clinical accelerator increases the dose rate and changes the lateral profile in radiation therapy with photons. However, the multileaf collimator (MLC) used to shape the field was not taken into consideration in these studies. We therefore investigated the effect of the MLC on flattened and unflattened beams. To do this, we performed measurements on a Varian Clinac 21EX and MCNPX Monte Carlo simulations to analyze the physical properties of the photon beam. We compared lateral profiles, depth dose curves, MLC leakages, and total scatter factors for two energies (6 and 18 MV) of MLC-shaped fields and jaw-shaped fields. Our study showed that flattening filter-free beams shaped by a MLC differ from the jaw-shaped beams. Similar differences were also observed for flattened beams. Although both collimating methods produced identical depth dose curves, the penumbra size and the MLC leakage were reduced in the softer, unflattened beam and the total scatter factors showed a smaller field size dependence.  相似文献   

19.
The various components of the accelerator treatment head act as sources of contaminating electrons. The presence of contamination electrons increases the surface dose, which deteriorates the skin-sparing effect. The present study examines the sources of this 'contamination', the influence on the surface dose and the shape of the build-up curve. The Monte Carlo simulation of two linear accelerators, Saturne-25 and -41, allowed us to study the influence of electron contamination in various therapeutic energies and in different geometries. The Saturne-25 and -41 cover a wide range of therapeutic energies with nominal energies 12/23 MV and 6/15 MV, respectively. The analysis of the results shows that at a source-to-surface distance of 100 cm and a wide opening of the collimators, the main sources of contaminating electrons are the flattening filter and the air below it. The contribution of the secondary contamination electrons on the surface dose is 16% for 6 MV and 12 MV, 6% for 15 MV and 17% for 23 MV. The energy spectra of electrons coming from the flattening filter and the air below it are completely different. The air produces electrons of low energies. The mean energies of these spectra vary from 1 MeV to 2 MeV depending on the nominal energy of the photon beam. The secondary electrons generated by the flattening filter produce a wide energy spectrum with mean energies of the same order of the bremsstrahlung spectrum. The flattening filter absorbs the secondary electrons generated in the target, the primary collimator and the air inside the head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号