首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In recent years, superinfections of avian leukosis virus subgroup J (ALV-J) and infectious bursal disease virus (IBDV) have been frequently observed in nature, which has led to the increasing virulence in infected chickens. However, the reason for the enhanced pathogenicity has remained unclear. In this study, we demonstrated an effective candidate model for studying the outcome of superinfections with ALV-J and IBDV in cells and specific-pathogen-free (SPF) chicks. Through in vitro experiments, we found that ALV-J and IBDV can establish the superinfection models and synergistically promote the expression of IL-6, IL-10, IFN-α, and IFN-γ in DF-1 and CEF cells. In vivo, the weight loss, survival rate, and histopathological observations showed that more severe pathogenicity was present in the superinfected chickens. In addition, we found that superinfections of ALV-J and IBDV synergistically increased the viral replication of the two viruses and inflammatory mediator secretions in vitro and in vivo. Moreover, by measuring the immune organ indexes and blood proportions of CD3+, CD4+, and CD8α+ cells, our results showed that the more severe instances of immunosuppression were observed in the superinfected chickens. In the present study, we concluded that the more severe immunosuppression induced by the synergistic viral replication of ALV-J and IBDV is responsible for the enhanced pathogenicity.  相似文献   

2.
3.
The significance of the Wnt/β-catenin signaling cascade in Rotavirus (RV) infection has not been elucidated. In this study, we attempt to elucidate the importance of the Wnt/β-catenin pathway in the RV pathogenesis and investigate a miRNA-mediated approach to regulate the pathway to repress the RV infection in the host. The regulation of the Wnt signaling pathway in terms of β-catenin accumulation and activation was analyzed by Western blotting and Confocal imaging analysis. The expression levels of miR-192 family members and miR-181a were enquired into using qPCR assays, whereas their targets in the Wnt pathway were confirmed using the Luciferase Reporter Assays. Members of the miR-192 family and miR-181a, which target the components of the pathway, were also found to be considerably decreased in expression during RV infection. Ectopic expression of these miRNAs could restrict the RV pathogenesis by targeting the intermediates of the Wnt signaling pathway. The miR-192 family and miR-181a were capable of suppressing the RV infection via targeting of the Wnt/β-catenin pathway. The study not only highlights the role of the Wnt signaling cascade in RV infection but also suggests that miRNAs can synergistically decrease RV replication by a significant amount. Thus, the miR-192 family and miR-181a present themselves as prospective antivirals against RV infection.  相似文献   

4.
5.
Multiple lines of evidence indicate that Wnt/β-catenin signaling plays a fundamental role in colorectal cancer (CRC) initiation and progression. Recent genome-wide data have confirmed that in CRC this pathway is one of the most frequently modified by genetic or epigenetic alterations affecting almost 90% of Wnt/β-catenin gene members. A major challenge is thus learning how the corrupted coordination of this pathway is tied to other signalings to enhance cell growth. Peroxisome proliferator activated receptor γ (PPARγ) is emerging as a growth-limiting and differentiation-promoting factor. In tumorigenesis it exerts a tumor suppressor role and is potentially linked with the Wnt/β-catenin pathway. Based on these results, the identification of new selective PPARγ modulators with inhibitory effects on the Wnt/β-catenin pathway is becoming an interesting perspective. Should, in fact, these molecules display such properties, new research avenues would be opened aimed at developing new molecular targeted drugs. Herein, we review the basic principles and present new hypotheses underlying the crosstalk between Wnt/β-catenin and PPARγ signaling. Furthermore, we discuss the advances in our understanding as to how their altered regulation can culminate in colon cancer and the efforts aimed at designing novel PPARγ agonists endowed with Wnt/β-catenin inhibitory effects to be used as therapeutic and/or preventive agents.  相似文献   

6.
Immune protection from intracellular pathogens depends on the generation of terminally differentiated effector and of multipotent memory precursor CD8 T cells, which rapidly regenerate effector and memory cells during recurrent infection. The identification of factors and pathways involved in CD8 T cell differentiation is of obvious importance to improve vaccination strategies. Here, we show that mice lacking T cell factor 1 (Tcf-1), a nuclear effector of the canonical Wingless/Integration 1 (Wnt) signaling pathway, mount normal effector and effector memory CD8 T cell responses to infection with lymphocytic choriomeningitis virus (LCMV). However, Tcf-1–deficient CD8 T cells are selectively impaired in their ability to expand upon secondary challenge and to protect from recurrent virus infection. Tcf-1–deficient mice essentially lack CD8 memory precursor T cells, which is evident already at the peak of the primary response, suggesting that Tcf-1 programs CD8 memory cell fate. The function of Tcf-1 to establish CD8 T cell memory is dependent on the catenin-binding domain in Tcf-1 and requires the Tcf-1 coactivators and Wnt signaling intermediates β-catenin and γ-catenin. These findings demonstrate that the canonical Wnt signaling pathway plays an essential role for CD8 central memory T cell differentiation under physiological conditions in vivo. They raise the possibility that modulation of Wnt signaling may be exploited to improve the generation of CD8 memory T cells during vaccination or for therapies designed to promote sustained cytotoxic CD8 T cell responses against tumors.  相似文献   

7.
Human cytomegalovirus (HCMV) was reported to downregulate the Wnt/β-catenin pathway. Induction of Axin1, the negative regulator of the Wnt pathway, has been reported as an important mechanism for inhibition of β-catenin. Since Tankyrase (TNKS) negatively regulates Axin1, we investigated the effect of HCMV on TNKS expression and poly-ADP ribose polymerase (PARsylation) activity, during virus replication. Starting at 24 h post infection, HCMV stabilized the expression of TNKS and reduced its PARsylation activity, resulting in accumulation of Axin1 and reduction in its PARsylation as well. General PARsylation was not changed in HCMV-infected cells, suggesting specific inhibition of TNKS PARsylation. Similarly, treatment with XAV939, a chemical inhibitor of TNKS’ activity, resulted in the accumulation of TNKS in both non-infected and HCMV-infected cell lines. Reduction of TNKS activity or knockdown of TNKS was beneficial for HCMV, evidenced by its improved growth in fibroblasts. Our results suggest that HCMV modulates the activity of TNKS to induce Axin1, resulting in inhibition of the β-catenin pathway. Since HCMV replication is facilitated by TNKS knockdown or inhibition of its activity, TNKS may serve as an important virus target for control of a variety of cellular processes.  相似文献   

8.
9.
BackgroundAtrial fibrosis is an important pathophysiological mechanism in the development and maintenance of atrial fibrillation. Trimethylamine N-oxide (TMAO) is one of the most widely studied microbial metabolites involved in the promotion of cardiac fibrosis. TMAO promotes phenotypic transformation, proliferation, and migration and increases collagen secretion in cardiac fibroblasts. The Wnt/β-catenin pathway also plays a key role in the promotion of cardiac fibroblasts into myofibroblasts.MethodsThe expression of Alpha-smooth muscle actin (α-SMA) was determined to identify the formation of myofibroblasts. The effects of TMAO on the proliferation and migration of atrial fibroblasts were detected by cell counting kit 8, and transwell assays, respectively. Western blot and immunofluorescence were used to detect the activation of the β-catenin pathway by TMAO and the phenotypic transformation and collagen secretion of the atrial fibroblasts. Western blot and immunofluorescence assays were performed to detect the effects of exogenous Wnt3a and TMAO on the activation of β-catenin pathway and the phenotypic transformation of atrial fibroblasts.ResultsTMAO promoted the proliferation and migration of atrial fibroblasts. TMAO also promoted the phenotypic transformation, migration, and collagen secretion of the atrial fibroblasts by activating the β-catenin pathway. Exogenous Wnt3a and TMAO synergistically promoted the activation and phenotypic transformation of the β-catenin pathway in atrial fibroblasts.ConclusionsTMAO promotes the transformation of atrial fibroblasts into myofibroblasts by activating Wnt3a/β-catenin signaling pathway.  相似文献   

10.
11.
12.
13.
14.
Despite the importance of CNS blood vessels, the molecular mechanisms that regulate CNS angiogenesis and blood−brain barrier (BBB) formation are largely unknown. Here we analyze the role of Wnt/β-catenin signaling in regulating the formation of CNS blood vessels. First, through the analysis of TOP-Gal Wnt reporter mice, we identify that canonical Wnt/β-catenin signaling is specifically activated in CNS, but not non-CNS, blood vessels during development. This activation correlates with the expression of different Wnt ligands by neural progenitor cells in distinct locations throughout the CNS, including Wnt7a and Wnt7b in ventral regions and Wnt1, Wnt3, Wnt3a, and Wnt4 in dorsal regions. Blockade of Wnt/β-catenin signaling in vivo specifically disrupts CNS, but not non-CNS, angiogenesis. These defects include reduction in vessel number, loss of capillary beds, and the formation of hemorrhagic vascular malformations that remain adherent to the meninges. Furthermore, we demonstrate that Wnt/β-catenin signaling regulates the expression of the BBB-specific glucose transporter glut-1. Taken together these experiments reveal an essential role for Wnt/β-catenin signaling in driving CNS-specific angiogenesis and provide molecular evidence that angiogenesis and BBB formation are in part linked.  相似文献   

15.
16.
Hepatocellular carcinoma is the sixth most common cancer worldwide. In the majority of cases, there is evidence of existing chronic liver disease from a variety of causes including viral hepatitis B and C, alcoholic liver disease and nonalcoholic steatohepatitis. Identification of the signalling pathways used by hepatocellular carcinoma cells to proliferate, invade or metastasize is of paramount importance in the discovery and implementation of successfully targeted therapies. Activation of Wnt/β-catenin, Notch and Hedgehog pathways play a critical role in regulating liver cell proliferation during development and in controlling crucial functions of the adult liver in the initiation and progression of human cancers. β-catenin was identified as a protein interacting with the cell adhesion molecule E-cadherin at the cell-cell junction, and has been shown to be one of the most important mediators of the Wnt signalling pathway in tumourigenesis. Investigations into the role of Dikkopf-1 in hepatocellular carcinoma have demonstrated controversial results, with a decreased expression of Dickkopf-1 and soluble frizzled-related protein in various cancers on one hand, and as a possible negative prognostic indicator of hepatocellular carcinoma on the other. In the present review, the authors focus on the Wnt/β-catenin, Notch and Sonic Hedgehog pathways, and their interaction with Dikkopf-1 in hepatocellular carcinoma.  相似文献   

17.
Influenza A virus (IAV) prevents innate immune signaling during infection. In our previous study, the production of pro-inflammatory cytokines was associated with Cullin-1 RING ligase (CRL1), which was related to NF-κB activation. However, the underlying mechanism is unclear. Here, an E3 ligase, β-transducin repeat-containing protein (β-TrCP), was significantly downregulated during IAV infection. Co-IP analysis revealed that non-structural 1 protein (NS1) interacts with β-TrCP. With co-transfection, an increase in NS1 expression led to a reduction in β-TrCP expression, affecting the level of IκBα and then resulting in repression of the activation of the NF-κB pathway during IAV infection. In addition, β-TrCP targets the viral NS1 protein and significantly reduces the replication level of influenza virus. Our results provide a novel mechanism for influenza to modulate its immune response during infection, and β-TrCP may be a novel target for influenza virus antagonism.  相似文献   

18.
Müllerian-inhibiting substance (MIS), which is produced by fetal Sertoli cells shortly after commitment of the bipotential gonads to testicular differentiation, causes Müllerian duct (MD) regression. In the fetal female gonads, MIS is not expressed and the MDs will differentiate into the internal female reproductive tract. We have investigated whether dysregulated β-catenin activity affects MD regression by expressing a constitutively activated nuclear form of β-catenin in the MD mesenchyme. We show that constitutively activated (CA) β-catenin causes focal retention of MD tissue in the epididymides and vasa deferentia. In adult mutant mice, the retained MD tissues express α-smooth muscle actin and desmin, which are markers for uterine differentiation. MD retention inhibited the folding complexity of the developing epididymides and usually led to obstructive azoospermia by spermatoceles. The MDs of urogenital ridges from mutant female embryos showed less regression with added MIS in organ culture compared with control MDs when analyzed by whole mount in situ hybridization for Wnt7a as a marker for the MD epithelium. CA β-catenin did not appear to affect expression of either MIS in the embryonic testes or its type II receptor (AMHR2) in the MD mesenchyme nor did it inhibit pSmad1/5/8 nuclear accumulation, suggesting that dysregulated β-catenin must inhibit MD regression independently of MIS signaling. These studies suggest that dysregulated Wnt/β-catenin signaling in the MD mesenchyme might also be a contributing factor in persistent Müllerian duct syndrome, a form of male pseudohermaphroditism, and development of spermatoceles.  相似文献   

19.
20.
Xanthii fructus (XF) is the dried and mature fruit of Xanthium sibiricum Patr. It has the effects of anti-inflammatory, antioxidant and anti-arthritic. Rheumatoid arthritis (RA) is the most common inflammatory disorder and often leads to disability. However, there are few studies on the treatment of RA by XF and the specific mechanism of treatment has not been clarified. This study was designed to explore the effects of proliferation and apoptosis by XF on human fibroblast-like synovial-RA (HFLS-RA) cells and investigate its mechanism. The cell proliferation ability was detected by MTS assay. Hoechst 33,342 staining was used to detect apoptosis, and the apoptosis rate was detected by flow cytometry. The expression levels of NF-κB p65 and β-catenin were detected by Western Blotting. MTS, Hoechst 33,342, flow cytometry analysis showed that the alcohol extract of XF inhibited human fibroblast-like synovial-RA cells proliferation and promoted apoptosis in a dose-dependent manner. Western Blotting experiment showed that the extract of XF could reduce the expression levels of NF-κB p65 and β-catenin. The extract of XF has a significant therapeutic effect on RA in vitro by regulating NF-κB signaling pathway and Wnt/β-catenin signaling pathway. Our research will help to clarify the potential pharmacological mechanism of XF on RA and provide experimental basis for the application of XF in clinical treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号