首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In October 2010, the Ministry of Public Health and Population reported an outbreak of dengue-like acute febrile illness in Al Hodayda governorate. By January 2011, a total of 1542 cases had been recorded from 19 of the 26 districts in the governorate with 104 purportedly associated deaths. In response this event, in January 2011 entomological investigations aimed at identifying the primary vector and the epidemic associated etiological agent were carried out. Based on the reported cases and the progress of the outbreak in the governorate, mosquito collection was undertaken in two of the most recent outbreak areas; Al Khokha district (130 km south of Al Hodayda) and Al Muneera district (100 km north). Mosquito adults were collected from houses using BG-sentinel? traps, aspiration of resting mosquitoes and knock-down spraying. Indoor and outdoor containers adjacent to the houses were inspected for larvae. Subsequently mosquito pools were analyzed by RT-PCR for detection of the four dengue virus serotypes (DENV-1, DENV-2, DENV-3, DENV-4), and for Chikungunya virus (CHIKV). Aedes aegypti was the dominant mosquito species collected. Four pools represent 40% of the tested pools, all containing adult female Ae. aegypti, were positive for CHIKV. Three CHIKV isolates were obtained from the RNA positive mosquito pools and identified by rRT-PCR. This finding marks the first record of CHIKV isolated from Ae. aegypti in Yemen. The larval container and Breteau indices in the visited localities surveyed were estimated at 53.8 and 100, respectively. The emergence of this unprecedented CHIKV epidemic in Al Hodayda is adding up another arboviral burden to the already existing vector-borne diseases. Considering the governorate as one focal port in the Red Sea region, the spread of the disease to other areas in Yemen and in neighboring countries is anticipated. Public health education and simple measures to detect and prevent mosquito breeding in water storage containers could prevent and reduce the spread of mosquito-borne viruses like CHIKV and DENV in Yemen.  相似文献   

2.
From January to April 2005, an epidemic of chikungunya virus (CHIKV) illness occurred in the Union of Comoros. Entomological studies were undertaken during the peak of the outbreak, from March 11 to March 31, aimed at identifying the primary vector(s) involved in transmission so that appropriate public health measures could be implemented. Adult mosquitoes were collected by backpack aspiration and human landing collection in homes and neighborhoods of clinically ill patients. Water-holding containers were inspected for presence of mosquito larvae. Adult mosquitoes were analyzed by RT-PCR and cultivation in cells for the presence of CHIK virus and/or nucleic acid. A total of 2,326 mosquitoes were collected and processed in 199 pools. The collection consisted of 62.8% Aedes aegypti, 25.5% Culex species, and 10.7% Aedes simpsoni complex, Eretmapodites spp and Anopheles spp. Seven mosquito pools were found to be positive for CHIKV RNA and 1 isolate was obtained. The single CHIKV mosquito isolate was from a pool of Aedes aegypti and the minimum infection rate (MIR) for this species was 4.0, suggesting that Ae. aegypti was the principal vector responsible for the outbreak. This was supported by high container (31.1%), household (68%), and Breteau (126) indices, with discarded tires (58.8%) and small cooking and water storage vessels (31.1%) registering the highest container indices.  相似文献   

3.
Chikungunya virus (CHIKV) is an emerging arbovirus transmitted to humans by mosquitoes such as Aedes albopictus. To be transmitted, CHIKV must replicate in the mosquito midgut, then disseminate in the hemocele and infect the salivary glands before being released in saliva. We have developed a standardized protocol to visualize viral particles in the mosquito salivary glands using transmission electron microscopy. Here we provide direct evidence for CHIKV replication and storage in Ae. albopictus salivary glands.  相似文献   

4.
Chikungunya fever (CF) is an acute illness caused by Chikungunya virus (CHIKV) belonging to the alphavirus genus of the Alphaviruses (Togaviridae) family. The virus is transmitted by Aedes mosquitoes. CF is primarily tropical disease occurring in Africa, Asia and Indian Ocean islands but in the last decade an outbreak of CHIKV autochthonous infections were reported in Italy and France. It is associated with viral genome mutations facilitating transmission of the disease by Aedes albopictus, a mosquito occurring in several European countries. The CF is highly symptomatic, characterized by fever, cutaneuos rash and severe athralgia and arthritis. In some patients severe neurological or hemorrhagic manifestations occur. The disease is self-limiting but a part of the patients suffers from a long-lasting arthritis akin to rheumatoid arthritis. Treatment is only symptomatic. Prevention includes reduction of mosquito bite (mosquito net, repellent) or application of measures against mosquito larvae. Vaccination is not currently available but investigations are in progress. CF presents a significant worldwide health problem affecting in the last decade millions of person, and currently dangerous also for European countries.  相似文献   

5.
The global spread of invasive mosquito species increases arbovirus infections. In addition to the invasive species Aedes albopictus and Aedes japonicus, Aedes koreicus has spread within Central Europe. Extensive information on its vector competence is missing. Ae. koreicus from Germany were investigated for their vector competence for chikungunya virus (CHIKV), Zika virus (ZIKV) and West Nile virus (WNV). Experiments were performed under different climate conditions (27 ± 5 °C; 24 ± 5 °C) for fourteen days. Ae. koreicus had the potential to transmit CHIKV and ZIKV but not WNV. Transmission was exclusively observed at the higher temperature, and transmission efficiency was rather low, at 4.6% (CHIKV) or 4.7% (ZIKV). Using a whole virome analysis, a novel mosquito-associated virus, designated Wiesbaden virus (WBDV), was identified in Ae. koreicus. Linking the WBDV infection status of single specimens to their transmission capability for the arboviruses revealed no influence on ZIKV transmission. In contrast, a coinfection of WBDV and CHIKV likely has a boost effect on CHIKV transmission. Due to its current distribution, the risk of arbovirus transmission by Ae. koreicus in Europe is rather low but might gain importance, especially in regions with higher temperatures. The impact of WBDV on arbovirus transmission should be analyzed in more detail.  相似文献   

6.
Surveys of mosquito larvae were carried out in six areas of Kosrae Island, Kosrae State, the Federated States of Micronesia in December 2009 and June 2012. A total of 962 larvae of six species were collected from 106 natural and artificial habitats. They were identified as Aedes aegypti, Ae. albopictus, Ae. marshallensis, Culex quinquefasciatus, Cx. annulirostris, and Cx. kusaiensis. This is the first report from Kosrae Island for three of these species—Ae. marshallensis, Cx. quinquefasciatus, and Cx. annulirostris. The most abundant species was Ae. albopictus, followed by Ae. marshallensis, and these two species were found in all areas. Relatively large numbers of Cx. quinquefasciatus and Cx. kusaiensis were found in five areas. Fewer Cx. annulirostris were found, and only in three areas. Aedes aegypti larvae were collected from a single habitat at Tafunsak in 2009. To prevent the outbreak of dengue fever, environmental management should focus on the destruction, alteration, disposal and recycling of containers that produce larger numbers of adult Aedes mosquitoes.  相似文献   

7.
8.
Dengue fever (DF), one of the most important emerging arboviral diseases, is transmitted through the bite of container breeding mosquitoes Aedes aegypti and Aedes albopictus. A household entomological survey was conducted in Dhaka from August through October 2000 to inspect water-holding containers in indoor, outdoor, and rooftop locations for Aedes larvae. The objective of this study was to determine mosquito productivity of each container type and to identify some risk factors of households infested with Aedes larvae. Of 9,222 households inspected, 1,306 (14.2%) were positive for Aedes larvae. Of 38,777 wet containers examined, 2,272 (5.8%) were infested with Aedes larvae. Containers used to hold water, such as earthen jars, tanks, and drums were the most common containers for larval breeding. Tires in outdoor and rooftop locations of the households were also important for larval breeding. Although present in abundance, buckets were of less importance. Factors such as independent household, presence of a water storage system in the house, and fully/partly shaded outdoors were found to be significantly associated with household infestation of Aedes larvae. Identification and subsequent elimination of the most productive containers in a given area may potentially reduce mosquito density to below a level at which dengue transmission may be halted.  相似文献   

9.
10.
Two species of Aedes (Stegomyia) were collected in response to the first chikungunya virus (CHIKV) outbreak on Yap Island: the native species Ae. hensilli Farner and the introduced species Ae. aegypti (L.). Fourteen CHIKV-positive mosquito pools were detected. Six pools were composed of female Ae. hensilli, six pools were composed of female Ae. aegypti, one pool was composed of male Ae. hensilli, and one pool contained female specimens identified as Ae. (Stg.) spp. Infection rates were not significantly different between female Ae. hensilli and Ae. aegypti. The occurrence of human cases in all areas of Yap Island and the greater number of sites that yielded virus from Ae. hensilli combined with the ubiquitous distribution of this species incriminate Ae. hensilli as the most important vector of CHIKV during the outbreak. Phylogenic analysis shows that virus strains on Yap are members of the Asia lineage and closely related to strains currently circulating in the Caribbean.  相似文献   

11.
Vector competence refers to the ability of a vector to acquire, maintain, and transmit a pathogen. Collecting mosquito saliva in medium-filled capillary tubes has become the standard for approximating arbovirus transmission. However, this method is time-consuming and labor-intensive. Here we compare the capillary tube method to an alternative high-throughput detection method the collection of saliva on paper cards saturated with honey, with (FTA card) and without (filter paper) reagents for the preservation of nucleic acid for Aedes aegypti and Aedes albopictus mosquitoes infected with two emerging genotypes of the chikungunya virus (CHIKV). Model results showed that the Asian genotype CHIKV dissemination in the harvested legs of both Ae. aegypti and Ae. albopictus increased the odds of females having a positive salivary infection and higher salivary viral titers, while for the IOL genotype the same effect was observed only for Ae. aegypti. Of the three tested detection methods, the FTA card was significantly more effective at detecting infected saliva of Ae. aegypti and Ae. albopictus females than the capillary tube and filter paper was as effective as the capillary tube for the Asian genotype. We did not find significant effects of the detection method in detecting higher viral titer for both Asian and IOL genotypes. Our results are discussed in light of the limitations of the different tested detection methods.  相似文献   

12.
Objective To identify the aetiological agent/s of an outbreak of chikungunya‐like illness with high morbidity and several fatalities in Tamil Nadu, India, 2009–2010. Methods Two hundred and seventeen serum samples were collected from the affected areas and screened for chikungunya virus (CHIKV), dengue virus (DENV) and Japanese encephalitis virus (JEV) IgM antibodies using MAC‐ELISA kits. A few selected samples were also tested for Ross River, Sindbis, and Murrey Valley viruses by RT‐PCR and Hantan virus by serology. Twelve acute serum and mosquito samples were processed for virus isolation in C6/36 cells. CHIKV isolate was characterised by RT‐PCR and sequencing. Results Diagnostic levels of IgM antibodies were detected in 107 (49.3%) CHIKV samples and 22 (10.1%) DENV samples. IgM antibodies against JEV were not detected (n = 46). Characterisation of the CHIKV isolate at genetic level demonstrated it as ECSA (E1: 226A). Thirty‐six selected samples were also negative for Ross River, Sindbis, Murrey Valley and Hantan viruses. Conclusion High prevalence of CHIKV IgM antibody positivity, clinical symptoms, virus isolation and the presence of vector mosquitoes clearly suggest CHIKV as the aetiological agent responsible for the outbreak.  相似文献   

13.
In recent decades, chikungunya virus (CHIKV) has become geographically widespread. In 2004, the CHIKV East/Central/South African (ECSA) genotype moved from Africa to Indian ocean islands and India followed by a large epidemic in Southeast Asia. In 2013, the CHIKV Asian genotype drove an outbreak in the Americas. Since 2016, CHIKV has re-emerged in the Indian subcontinent and Southeast Asia. In the present study, CHIKVs were obtained from Bangladesh in 2017 and Thailand in 2019, and their nearly full genomes were sequenced. Phylogenetic analysis revealed that the recent CHIKVs were of Indian Ocean Lineage (IOL) of genotype ECSA, similar to the previous outbreak. However, these CHIKVs were all clustered into a new distinct sub-lineage apart from the past IOL CHIKVs, and they lacked an alanine-to-valine substitution at position 226 of the E1 envelope glycoprotein, which enhances CHIKV replication in Aedes albopictus. Instead, all the re-emerged CHIKVs possessed mutations of lysine-to-glutamic acid at position 211 of E1 and valine-to-alanine at position 264 of E2. Molecular clock analysis suggested that the new sub-lineage CHIKV was introduced to Bangladesh around late 2015 and Thailand in early 2017. These results suggest that re-emerged CHIKVs have acquired different adaptations than the previous CHIKVs.  相似文献   

14.
Objective: To detect the prevalence pattern of Chikungunya virus in three states of Northeast India. Methods: A total of 1 510 samples were collected from different private and government hospitals of Assam, Arunachal Pradesh and Meghalaya. Serum was tested for the presence of IgM antibodies against Chikungunya virus followed by RT-PCR for amplification of Chikungunya E1 gene region using specific primers. Results: Overall, 11.83%(172/1 454) clinical samples were positive by MAC-ELISA and/or RT-PCR assay. Asymptomatic infection was seen in 17.86%. Males were more affected than females and age group 16-30 years was mostly affected. Fever(100.00%) was the primary symptom followed by headache(72.03%) and arthralgia(41.53%). Only 118 Chikungunya positive cases could be traced, of which 25.42% complained about sequelae of infection. In entomological investigation, Aedes aegypti was more predominant(92.10%) than Aedes albopictus(7.90%). No mosquito pools could be incriminated for Chikungunya virus. Conclusions: In this study, Chikungunya was observed to be prevalent in Assam, Arunachal Pradesh and Meghalaya. Though Chikungunya is a selflimiting infection, increasing morbidity by CHIKV infection is affecting social and economic status of individual. Thus, a community empowerment to effectively control mosquito population by employing different mosquito control measures along with personal protection is mandatory to tackle future outbreak of the disease.  相似文献   

15.
Mosquito control using insecticides has been the most successful intervention known to reduce malaria prevalence or incidence. However, vector control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin may serve as suitable alternative biocontrol techniques in the future. In this research, the leaf aqueous leachate of Tephrosia vogelii was evaluated for its toxicity against larvae of the most invasive mosquito worldwide, Aedes albopictus (Diptera: Culicidae), and toward adults of the water flea, Daphnia magna (Cladocera: Crustacea) and Oreochromis niloticus, two non-target aquatic organisms that share the same ecological niche of A. albopictus. The leaf aqueous leachate of T. vogelii was evaluated against fourth-instar larvae, non-blood fed 3–5 days old laboratory strains of A. albopictus under laboratory condition. In addition, the objective of the present work was to study the environmental safety evaluation for aquatic ecosystem. Mortality was then recorded after 7 d exposure. The leaf aqueous leachate of T. vogelii showed high mosquitocidal activity against larvae of A. albopictus, with a LC50 = 1.18 μg/mL. However, it had a remarkable acute toxicity also toward adults of the non-target arthropod D. magna, with a LC50 = 0.47 μg/L and O. niloticus with a LC50 = 5.31 μg/L. The present findings have important implications in the practical control of mosquito larvae in the aquatic ecosystem, as the medicinal plants studied are commonly available in large quantities. The extract could be used in stagnant water bodies for the control of mosquitoes acting as vector for many communicable diseases.  相似文献   

16.
In August 2008, a team from the National Environmental Agency conducted an entomological investigation of a chikungunya cluster in Singapore, with the primary aim of identifying the vector responsible for the outbreak and to assess the vector control operation. A total of 173 adult mosquitoes were caught using both the sweep-net method and the BG Sentinel Traps in and around the affected workers' quarters. Of these, 120 (69.4%) were Aedes albopictus and the rest were Culex quinquefasciatus. More than 2700 Ae. albopictus larvae were also collected from 33 breeding habitats detected. No Aedes aegypti was found. During the preintervention period, 6 (8.4%) out of 71 adult female Ae. albopictus were found positive for the chikungunya virus (CHIKV). Vector control measures resulted in a 90% reduction of adult Ae. albopictus caught by BG Sentinel Traps. Postintervention surveillance revealed the presence of CHIKV-positive mosquitoes. These findings led to continued intensive vector control operation in the affected area that further reduced vector population and interrupted the transmission of the disease. The E1 gene sequence of the CHIKV was identical to those of CHIKV isolated from human chikungunya cases working in the affected area, and contained the A226V mutation. The incrimination of Ae. albopictus as a major vector involved in the transmission of A226V CHIKV had led to the revision of chikungunya control strategy in Singapore. This study suggests the benefit of a vector control program that includes the evaluation of control measures in conjunction to virological surveillance in vector population.  相似文献   

17.
Chikungunya virus (CHIKV) is an alphavirus transmitted by mosquitoes, mostly Aedes aegypti and Aedes albopictus. After half a century of focal outbreaks of acute febrile polyarthralgia in Africa and Asia, the disease unexpectedly spread in the past decade with large outbreaks in Africa and around the Indian Ocean and rare autochthonous transmission in temperate areas. This emergence brought new insights on its pathogenesis, notably the role of the A226V mutation that improved CHIKV fitness in Ae. albopictus and the possible CHIKV persistence in deep tissue sanctuaries for months after infection. Massive outbreaks also revealed new aspects of the acute stage: the high number of symptomatic cases, unexpected complications, mother-to-child transmission, and low lethality in debilitated patients. The follow-up of patients in epidemic areas has identified frequent, long-lasting, rheumatic disorders, including rare inflammatory joint destruction, and common chronic mood changes associated with quality-of-life impairment. Thus, the globalization of CHIKV exposes countries with Aedes mosquitoes both to brutal outbreaks of acute incapacitating episodes and endemic long-lasting disorders.  相似文献   

18.
The Asian tiger mosquito Aedes albopictus is a competent vector for several human arboviruses including dengue, chikungunya and Zika viruses. Mosquitoes also harbor insect-specific viruses (ISVs) that may modulate host physiology and potentially affect the transmission of viruses that are pathogenic to vertebrates, thus representing a potential tool for vector control strategies. In Ae. albopictus we identified a novel anphevirus (family Xinmoviridae; order Mononegavirales) provisionally designated here as Aedes albopictus anphevirus (AealbAV). AealbAV contains a ~12.4 kb genome that is highly divergent from currently known viruses but displays gene content and genomic organization typical of known anpheviruses. We identified AealbAV in several publicly available RNA-Seq datasets from different geographical regions both in laboratory colonies and field collected mosquitoes. Coding-complete genomes of AealbAV strains are highly similar worldwide (>96% nucleotide identity) and cluster according to the geographical origin of their hosts. AealbAV appears to be present in various body compartments and mosquito life stages, including eggs. We further detected AealbAV-derived vsiRNAs and vpiRNAs in publicly available miRNA-Seq libraries of Ae. albopictus and in samples experimentally coinfected with chikungunya virus. This suggests that AealbAV is targeted by the host RNA interference (RNAi) response, consistent with persistent virus replication. The discovery and characterization of AealbAV in Ae. albopictus will now allow us to identify its infection in mosquito populations and laboratory strains, and to assess its potential impact on Ae. albopictus physiology and ability to transmit arboviruses.  相似文献   

19.
Chikungunya virus (CHIKV) recently caused major urban outbreaks in central African countries such as the Democratic Republic of Congo (DRC), Cameroon, and Gabon. In Gabon, the tiger mosquito Aedes albopictus was shown to be the main CHIKV vector during the 2007 outbreak. This invasive Asian species was first identified in Gabon in early 2007, and was thought to be restricted mainly to coastal provinces where urban epidemic CHIKV foci were recorded. Here we report a CHIKV outbreak in a small cluster of villages isolated in the deep forest of southern Gabon, in which A. albopictus was the main vector. This observation indicates concomitant geographic and ecological spread of CHIKV activity and A. albopictus in remote environments in central Africa, as well as an enhanced risk of propagation of epidemic arboviruses.  相似文献   

20.
BACKGROUND & OBJECTIVES: An outbreak of chikungunya fever occurred in Malegaon town of Nasik district of Maharashtra state, India during February and March 2006. A total of 4530 fever cases were reported during this period including 1781 cases which were admitted in different hospitals of the town. An entomological and epidemiological investigation was carried out in the affected villages during the outbreak to study the possible causes of the outbreak and to isolate the virus responsible. METHODS: Entomological evaluation was done as per WHO guidelines. Sera samples were collected by venipuncture from clinically suspected chikungunya patients in hospitals and also during house-to-house survey in affected villages. IgM antibodies to dengue virus were detected using IgM capture ELISA (PANBIO) and by "Haemagglutination inhibition test" for detection of antibodies against Chikungunya virus. Acute sera samples were inoculated in cell lines for virus isolation. The isolates were confirmed by RT-PCR. RESULTS: On investigation, it was found that water storage containers like cement tanks, plastic containers or earthen pots placed in front of the individual houses were the potential breeding sites for Aedes aegypti. Entomological survey carried out in the most affected areas revealed high Aedes indices. House, container and breteau indices were found to be 27.2, 16.19 and 35.1, respectively. Out of the 13 acute sera samples collected, virus was isolated in 10 samples. The isolates were confirmed by RT-PCR and sequencing using primers from nsP1 gene of Chikungunya virus (CHIKV, Accession No. EF077609, EF077610). Of the 17 convalescent sera tested, significant level of HI antibodies to CHIKV was detected in five samples. One sample was positive for IgM antibodies against dengue virus. Based on clinico-epidemiological features and laboratory findings, the illness was confirmed to be of chikungunya viral disease. CONCLUSION: Control measures targeting the vector population and personal protective measures against the mosquito bites were instituted. Extensive IEC campaign with the involvement of community and religious leaders helped in containment of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号