首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to examine the mechanical properties of 5-mm-thick AA7075-T651 alloy using three different welding velocities, 50, 75 and 100 mm/min, and four various sets of tool rotation speeds: 400, 600, 800 and 1000 rpm. All obtained joints were defect-free. In all cases, the values of UTS exceeded 400 MPa, corresponding to 68.5% minimum joint efficiency. The highest value of 447.7 MPa (76.7% joint efficiency) was reported for the joint produced via 400 rpm tool rotation speed and 100 mm/min welding velocity. The SZ microstructure of the strongest joint was characterized by a 5.2 ± 1.7 μm grain size and microhardness of approximately 145 HV0.1. The TMAZ/HAZ interface was identified as the low-hardness zone (105–115 HV0.1, depending on parameters), where the failure of the tensile samples takes place. The fracture mechanism is dominated by a transgranular ductile rupture with microvoid coalescence.  相似文献   

2.
Friction Stir Welding (FSW) is a solid-state bonding technique. There are many direct and indirect factors affecting the mechanical and microstructural properties of the FSW joints. Tool offset, tilt angle, and plunge depth are determinative tool positioning in the FSW process. Investigating the effect of these factors simultaneously with other parameters such as process speeds (rotational speed and translational speed) and tool geometry leads to a poor understanding of the impact of these factors on the FSW process. Because the three mentioned parameters have the same origin, they should be studied separately from other process parameters. This paper investigates the effects of tilt angle, plunge depth, and tool offset on Ultimate Tensile Stress (UTS) of joints between AA6061-T6 and AA7075-T6. To design the experiments, optimization, and statistical analysis, Response Surface Methodology (RSM) has been used. Experimental tests were carried out to find the maximum achievable UTS of the joint. The optimum values were determined based on the optimization procedure as 0.7 mm of tool offset, 2.7 degrees of tilt angle, and 0.1 mm of plunge depth. These values resulted in a UTS of 281 MPa. Compared to the UTS of base metals, the joint efficiency of the optimized welded sample was nearly 90 percent.  相似文献   

3.
The Refill Friction Stir Spot Welding (RFSSW) process—an alternative solid-state joining technology—has gained momentum in the last decade for the welding of aluminum and magnesium alloys. Previous studies have addressed the influence of the RFSSW process on the microstructural and mechanical properties of the AA6061-T6 alloy. However, there is a lack of knowledge on how the tool wear influences the welding mechanical behavior for this alloy. The present work intended to evaluate and understand the influence of RFSSW tool wear on the mechanical performance of AA6061-T6 welds. Firstly, the welding parameters were optimized through the Designing of Experiments (DoE), to maximize the obtained ultimate lap shear force (ULSF) response. Following the statistical analysis, an optimized condition was found that reached a ULSF of 8.45 ± 0.08 kN. Secondly, the optimized set of welding parameters were applied to evaluate the wear undergone by the tool. The loss of worn-out material was systematically investigated by digital microscopy and the assessment of tool weight loss. Tool-wear-related microstructural and local mechanical property changes were assessed and compared with the yielded ULSF, and showed a correlation. Further investigations demonstrated the influence of tool wear on the height of the hook, which was located at the interface between the welded plates and, consequently, its effects on the observed fracture mechanisms and ULSF. These results support the understanding of tool wear mechanisms and helped to evaluate the tool lifespan for the selected commercial RFSSW tool which is used for aluminum alloys.  相似文献   

4.
Among the emerging new welding techniques, friction stir welding (FSW) is used frequently for welding high-strength aluminum alloys that are difficult to weld by conventional fusion-welding techniques. This paper investigated the effects of tool-positioning factors on the maximum temperature generated in the dissimilar FSW joint of AA6061-T6 and AA7075-T6 aluminum alloys. Three factors of plunge depth, tool offset, and tilt angle were used as the input parameters. Numerical simulation of the FSW process was performed in ABAQUS software using the coupled Eulerian–Lagrangian (CEL) approach. Central composite design (CCD) based on response surface methodology (RSM) was used to analyze and design the experiments. Comparison of the numerical and experimental results showed that numerical simulations were in good agreement with the experimental ones. Based on the statistical model results, plunge depth, tilt angle, and tool offset were the most significant factors on maximum process temperature, respectively. It was found that increasing the plunge depth caused a sharp increase in the maximum process temperature due to increased contact surfaces and the frictional interaction between the tool and workpiece.  相似文献   

5.
In the present study, 8 mm-thick 5251 aluminum alloy was self-reacting friction stir welded (SRFSW) employing an optimized friction stir tool to analyze the effect of welding speed from 150 to 450 mm/min on the microstructure and mechanical properties at a constant rotation speed of 400 rpm. The results indicated that high-quality surface finish and defect-free joints were successfully obtained under suitable process parameters. The microhardness distribution profiles on the transverse section of joint exhibited a typical “W” pattern. The lowest hardness values located at the heat-affected zone (HAZ) and the width of the softened region decreased with increasing welding speed. The tensile strength significantly decreased due to the void defect, which showed mixed fracture characteristics induced by the decreasing welding speed. The average tensile strength and elongation achieved by the SRFSW process were 242.61 MPa and 8.3% with optimal welding conditions, and the fracture surface exhibited a typical toughness fracture mode.  相似文献   

6.
In the present study, 2198 Al-Cu-Li alloys were successfully friction stir welded by using various welding speed ranges of 90~180 mm/min with an invariable rotation speed of 950 r/min. The effect of welding speed on microstructure evolution and mechanical properties of the joints was investigated. The results show that, with the welding speed decreasing, the size of the nugget zone (NZ) first increases and then decreases due to different welding temperatures. At a welding speed of 150 mm/min, the size of the NZ in all joints is the biggest and the “S” curve disappears. The equiaxed grains are finer, attributed to a higher degree of dynamic recrystallization, and a larger number of fine reprecipitated phase (δ’, β’ phases) particles are dispersively distributed in the NZ. Correspondingly, the joints have the highest tensile properties, and the tensile strength, yield strength and elongation are, respectively, 406 MPa, 289 MPa and 7.2%. However, compared to the base material, the tensile properties of all joints are reduced because a greater amount of δ’ and β’ phases particles are dissolved in the NZ. Only the joints produced at 150 mm/min are fractured in the TMAZ with detected deep dimples and tearing ridges, and a significant necking phenomenon is observed, which indicates a complete ductile fracture mode.  相似文献   

7.
This study focuses on the properties and process parameters dictating behavioural aspects of friction stir welded Aluminium Alloy AA6061 metal matrix composites reinforced with varying percentages of SiC and B4C. The joint properties in terms of mechanical strength, microstructural integrity and quality were examined. The weld reveals grain refinement and uniform distribution of reinforced particles in the joint region leading to improved strength compared to other joints of varying base material compositions. The tensile properties of the friction stir welded Al-MMCs improved after reinforcement with SiC and B4C. The maximum ultimate tensile stress was around 172.8 ± 1.9 MPa for composite with 10% SiC and 3% B4C reinforcement. The percentage elongation decreased as the percentage of SiC decreases and B4C increases. The hardness of the Al-MMCs improved considerably by adding reinforcement and subsequent thermal action during the FSW process, indicating an optimal increase as it eliminates brittleness. It was seen that higher SiC content contributes to higher strength, improved wear properties and hardness. The wear rate was as high as 12 ± 0.9 g/s for 10% SiC reinforcement and 30 N load. The wear rate reduced for lower values of load and increased with B4C reinforcement. The microstructural examination at the joints reveals the flow of plasticized metal from advancing to the retreating side. The formation of onion rings in the weld zone was due to the cylindrical FSW rotating tool material impression during the stirring action. Alterations in chemical properties are negligible, thereby retaining the original characteristics of the materials post welding. No major cracks or pores were observed during the non-destructive testing process that established good quality of the weld. The results are indicated improvement in mechanical and microstructural properties of the weld.  相似文献   

8.
In recent decades, extensive research has been performed on the friction stir welding of flat-shaped materials while pipe welding, particularly polymer pipes, still encounters challenging issues. This work presents a feasible route for joining high-density polyethylene (HDPE) pipes using an orbital friction stir welding (OFSW) set-up properly designed with a retractable pin tool. Fully consolidated joints were achieved using a portable heating-assisted OFSW system suited for on-site pipeline welding. The obtained joined pipes were characterized by a high-quality weld surface and a lack of defects arising from the tool-pin hole. The samples welded with the optimum parameters presented comparable properties with the base materials and even a slight increase in the tensile strength. The highest tensile and impact strengths were 14.4 MPa and 2.45 kJ/m2, respectively, which is 105% and 89% of those of the base material. XRD, FTIR, and SEM were also applied to assess the property changes in the HDPE pipes after the FSW process. The morphological analysis evidenced that the crystalline structure of the welded sample was similar to that of the base material, proving the effectiveness of the proposed technology.  相似文献   

9.
The main purpose of this research was to enhance the mechanical properties of friction stir welds (FSW) in the dissimilar aluminum alloys 6061-T6 and 7075-T651. The welded workpiece has tensile residual stress due to the influence of the thermal conductivity of dissimilar materials, resulting in crack initiation and less fatigue strength. The experiment started from the FSW process using the 2k full factorial with the response surface methodology (RSM) and central composite design (CCD) to investigate three factors. The experiment found that the optimal rotation speed and feed rate values were 979 and 65 mm/min, respectively. Then, the post-weld heat treatment process (PWHT) was applied. Following this, the 2k full factorial was used to investigate four factors involved in the deep rolling process (DR). The experiment found that the optimal deep rolling pressure and deep rolling offset values were 300 bar and 0.2 mm, respectively. Moreover, mechanical property testing was performed with a sequence of four design types of workpieces: FSW, FSW-PWHT, FSW-DR, and FSW-PWHT-DR. It was found that the FSW-PWHT-DR workpiece had an increase in tensile strength of up to 26.29% and increase in fatigue life of up to 129.47% when compared with the FSW workpieces, as well as a maximum compressive residual stress of −414 MPa.  相似文献   

10.
The present paper aims to analyze the influence of process parameters (tool traverse speed and tool rotational speed) on the macrostructure, microhardness, and mechanical properties of dissimilar friction stir welded (FSW) butt joints. Nine combinations of FSW parameters welded joints of aluminum alloys 7020-T651 and 5083-H111 were characterized. Plates in 5 mm thickness were welded using the FSW method as dissimilar joints with three values of tool rotation parameters (400, 800, and 1200 rpm) and three welding speeds (100, 200, 300 mm/min). The macroscopic observations revealed various shapes of the stir zone and defects resulting from excess and insufficient heat input. Microfractographic analysis and tensile test results showed that the samples made with the FSW parameters of 800 rpm and 200 mm/min had the best strength properties: UTS = 303 MPa, YS = 157 MPa, and A = 11.6 %. Moreover, for all welds at welding speed 100 mm/min, the joint efficiency reached 95%.  相似文献   

11.
Friction stir spot welding (FSSW) is one of the important variants of the friction stir welding (FSW) process. FSSW has been developed mainly for automotive applications where the different thickness sheets spot welding is essential. In the present work, different thin thickness sheets (1 mm and 2 mm) of AA6082-T6 were welded using FSSW at a constant dwell time of 3 s and different rotation speeds of 400, 600, 800, and 1000 rpm. The FSSW heat input was calculated, and the temperature cycle experience during the FSSW process was recorded. Both starting materials and produced FSSW joints were investigated by macro- and microstructural investigation, a hardness test, and a tensile shear test, and the fractured surfaces were examined using a scanning electron microscope (SEM). The macro examination showed that defect-free spot joints were produced at a wide range of rotation speeds (400–1000 rpm). The microstructural results in terms of grain refining of the stir zone (SZ) of the joints show good support for the mechanical properties of FSSW joints. It was found that the best welding condition was 600 rpm for achieving different thin sheet thicknesses spot joints with the SZ hardness of 95 ± 2 HV0.5 and a tensile shear load of 4300 ± 30 N.  相似文献   

12.
In order to ensure a quality welded joint, and thus safe operation and high reliability of the welded part or structure achieved by friction stir welding, it is necessary to select the optimal welding parameters. The parameters of friction stir welding significantly affect the structure of the welded joint, and thus the mechanical properties of the welded joint. Investigation of the influence of friction stir welding parameters was performed on 6-mm thick plates of aluminum alloy AA2024 T351. The quality of the welded joint is predominantly influenced by the tool rotation speed n and the welding speed v. In this research, constant tool rotation speed was adopted n = 750 rpm, and the welding speed was varied (v = 73, 116 and 150 mm/min). By the visual method and radiographic examination, imperfections of the face and roots of the welded specimens were not found. This paper presents the performed experimental tests of the macro and microstructure of welded joints, followed by tests of micro hardness and fracture behavior of Friction Stir Welded AA2024-T351 joints. It can be concluded that the welding speed of v = 116 mm/min is favorable with regard to the fracture behavior of the analysed FSW-joint.  相似文献   

13.
In this work, friction stir lap welding (FSLW) and ultrasonic-assisted friction stir lap welding (UAFSLW) was applied to 6-mm-thick 7075-T6 alloy sheets using three welding tools with the same process parameters. The joint formation, microstructural characteristics, and mechanical properties of the resulting lap joints were then investigated. The results showed that ultrasonic vibration significantly promoted the flow of metal at the interface, enlarged the size of the stirred zone (SZ), and reduced the angle between the hook defect and the interface. During lap shear testing, the FSLW and UAFSLW joints fractured in a similar manner. The fracture modes included tensile fracture, shear fracture, and a mixture of both. Cold lap and hook defects may have served as crack-initiation zones within the joint. Under configuration A (i.e., upper sheet on the retreating side (RS)), all joints failed in the shear-fracture mode. The effective lap width (ELW) of the joint welded using tool T2 was the greatest. This resulted in a higher shear fracture strength. The maximum shear fracture strength of the UAFSLW joint was 663.1 N/mm. Under configuration B (i.e., upper sheet on the advancing side (AS)), the shear fracture strength was greatly affected by the fracture mode. The highest shear fracture strength of the UAFSLW joint, 543.7 N/mm, was welded by tool T3. Thus, under otherwise identical conditions, UAFSLW joints can withstand a greater fracture shear strength than FSLW joints, as ultrasonic vibration helps to mix the material at the interface, thus, enlarging the SZ and diminishing the cold lap defects.  相似文献   

14.
This article aims to study water-cooling effects on residual stress friction stir welding (FSW) of AA6068-T6 aluminum alloy. For this reason, the FSW and submerged FSW processes are simulated by computational fluid dynamic (CFD) method to study heat generation. The increment hole drilling technique was used to measure the residual stress of welded samples. The simulation results show that materials softening during the FSW process are more than submerged. This phenomenon caused the residual stress of the joint line in the submerged case to be lower than in the regular FSW joint. On the other hand, the results revealed that the maximum residual stresses in both cases are below the yielding strength of the AA6068-T6 aluminum alloy. The results indicated that the residual stress along the longitudinal direction of the joint line is much larger than the transverse direction in both samples.  相似文献   

15.
In this study, the friction-stir welding (FSW) technique was successfully applied for joining of AA2519 to AA5181 alloy. Microstructure and mechanical properties of dissimilar FSW joints were investigated by optical microscopy, microhardness, and tensile testing. The deformation behaviour of the welded joints was elucidated via the digital image correlation technique. After welding, the ultimate tensile strength of joints was ~300 MPa and ductility was ~16%. The microhardness values observed at the stir zone were higher than those in the base material AA5182. The produced welds demonstrate nearly 100% (based on AA5182) joint efficiency.  相似文献   

16.
17.
Friction Stir Welding (FSW) is a solid-state joining process; i.e., no melting occurs. The welding process is promoted by the rotation and translation of an axis-symmetric non-consumable tool along the weld centerline. Thus, the FSW process is performed at much lower temperatures than conventional fusion welding, nevertheless it has some disadvantages. Laser Assisted Friction Stir Welding (LAFSW) is a combination in which the FSW is the dominant welding process and the laser pre-heats the weld. In this work FSW and LAFSW tests were conducted on 6 mm thick 5754H111 aluminum alloy plates in butt joint configuration. LAFSW is studied firstly to demonstrate the weldability of aluminum alloy using that technique. Secondly, process parameters, such as laser power and temperature gradient are investigated in order to evaluate changes in microstructure, micro-hardness, residual stress, and tensile properties. Once the possibility to achieve sound weld using LAFSW is demonstrated, it will be possible to explore the benefits for tool wear, higher welding speeds, and lower clamping force.  相似文献   

18.
The refill friction stir spot welding (refill FSSW) process is a solid-state joining process to produce welds without a keyhole in spot joint configuration. This study presents a thermo-mechanical model of refill FSSW, validated on experimental thermal cycles for thin aluminium sheets of AA7075-T6. The temperatures in the weld centre and outside the welding zone at selected points were recorded using K-type thermocouples for more accurate validation of the thermo-mechanical model. A thermo-mechanical three-dimensional refill FSSW model was built using DEFORM-3D. The temperature results from the refill FSSW numerical model are in good agreement with the experimental results. Three-dimensional material flow during plunging and refilling stages is analysed in detail and compared to experimental microstructure and hardness results. The simulation results obtained from the refill FSSW model correspond well with the experimental results. The developed 3D numerical model is able to predict the thermal cycles, material flow, strain, and strain rates which are key factors for the identification and characterization of zones as well for determining joint quality.  相似文献   

19.
In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin’s rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.  相似文献   

20.
The aim of this research was the selection of friction stir welding (FSW) parameters for joining stiffening elements (Z-stringers) to a thin-walled structure (skin) made of 1 mm-thick EN AW-2024 T3 aluminium alloy sheets. Overlapping sheets were friction stir welded with variable values of welding speed, pin length (plunge depth), and tool rotational speed. The experimental research was carried out based on a three-factor three-level full factorial Design of Experiments plan (DoE). The load capacity of the welded joints was determined in uniaxial tensile/pure shear tests. Based on the results of the load capacity of the joint and the dispersion of this parameter, multi-criteria optimisation was carried out to indicate the appropriate parameters of the linear FSW process. The optimal parameters of the FSW process were determined based on a regression equation assessed by the Fisher–Senecor test. The vast majority of articles reviewed concern the optimisation of welding parameters for only one selected output parameter (most often joint strength). The aim of multi-criteria optimisation was to determine the most favourable combination of parameters in terms of both the smallest dispersion and highest load capacity of the joints. It was found that an increase in welding speed at a given value of pin length caused a decrease in the load capacity of the joint, as well as a significant increase in the dispersion of the results. The use of the parameters obtained as a result of multi-criteria optimisation will allow a minimum load capacity of the joints of 5.38 kN to be obtained with much greater stability of the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号