首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
A coupled Eulerian–Lagrangian approach was used to simulate the whole deformation process of a water jet incremental sheet metal forming of a conical part by three dimensional finite element method. The Eulerian elements were used to model the water jet whereas the sheet and tools were simulated by the Lagrangian elements. The geometry of the work piece, thickness distribution,and surface pressure distribution, volume fraction of water in the Eulerian elements and the vectors of the water jet flow were studied by the finite element method. In addition, the relationship between bulging height, pump pressure and inclination angle of a deformed conical copper part by water jet incremental forming was approximated by an analytical method proposed by other researchers with a plane strain formulation and momentum theory of hydrodynamics. To verify the accuracy of the calculated results, the experiment of a water jet incremental sheet metal forming of an annealed copper sheet was carried out. It was shown that the numerical and also analytical results are generally in good agreement with experimental ones. In addition, It was found that the most of the thinning occurs in the former stage of water jet incremental forming and near the first path of the defined water jet trajectory, furthermore surface pressure is higher in the stagnation point whereas it is smaller than water pressure before injection from the nozzle of water jet.  相似文献   

2.
The cables of high-strength carbon fiber reinforced polymer (CFRP) plates are starting to be applied to large spatial structures. However, their main anchorage systems rely on the adhesive force, which entails risks to their integrity resulting from aging of the binding agent. In this study, a friction-based wedge anchorage system was designed for CFRP plates. The working mechanism of the proposed anchorage system was explored both theoretically and experimentally. The anti-slip mechanism and condition of CFRP plates were formulated so that the equivalent frictional angle of the contact surface between a CFRP plate and wedges must not be smaller than the sum of the dip angle of the wedge external conical surface and the frictional angle between the wedges and barrel. An analysis of the stress distribution in the anchorage zone of the CFRP plate was conducted using the Tsai-Wu failure criterion, which concluded that the compressive stresses should be reduced on the section closer to the load-bearing end of the anchorage system. Furthermore, the anchorage efficiency coefficient was proposed, which depends on stress concentration coefficients, plate thickness, length of anchorage zone, dip angle of wedge external conical surface, and its frictional angle. Then, it was determined that the minimum length of an anchorage zone for the CFRP plates with various specifications should be at least 49 times larger than the CFRP thickness. A finite element analysis and static tensile tests on six specimens were carried out. The experimental results revealed that the anchorage efficiency coefficient of the optimized anchor reached 97.9%.  相似文献   

3.
The paper presents the results of experimental studies of the features of the operation of prestressed shells, taking into account the various structural parameters of the prestress. It is established that when the winding angle changes from perpendicular to the shell axis to 75° and 65°, the circumferential stresses decrease 1.4 times and 1.2 times, respectively, and the axial stresses increase five and three times, which are two and four times lower than the circumferential, from which it can be concluded that the reduction in the winding angle to the longitudinal the axis of the shell has a positive effect on the stress state of the structure. The study also found that with an increase in the diameter of the winding wire from 1 to 2 mm and a change in the winding angle, the same nature of the stress distribution is observed, but the values of the stress state parameter change, so the efficiency increases up to 25% due to an increase in the winding thickness, depending on the pitch, angle and thickness of the winding, which favorably affects the strength and the bearing capacity of the structure as a whole by increasing the value of the stress state parameter. Thus, the results of the analysis will allow us to use in more detail the possibility of controlling the stress–strain state of the prestressed shell by changing the design parameters, and the results obtained can be used in design or construction, as well as when increasing the strength characteristics of the structure, which allows us to create a high-tech design optimal for these operating conditions, which can positively complement the studies conducted earlier in this direction.  相似文献   

4.
Automated fiber placement (AFP) has been widely used as an advanced manufacturing technology for large and complex composite parts and the trajectory planning of the laying path is the primary task of AFP technology. Proposed in this paper is an experimental study on the effect of several different path planning placements on the mechanical behavior of laminated materials. The prepreg selected for the experiment was high-strength toughened epoxy resin T300 carbon fiber prepreg UH3033-150. The composite laminates with variable angles were prepared by an eight-tow seven-axis linkage laying machine. After the curing process, the composite laminates were conducted by tensile and bending test separately. The test results show that there exists an optimal planning path among these for which the tensile strength of the laminated specimens decreases slightly by only 3.889%, while the bending strength increases greatly by 16.68%. It can be found that for the specific planning path placement, the bending strength of the composite laminates is significantly improved regardless of the little difference in tensile strength, which shows the importance of path planning and this may be used as a guideline for future AFP process.  相似文献   

5.
Recently, many structural parts using composite materials are being applied to small aircraft and UAV in the world. The aim of this work is to design the engine intake structure of a small aircraft. For structural safety evaluation, a finite element analysis method was applied. In this work, structural design and numerical analysis of air intake and s-duct structures for small aircraft were performed. The target structure is composed of an s-duct and a cylindrical intake structure. Firstly, an investigation of the mechanical properties of carbon/epoxy material was conducted. The distributed pressure load and acceleration condition was applied to the structural design. The structural design load was investigated considering safety factors. The structural analysis was performed to analyze the validity of the design results. Through the structural analysis using the finite element analysis method, it was confirmed that the designed air intake structure is safe. The manufacturing of the prototype structure will be carried out based on the designed result.  相似文献   

6.
Determining the appropriate boundary conditions of a structure is a very important aspect in the failure analysis. In experimental tests, the method of compressing composite samples significantly influences the obtained results. In numerical studies, there is a problem of correctly defining the boundary conditions applied in real object. Therefore, many numerical tests on samples should be undertaken to observe their behavior and to determine ultimate load. The present work includes study to determine the impact of boundary conditions on the thin-walled laminated angle column under compression. The phenomenon of buckling and the post-buckling bahavior of columns were investigated experimentally and numerically. First, the real simply supported angle columns subjected to uniform shortening are tested. Due to the stress concentration between the real sample and the grips, a flexible pads were used. Experimental tests are carried out on the universal testing machine. The deformations of columns were measured using the non-contact Aramis System. The composite material condition was monitored by acoustic emission using the Vallen Systeme with piezoelectric sensors. Next, the numerical calculations in Abaqus software based on the finite element method are performed to validate the empirical results. To determine the influence of the boundary conditions, two numerical models of the system with and without flexible pads are developed. To estimate damage initiation load in numerical models a different damage criteria ( Tsai-Hill, Tsai-Wu, Azzi-Tsai-Hill, Hashin) are used. Based on the results specified that the model with elastic pads more accurately reflects the actual behavior of the L-profile element under compression. It was supported, i.e., by good agreement of flanges deflection (the equilibrium paths) with experimental results. Furthermore, a qualitative and quantitative agreement of damage initiation load were obtained using Hashin criteria (error 4.61%).  相似文献   

7.
Cold recycled mixture (CRM) has been widely used around the world mainly because of its good ability to resist reflection cracking. In this study, mixed-mode cracking tests were carried out by the designed rotary test device to evaluate the cracking resistance of CRM. Through the finite element method, the heterogeneous model of CRM based on its meso-structure was established. The cracking process of CRM was simulated using the extended finite element method, and the influence of different notch lengths on its anti-cracking performance was studied. The results show that the mixed-mode fracture test method can effectively evaluate the cracking resistance of CRM by the proposed fracture parameters. The virtual tests under three of five kinds of mixed-cracking modes have good simulation to capture the cracking behavior of CRM. The effect of notch length on the initial crack angle and the crack propagation process of the CRM is mainly related to the distribution characteristics of its meso-structure. With the increase of the proportion of Mode II cracking, the crack development path gradually deviates, and the failure elements gradually increase. At any mixed-mode level, there is an obvious linear relationship between the peak load, fracture energy, and the notch length.  相似文献   

8.
9.
In relatively cold environments, the combination of freeze–thaw and steel bar corrosion is a key factor affecting the durability of concrete. The adjustment of the stirrup ratio would change the mechanical performance of surrounding concrete, while the circumferential compressive stress can further improve the bonding performance. Hence, based on eccentrically tensioned specimens, the influence of corrosion of stirrups and freeze–thaw of concrete on bond properties is discussed in this paper. The monotonic pull-out test of reinforced concrete specimens is carried out to study the variation rules of bond strength and slip between steel bar and concrete under the coupling action of corrosion rate, freeze–thaw times and stirrup spacing. Based on the experimental data, the empirical formula for the ultimate bond strength is obtained, and a bond–slip constitutive model is established considering the stirrup spacing, stirrup corrosion rate and freeze–thaw times. Then, a refined finite element pull-out specimen model is established by ABAQUS simulation, and the numerical simulation results are compared with the real test ones, so as to make up for the deficiencies in the test and lay the foundation for further finite element analysis.  相似文献   

10.
We present here linear and nonlinear finite element analyses of a newly designed deployable rapid assembly shelter (DRASH J) manufactured by DHS Systems. The structural analysis is carried out in three stages. Firstly, single composite tubes (struts) under three-point bending are modeled with five layers of orthotropic materials in three different orientations and the simulation results are compared with the actual test data for validation. Secondly, a comprehensive structural model for the entire shelter is constructed with the consideration of two types of strut scissor points, namely natural and forced scissor (crossing) points, as well as partial-fixed hub joints, which allow rotations along individual hub slots (grooves). Finally, a simplified structural model is created by introducing fixed joints for the scissor points as well as rigid links for the hubs. With sufficient verifications with experiments and different modeling methods, linear and nonlinear finite element analyses are then carried out for both the comprehensive and simplified shelter models. Based on the simulation results, we are able to identify a few critical issues pertaining to proper design and modifications of such shelter systems, such as various end wall supports pertaining to the overall structural stability.  相似文献   

11.
This paper presents an experimental and analytical investigation on the performance of partial penetration welds used to adjoin steel plates in irregular shaped multicell concrete filled steel tubes. The experimental program of this study is designed based on an actual implementation of such members as mega columns in a super high rise building in China. A total of six specimens are designed with different plate arrangements for the purpose of testing the performance of the partial penetration welds at different locations of the specimen. The designed specimens are tested under different load procedures and directions; this is achieved by placing them in vertical and slantwise manners between two loading plates which impose monotonic and cyclic actions. The failure conditions of each of the tested specimens are presented and discussed in detail and are based on the conclusions drawn from the experimental observations; the partial penetration weld at the corner of the tested specimens is found to be the most vulnerable. To facilitate large scale analysis, a finite element model constructed by the finite element analysis program ABAQUS is verified against experimental results. The evaluation of the stress at the partial penetration welded corner is carried out following an empirical procedure, which is adopted due to the complexity of the problem domain. The adopted procedure consists of two steps: the first one is to initially evaluate the stress based on an existing method in the literature, and the second one is to fit the results of the initial evaluation with the finite element model results based on parametric and regression analysis. After performing regression analysis, a formula to predict the weld stress is concluded, and the results of the proposed equation are found to be satisfactory when compared with the finite element model results.  相似文献   

12.
Elliptical vibration-assisted cutting technology has been widely applied in complicated functional micro-structured surface texturing. Elliptical-arc-beam spherical flexure hinges have promising applications in the design of 3D elliptical vibration-assisted cutting mechanisms due to their high motion accuracy and large motion ranges. Analytical compliance matrix formulation of flexure hinges is the basis for achieving high-precision positioning performance of these mechanisms, but few studies focus on this topic. In this paper, analytical compliance equations of spatial elliptic-arc-beam spherical flexure hinges are derived, offering a convenient tool for analysis at early stages of mechanism design. The mechanical model of a generalized flexure hinge is firstly established based on Castigliano’s Second Theorem. By introducing the eccentric angle as the integral variable, the compliance matrix of the elliptical-arc-beam spherical flexure hinge is formulated. Finite element analysis is carried out to verify the accuracy of the derived analytical compliance matrix. The compliance factors calculated by the analytical equations agree well with those solved in the finite element analysis for the maximum error; average relative error and relative standard deviation are 8.25%, 1.83% and 1.78%, respectively. This work lays the foundations for the design and modeling of 3D elliptical vibration-assisted cutting mechanisms based on elliptical-arc-beam spherical flexure hinges.  相似文献   

13.
Glass-fiber reinforced polymer (GFRP) bars are increasingly widely used in slope support instead of steel bars or steel pipes. GFRP Bars are generally connected with the slope by combining conical nut and tray, but the tray stress still lacks corresponding theoretical calculation and strength verification methods. Therefore, assuming that the tray is an equal thickness thin plate, the internal force distribution of the tray is calculated using the thin plate bending and cavity expansion theory, and compared with the finite element numerical analysis results of the tray. The calculation and analysis show that the elastic theoretical solution of internal force distribution of equal thickness tray is basically the same as the numerical simulation solution of variable thickness tray. The tray loading and free surface are controlled by hoop tensile and radial compressive stress, respectively. The inner wall of the free surface of the tray is the weakest part of the tray, and the ultimate strength of a GFRP tray is 35.81–53.00% of the standard tensile strength of Φ20 GFRP bars by distortion energy density. This theoretical method can be used for stress analysis of variable thickness trays and has played technical support for promoting the application of GFRP bars in slope support.  相似文献   

14.
To study the mechanical deformation characteristics and anti-explosion mechanisms of steel-structure protective doors under chemical explosion shock wave loads, numerical simulations of loads and door damage were carried out using the AUTODYN and LS-DYNA software based on model tuning with actual field test results. The finite element simulation results were compared with the test results to verify the accuracy of the simulation model and material parameters. A parametric analysis was carried out on the influencing factors of the anti-explosion performance of the beam–plate steel structure protective door under typical shock wave loads. The impact of the material strength and geometry of each part of the protective door on its anti-explosion performance was studied. The results showed that the protective door sustained a uniform shock wave load and that increasing the steel strength of the skeleton could significantly reduce the maximum response displacement of the protective door. The steel strength increase of the inner and outer panels had little or a negligible effect on the anti-explosion performance of the protective door. The geometric dimensions of different parts of the protective door had different effects on the anti-explosion performance. Increasing the skeleton height had the most significant effect on the anti-explosion performance. The skeleton’s I-steel flange thickness and the inner and outer panel thicknesses had less significant effects.  相似文献   

15.
The present paper shows the application of a three-dimensional coupled electrical, thermal, mechanical finite element macro-scale modeling framework of Spark Plasma Sintering (SPS) to an actual problem of SPS tooling overheating, encountered during SPS experimentation. The overheating phenomenon is analyzed by varying the geometry of the tooling that exhibits the problem, namely by modeling various tooling configurations involving sequences of disk-shape spacers with step-wise increasing radii. The analysis is conducted by means of finite element simulations, intended to obtain temperature spatial distributions in the graphite press-forms, including punches, dies, and spacers; to identify the temperature peaks and their respective timing, and to propose a more suitable SPS tooling configuration with the avoidance of the overheating as a final aim. Electric currents-based Joule heating, heat transfer, mechanical conditions, and densification are imbedded in the model, utilizing the finite-element software COMSOL™, which possesses a distinguishing ability of coupling multiple physics. Thereby the implementation of a finite element method applicable to a broad range of SPS procedures is carried out, together with the more specific optimization of the SPS tooling design when dealing with excessive heating phenomena.  相似文献   

16.
In order to improve the reliability and service life of vehicle and diesel engine, the fatigue life prediction of the piston in a heavy diesel engine was studied by finite element analysis of piston, experiment data of aluminum alloy, fatigue life model based on energy dissipation criteria, and machine learning algorithm. First, the finite element method was used to calculate and analyze the temperature field, thermal stress field, and thermal–mechanical coupling stress field of the piston, and determine the area of heavy thermal and mechanical load that will affect the fatigue life of the piston. Second, based on the results of finite element calculation, the creep–fatigue experiment of 2A80 aluminum alloy was carried out, and the cyclic response characteristics of the material under different loading conditions were obtained. Third, the fatigue life prediction models based on energy dissipation criterion and twin support vector regression are proposed. Then, the accuracy of the two models was verified using experiment data. The results show that the model based on the twin support vector regression is more accurate for predicting the material properties of aluminum alloy. Based on the established life prediction model, the fatigue life of pistons under actual service conditions is predicted. The calculation results show that the minimum fatigue life of the piston under plain condition is 2113.60 h, and the fatigue life under 5000 m altitude condition is 1425.70 h.  相似文献   

17.
In this study, we present a systematic scheme to identify the material parameters in constitutive model of hyperelastic materials such as rubber. This approach is proposed based on the combined use of general regression neural network, experimental data and finite element analysis. In detail, the finite element analysis is carried out to provide the learning samples of GRNN model, while the results observed from the uniaxial tensile test is set as the target value of GRNN model. A problem involving parameters identification of silicone rubber material is described for validation. The results show that the proposed GRNN-based approach has the characteristics of high universality and good precision, and can be extended to parameters identification of complex rubber-like hyperelastic material constitutive.  相似文献   

18.
Cracking in non-load-bearing internal partition walls is a serious problem that frequently occurs in new buildings within the short term after putting them into service or even before completion of construction. Sometimes, it is so considerable that it cannot be accepted by the occupiers. The article presents tests of cracking in ceramic walls with a door opening connected in a rigid and flexible way along vertical edges. The first analyzes were conducted using the finite element method (FEM), and afterward, the measurements of deformations and stresses in walls on deflecting floors were performed on a full scale in the actual building structure. The measurements enabled to determine floor deformations leading to cracking of walls and to establish a dependency between the values of tensile stresses within the area of the door opening corners and their location along the length of walls and type of vertical connection with the structure.  相似文献   

19.
Electromagnetic forming (EMF) is one of the most popular high-speed forming processes for sheet metals. However, modeling this process in 3D often requires huge computational time since it deals with a strongly coupled multi-physics problem. The numerical tools that are capable of modeling this process rely either on shell elements-based approaches or on full 3D elements-based approaches. The former leads to reduced computational time at the expense of the accuracy, while the latter favors accuracy over computation time. Herein, a novel approach was developed to reduce CPU time while maintaining reasonable accuracy through building upon a 3D finite element analysis toolbox which was developed in CEMEF. This toolbox was used to solve magnetic pulse forming (MPF) of thin sheets. The problem was simulated under different conditions and the results were analyzed in-depth. Innovative techniques, such as developing a termination criterion and using adaptive re-meshing, were devised to overcome the encountered problems. Moreover, a solid shell element was implemented and tested for thin structure problems and its applicability was verified. The results of this element type were comparable to the results of the standard tetrahedral MINI element but with reduced simulation time.  相似文献   

20.
Understanding the bond behavior of steel rebar in concrete is important in order to determine the performance of a reinforced concrete structure. Although numerous studies have been carried out by many researchers to develop a robust model for numerical analysis, no consensus has been reached as the bond behavior depends on hysteresis. In this study, the bond behavior of a steel bar in concrete with pre-existing damage is investigated under low-level cyclic loading. Based on the experimental bond stress and slip curve, a numerical model for finite element analysis to simulate the effect of low-level cyclic loading is proposed. The results from the numerical analysis show good agreement with the experimental data, including accumulated damage on stiffness and strength throughout entire load cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号