首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper at hand presents an investigation of the tensile behavior of high-strength, strain-hardening cement-based composites (HS-SHCC), reinforced with a single layer of continuous, two-dimensional textile made of ultra-high molecular weight polyethylene (UHMWPE). Uniaxial tension tests were performed on the bare UHMWPE textiles, on plain HS-SHCC, and on the hybrid fiber-reinforced composites. The bond properties between the textile yarns and the surrounding composite were investigated in single-yarn pullout experiments. In order to assess the influence of bond strength between the yarn and HS-SHCC on the tensile behavior of the composites with hybrid fiber reinforcement, the textile samples were analyzed both with, and without, an additional coating of epoxy resin and sand. Compared to the composites reinforced with carbon yarns in previous studies by the authors, the high elongation capacity of the UHMWPE textile established the higher strain capacity of the hybrid fiber-reinforced composites, and showed superior energy absorption capacity up to failure. The UHMWPE textile limited the average crack width in comparison with that of plain HS-SHCC, but led to slightly larger crack widths when compared to equivalent composites reinforced with carbon textile, the reason for which was traced back to the lower Young’s modulus and the higher elongation capacity of the polymer textile.  相似文献   

2.
In this paper, the mechanical properties of fiber-reinforced epoxy laminates are experimentally tested. The relaxation behavior of carbon and glass fiber composite laminates is investigated at room temperature. In addition, the impact strength under drop-weight loading is measured. The hand lay-up technique is used to fabricate composite laminates with woven 8-ply carbon and glass fiber reinforced epoxy. Tensile tests, cyclic relaxation tests and drop weight impacts are carried out on the carbon and glass fiber-reinforced epoxy laminates. The surface release energy GIC and the related fracture toughness KIC are important characteristic properties and are therefore measured experimentally using a standard test on centre-cracked specimens. The results show that carbon fiber-reinforced epoxy laminates with high tensile strength give high cyclic relaxation performance, better than the specimens with glass fiber composite laminates. This is due to the higher strength and stiffness of carbon fiber-reinforced epoxy with 600 MPa compared to glass fiber-reinforced epoxy with 200 MPa. While glass fibers show better impact behavior than carbon fibers at impact energies between 1.9 and 2.7 J, this is due to the large amount of epoxy resin in the case of glass fiber composite laminates, while the impact behavior is different at impact energies between 2.7 and 3.4 J. The fracture toughness KIC is measured to be 192 and 31 MPa √m and the surface energy GIC is measured to be 540.6 and 31.1 kJ/m2 for carbon and glass fiber-reinforced epoxy laminates, respectively.  相似文献   

3.
In this study, aramid fiber (Kevlar® 29 fiber) and carbon fiber were added into concrete in a hybrid manner to enhance the static and impact mechanical properties. The coupling agent presence on the surface of carbon fibers was spotted in Scanning Electron Microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) graphs. The carbon fiber with a coupling agent affected the mechanical strength of the reinforced concrete. At 1% fiber/cement weight percentage, the hybrid fiber-reinforced concrete (HFRC) prepared using Kevlar fiber and carbon fiber of 12 and 24 mm in length under different mix proportions was investigated to determine the maximum mechanical strengths. From the test results, the mechanical strength of the HFRC attained better performance than that of the concrete with only Kevlar or carbon fibers. Foremost, the mix proportion of Kevlar/carbon fiber (50–50%) significantly improved the compressive, flexural, and splitting tensile strengths. Under different impact energies, the impact resistance of the HFRC specimen was much higher than that of the benchmark specimen, and the damage of the HFRC specimens was examined with an optical microscope to identify slippage or rupture failure of the fiber in concrete.  相似文献   

4.
The aim of this paper is to analyze the influence of hybrid fiber reinforcement on the properties of a lightweight fly ash-based geopolymer. The matrix includes the ratio of fly ash and microspheres at 1:1. Carbon and steel fibers have been chosen due to their high mechanical properties as reinforcement. Short steel fibers (SFs) and/or carbon fibers (CFs) were used as reinforcement in the following proportions: 2.0% wt. CFs, 1.5% wt. CFs and 0.5% wt. SFs, 1.0% wt. CFs and 1.0% wt. SFs, 0.5% wt. CFs and 1.5% wt. SFs and 2.0% wt. SFs. Hybrid reinforcement of geopolymer composites was used to obtain optimal strength properties, i.e., compressive strength due to steel fiber and bending strength due to carbon fibers. Additionally, reference samples consisting of the geopolymer matrix material itself. After the production of geopolymer composites, their density was examined, and the structure (using scanning electron microscopy) and mechanical properties (i.e., bending and compressive strength) in relation to the type and amount of reinforcement. In addition, to determine the thermal insulation properties of the geopolymer matrix, its thermal conductivity coefficient was determined. The results show that the addition of fiber improved compressive and bending strength. The best compressive strength is obtained for a steel fiber-reinforced composite (2.0% wt.). The best bending strength is obtained for the hybrid reinforced composite: 1.5% wt. CFs and 0.5% wt. SFs. The geopolymer composite is characterized by low thermal conductivity (0.18–0.22 W/m ∙ K) at low density (0.89–0.93 g/cm3).  相似文献   

5.
The UV durability of carbon fiber composites has been a concern. In this work, UV irradiation on carbon fiber-reinforced polymer (CFRP) materials was performed using an artificial accelerated UV aging chamber to investigate the effect of UV exposure on carbon fiber composites. UV aging caused some of the macromolecular chains on the surface resin to break, resulting in the loss of small molecules and loss of mass. After 80 days of UV irradiation exposure, a significant decline in the macroscopic mechanical properties occurred in the longitudinal direction, with the largest decrease of 23% in longitudinal compressive strength and a decreasing trend in the transverse mechanical properties at the later stage of aging. The microscopic mechanical properties of the CFRP specimens were characterized using nanoindentation, and it was found that UV aging had an embrittlement effect on the matrix, and its hardness/modulus values were higher than the initial values with UV exposure. The fibers were less affected by UV irradiation.  相似文献   

6.
This paper investigates the dynamic compressive behavior of wollastonite fiber-reinforced cementitious mortars using multiscale numerical simulations. The rate dependent behavior of the multiphase heterogeneous systems is captured in a multiscale framework that implements continuum damage towards effective property prediction. The influence of wollastonite fiber content (% by mass) as cement replacement on the dynamic compressive strength and energy absorption capacity is thereafter elucidated. An average compressive strength gain of 40% is obtained for mortars with 10% wollastonite fiber content as cement replacement, as compared to the control mortar at a strain rate of 200/s. The rate dependent constitutive responses enable the computation of energy absorption, which serves as a comparative measure for elucidating the material resistance to impact loads. Approximately a 45% increase in the dynamic energy absorption capacity is observed for the mixture containing 10% wollastonite fibers, as compared to the control case. Overall, the study establishes wollastonite fibers as a sustainable and dynamic performance-enhanced alternative for partial cement replacement. Moreover, the multiscale numerical simulation approach for performance prediction can provide an efficient means for the materials designers and engineers to optimize the size and dosage of wollastonite fibers for desired mechanical performance under dynamic loading conditions.  相似文献   

7.
Fibers used as reinforcement can increase the mechanical characteristics of engineering cementitious composites (ECC), but their frost resistance has received less attention. The mechanical properties of various fiber cementitious materials under the dual factors of freeze-thaw action and fiber dose are yet to be determined. This study examines the performance change patterns of cementitious composites, which contain carbon fiber, glass fiber, and polyvinyl alcohol (PVA) fiber at 0%, 0.5%, and 1% volume admixture in freeze-thaw tests. Three fiber cement-based materials are selected to do the compression and bending testing, and ABAQUS finite element modeling is used to assess the performance of fiber cement-based composite materials. The microscopic observation results show that the dispersion of glass and PVA fibers is higher than that of carbon fibers. As a result, the mechanical characteristics of the fiber-doped cementitious composites increase dramatically after freeze-thaw with increasing dosage. The compression test results show the frost resistance of carbon fiber > PVA fiber > glass fiber. In addition, the bending test results show the frost resistance of carbon fiber > glass fiber > PVA fiber. The 3D surface plots of the strength changes are established to observe the mechanical property changes under the coupling effect of admixture and freeze-thaw times. ABAQUS modeling is used to predict the strength of the cementitious composites under various admixtures and freeze-thaw cycles. The bending strength numerical equation is presented, and the bending and compressive strengths of three different fiber-cement matrix materials are accurately predicted.  相似文献   

8.
Carbon nanofilament and nanotubes (CNTs) have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs) and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD), in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN)-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD) technique was also utilized to grow multiwall CNTs (MWCNTs) on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.  相似文献   

9.
Composite materials are a combination of two or more types of materials used to enhance the mechanical and structural properties of engineering products. When fibers are mixed in the polymeric matrix, the composite material is known as fiber-reinforced polymer (FRP). FRP materials are widely used in structural applications related to defense, automotive, aerospace, and sports-based industries. These materials are used in producing lightweight components with high tensile strength and rigidity. The fiber component in fiber-reinforced polymers provides the desired strength-to-weight ratio; however, the polymer portion costs less, and the process of making the matrix is quite straightforward. There is a high demand in industrial sectors, such as defense and military, aerospace, automotive, biomedical and sports, to manufacture these fiber-reinforced polymers using 3D printing and additive manufacturing technologies. FRP composites are used in diversified applications such as military vehicles, shelters, war fighting safety equipment, fighter aircrafts, naval ships, and submarine structures. Techniques to fabricate composite materials, degrade the weight-to-strength ratio and the tensile strength of the components, and they can play a critical role towards the service life of the components. Fused deposition modeling (FDM) is a technique for 3D printing that allows layered fabrication of parts using thermoplastic composites. Complex shape and geometry with enhanced mechanical properties can be obtained using this technique. This paper highlights the limitations in the development of FRPs and challenges associated with their mechanical properties. The future prospects of carbon fiber (CF) and polymeric matrixes are also mentioned in this study. The study also highlights different areas requiring further investigation in FDM-assisted 3D printing. The available literature on FRP composites is focused only on describing the properties of the product and the potential applications for it. It has been observed that scientific knowledge has gaps when it comes to predicting the performance of FRP composite parts fabricated under 3D printing (FDM) techniques. The mechanical properties of 3D-printed FRPs were studied so that a correlation between the 3D printing method could be established. This review paper will be helpful for researchers, scientists, manufacturers, etc., working in the area of FDM-assisted 3D printing of FRPs.  相似文献   

10.
This paper studies aligned glass fiber-reinforced composites for printing. To determine the influence of fiber content and alignment on the mechanical properties of this novel material, a large number of standard test specimens were prepared, which included samples fabricated by mold-casting, randomly dispersed fiber reinforced mixtures and aligned fiber cement composites containing 10 types of fiber volume ratios manufactured by nozzle sizes ranging of 24 and 10 mm (fiber length = 12 mm). Mechanical properties and failure modes of the specimens under compression and flexural tests were studied experimentally. The anisotropic behaviors of printed samples were analyzed by different loading directions. As a result, the compressive and flexural strength of printed samples showed obvious anisotropy. With the increase of fiber volume ratio, flexural strength of the fiber reinforced composite was elevated tremendously but its compression strength reduced slightly. Moreover, fiber alignment also had a significant influence on the mechanical properties of the fiber reinforced composite. The composite cement-based material with 1 vol.-% aligned fiber exhibited an excellent flexural strength of 9.38 MPa, which increased by 483% in comparison to that of the plain cement paste.  相似文献   

11.
The demand for natural fiber hybrid composites for various applications has increased, which is leading to more research being conducted on natural fiber hybrid composites due to their promising mechanical properties. However, the incompatibility of natural fiber with polymer matrix limits the performance of the natural fiber hybrid composite. In this research work, the mechanical properties and fiber-to-matrix interfacial adhesion were investigated. The efficiency of methyl methacrylate (MMA)-esterification treatments on composites’ final product performance was determined. The composite was prepared using the hand lay-up method with varying kenaf bast fiber (KBF) contents of 10, 15, 20, 25, 30, 35 (weight%) and hybridized with glass fiber (GF) at 5 and 10 (weight%). Unsaturated polyester (UPE) resin and methyl ethyl ketone peroxide (MEKP) were used as binders and catalysts, respectively. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) were used to examine the effects of MMA-esterification treatment on tensile strength and morphology (tensile fracture and characterization of MMA-esterification treatment) of the composite fabricated. The tensile strength of MMA-treated reinforced UPE and hybrid composites are higher than that of untreated composites. As for MMA treatment, 90 min of treatment showed the highest weight percent gain (WPG) and tensile strength of KBF-reinforced UPE composites. It can be concluded that the esterification of MMA on the KBF can lead to better mechanical properties and adhesion between the KFB and the UPE matrix. This research provides a clear reference for developing hybrid natural fibers, thus contributing to the current field of knowledge related to GF composites, specifically in transportation diligences due to their properties of being lightweight, superior, and involving low production cost.  相似文献   

12.
Structural members made of ultra-high-performance concrete (UHPC) have been attractive to engineers and researchers due to their superior mechanical properties and durability. However, existing studies were focused on the behavior of UHPC members reinforced with micro straight steel fibers at a volume fraction between 1 and 3%. There is a lack of studies on the influence of different types and amounts of fibers on the shear behavior of UHPC structural members. The objective of the study was to experimentally investigate the shear behavior of UHPC beams with macro hooked-end steel (MHS) fibers and polyvinyl alcohol (PVA) fibers, which are two of the most used fibers for high-performance fiber-reinforced cementitious composites. The shear behavior of ten large-scale non-prestressed UHPC beams was studied. The experimental parameters included the shear span-to-effective depth ratio, the fiber volume fraction, and the type of fibers. It was found that both MHS fibers and PVA fibers were effective in enhancing the shear performance of the UHPC beams whether the shear transfer mechanism was governed by arch action or beam action. Moreover, the measurement results of the average crack spacing imply the distinct difference in the fiber bridging effects of the MHS fibers and PVA fibers in the UHPC beams.  相似文献   

13.
The use of fibers in cementitious composites yields numerous benefits due to their fiber-bridging capabilities in resisting cracks. Therefore, this study aimed to improve the shear-resisting capabilities of conventional concrete through the hybridization of multiple synthetic fibers, specifically on reinforced concrete structures in seismic-prone regions. For this study, 16 hybrid fiber-reinforced concretes (HyFRC) were developed from the different combinations of Ferro macro-synthetic fibers with the Ultra-Net, Super-Net, Econo-Net, and Nylo-Mono microfibers. These hybrids were tested under direct shear, resulting in improved shear strength of controlled specimens by Ferro-Ultra (32%), Ferro-Super (24%), Ferro-Econo (44%), and Ferro-Nylo (24%). Shear energy was further assessed to comprehend the effectiveness of the fiber interactions according to the mechanical properties, dosage, bonding power, manufactured material, and form of fibers. Conclusively, all fiber combinations used in this study produced positive synergistic effects under direct shear at large crack deformations.  相似文献   

14.
Due to their lightweight potential and good eco-balance, thermoplastic hybrid composites with natural fiber reinforcement have long been used in the automotive industry. A good alternative to natural fibers is wood fibers, which have similar properties but are also a single-material solution using domestic raw materials. However, there has been hardly any research into wood fibers in thermoplastic back-injected hybrid composites. This article compares the bond strength of an injection molded rib from polypropylene (PP) and wood fibers to different non-wovens. The non-wovens consisted of wood fibers (spruce) or alternatively natural fibers (kenaf, hemp), both with a polypropylene matrix. Pull-off and instrumented puncture impact tests show that, given similar parameters, the natural and wood-fiber-hybrid composites exhibit very similar trends in bond strength. Further tests using viscosity measurements, microscopy, and computed tomography confirm the results. Wood-fiber-reinforced thermoplastic hybrid composites can thus compete with the natural fiber composites in terms of their mechanical behavior and therefore present a good alternative in technical semi-structural applications.  相似文献   

15.
Aligning steel fibers is an effective way to improve the mechanical properties of steel fiber cementitious composites (SFRC). In this study, the magnetic field method was used to prepare the aligned hooked-end steel fiber cementitious composites (ASFRC) and the fracture behavior was investigated. In order to achieve the alignment of steel fibers, the key parameters including the rheology of the mixture and magnetic induction of electromagnetic field were theoretically analyzed. The results showed that, compared with SFRC, the cracking load and the ultimate load of ASFRC were increased about 24–55% and 51–86%, respectively, depending on the fiber addition content. In addition, the flexural tensile strength and residual flexural strength of ASFRC were found to increase up to 105% and 100%, respectively. The orientation of steel fibers also has a significant effect on energy consumption. The fracture energy of ASFRC was 56–70% greater than SFRC and the reinforcement effect of hooked-end steel fiber was higher than straight steel fiber. The fibers in the fracture surface showed that not only was the number of fibers of ASFRC higher than that of SFRC, but also the orientation efficiency factor of ASFRC was superior to SFRC, which explains the improvement of fracture behavior of ASFRC.  相似文献   

16.
The mechanical environment plays an important role in cell signaling and tissue homeostasis. Unraveling connections between externally applied loads and the cellular response is often confounded by extracellular matrix (ECM) heterogeneity. Image-based multiscale models provide a foundation for examining the fine details of tissue behavior, but they require validation at multiple scales. In this study, we developed a multiscale model that captured the anisotropy and heterogeneity of a cell-compacted collagen gel subjected to an off-axis hold mechanical test and subsequently to biaxial extension. In both the model and experiments, the ECM reorganized in a nonaffine and heterogeneous manner that depended on multiscale interactions between the fiber networks. Simulations predicted that tensile and compressive fiber forces were produced to accommodate macroscopic displacements. Fiber forces in the simulation ranged from −11.3 to 437.7 nN, with a significant fraction of fibers under compression (12.1% during off-axis stretch). The heterogeneous network restructuring predicted by the model serves as an example of how multiscale modeling techniques provide a theoretical framework for understanding relationships between ECM structure and tissue-level mechanical properties and how microscopic fiber rearrangements could lead to mechanotransductive cell signaling.  相似文献   

17.
The production of hybrid layered composites allows comprehensive modification of their properties and adaptation to the final expectations. Different methods, such as hand lay-up, vacuum bagging, and resin infusion were applied to manufacture the hybrid composites. In turn, fabrics used for manufacturing composites were made of glass (G), aramid (A), carbon (C), basalt (B), and flax (F) fibers. Flexural, puncture impact behavior, and cone calorimetry tests were applied to establish the effect of the manufacturing method and the fabrics layout on the mechanical and fire behavior of epoxy-based laminates. The lowest flammability and smoke emission were noted for composites made by vacuum bagging (approximately 40% lower values of total smoke release compared with composites made by the hand lay-up method). It was demonstrated that multi-layer hybrid composites made by vacuum bagging might enhance the fire safety levels and simultaneously maintain high mechanical properties designed for, e.g., the railway and automotive industries.  相似文献   

18.
The aim of the article is to analyze the influence of short coir, glass and carbon fiber admixture on the mechanical properties of fly ash-based geopolymer, such as: flexural and compressive strength. Glass fiber and carbon fibers have been chosen due to their high mechanical properties. Natural fibers have been chosen because of their mechanical properties as well as for the sake of comparison between their properties and the properties of the artificial ones. Fourth series of fly ash-based geopolymers for each fiber was cast: 1, 2, and 5% by weight of fly ash and one control series without any fibers. Each series of samples were tested on flexural and compressive strength after 7, 14, and 28 days. Additionally, microstructural analysis was carried out after 28 days. The results have shown an increase in compressive strength for composites with fibers—an improvement in properties between 25.0% and 56.5% depending on the type and amount of fiber added. For bending strength, a clear increase in the strength value is visible for composites with 1 and 2% carbon fibers (62.4% and 115.6%). A slight increase in flexural strength also occurred for 1% addition of glass fiber (4.5%) and 2% addition of coconut fibers (5.4%). For the 2% addition of glass fibers, the flexural strength value did not change compared to the value obtained for the matrix material. For the remaining fiber additions, i.e., 5% glass fiber as well as 1 and 5% coconut fibers, the flexural strength values deteriorated. The results of the research are discussed in a comparative context and the properties of the obtained composites are juxtaposed with the properties of the standard materials used in the construction industry.  相似文献   

19.
Carbon fiber-reinforced composites present an exciting combination of properties and offer clear advantages that make them a perfect replacement for a spread of materials. Consequently, in recent years, their production has dramatically increased as well as the quantity of waste materials. As future legislations are likely to prevent the use of landfills and incineration to dispose of composite waste, alternative solutions such as recycling are considered as one of the urgent problems to be settled. This study presents the leading technologies for recycling carbon fiber-reinforced composites, focusing on chemical recycling using sub- and supercritical fluids. These new reaction media have been demonstrated to be more manageable and efficient in recovering clean fibers with good mechanical properties. The conventional technologies of carbon fibers recycling have also been reviewed and described with both advantages and drawbacks.  相似文献   

20.
Reinforcing fibers have been widely used to improve physical and mechanical properties of cement-based materials. Most fiber reinforced composites (FRC) involve the use of a single type of fiber to improve cement properties, such as strength or ductility. To additionally improve other parameters, hybridization is required. Another key challenge, in the construction industry, is the implementation of green and sustainable strategies based on reducing raw materials consumption, designing novel structures with enhanced properties and low weight, and developing low environmental impact processes. Different recycled fibers have been used as raw materials to promote circular economy processes and new business opportunities in the cement-based sector. The valuable use of recycled fibers in hybrid FRC has already been proven and they improve both product quality and sustainability, but the generated knowledge is fragmented. This is the first review analyzing the use of recycled fibers in hybrid FRC and the hybridization effect on mechanical properties and workability of FRC. The paper compiles the best results and the optimal combinations of recycled fibers for hybrid FRC to identify key insights and gaps that may define future research to open new application fields for recycled hybrid FRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号