首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electronic structure and magnetic properties of Fe3Se4 are calculated using the density functional approach. Due to the metallic properties, magnetic moments of the iron atoms in two nonequivalent positions in the unit cell are different from ionic values for Fe3+ and Fe2+ and are equal to M1=2.071μB and M2=2.042μB, making the system ferrimagnetic. The total magnetic moment for the unit cell is 2.135μB. Under isotropic compression, the total magnetic moment decreases non-monotonically and correlates with the non-monotonic dependence of the density of states at the Fermi level N(EF). For 7% compression, the magnetic order changes from the ferrimagnetic to the ferromagnetic. At 14% compression, the magnetic order disappears and the total magnetic moment becomes zero, leaving the system in a paramagnetic state. This compression corresponds to the pressure of 114 GPa. The magnetic ordering changes faster upon application of an isotropic external pressure due to the sizeable anisotropy of the chemical bondings in Fe3Se4. The ferrimagnetic and paramagnetic states occur under pressures of 5.0 and 8.0 GPa, respectively. The system remains in the metallic state for all values of compression.  相似文献   

2.
This study attempts to evaluate the effect of incubation in selected ophthalmic fluids on contact lenses (Etafilcon A, Omafilcon A, Narafilcon A, Senofilcon A). Four research groups differing in the incubation environment were created: (1) initial state, (2) contact lens solution (CLS), (3) contact lens solution and eye drops (ED) and (4) eye drops. Dehydration by gravimetric method and the contact angle (CA) by the sessile drop method were tested. The surface free energy (SFE) was also calculated with the use of several methods: Owens–Wendt, Wu, Neumann, and Neumann–Kwok. The greatest changes in the dehydration profile were observed for contact lenses incubated in ED. The most noticeable changes in CA values were observed for contact lenses incubated in ED, in which it was not possible to settle water drop after incubation. On the basis of SFE analysis, higher values were found for hydrogel contact lenses, e.g., according to the Owens–Wendt method, they ranged from 54.45 ± 6.56 mJ/m2 to 58.09 ± 4.86 mJ/m2, while in the case of silicone-hydrogel contact lenses, they ranged from 32.86 ± 3.47 mJ/m2 to 35.33 ± 6.56 mJ/m2. Incubation in all tested environments decreased the SFE values, but the differences were in most cases statistically insignificant. Calculating the SFE may be a useful method as it can be used to estimate the possibility of bacteria adhering to contact lens surfaces.  相似文献   

3.
4.
Two different mid-infrared (mid-IR) solid-state crystalline laser active media of Cr2+, Fe2+:Zn1xMnxSe and Cr2+, Fe2+:Zn1xMgxSe with similar amounts of manganese or magnesium ions of x ≈ 0.3 were investigated at cryogenic temperatures for three different excitation wavelengths: Q-switched Er:YLF laser at the wavelength of 1.73 μm, Q-switched Er:YAG laser at 2.94 μm, and the gain-switched Fe:ZnSe laser operated at a liquid nitrogen temperature of 78 K at ∼4.05 μm. The temperature dependence of spectral and laser characteristics was measured. Depending on the excitation wavelength and the selected output coupler, both laser systems were able to generate radiation by Cr2+ or by Fe2+ ions under direct excitation or indirectly by the Cr2+→ Fe2+ energy transfer mechanism. Laser generation of Fe2+ ions in Cr2+, Fe2+:Zn1xMnxSe and Cr2+, Fe2+:Zn1xMgxSe (x ≈ 0.3) crystals at the wavelengths of ∼4.4 and ∼4.8 μm at a temperature of 78 K was achieved, respectively. The excitation of Fe2+ ions in both samples by direct 2.94 μm as well as ∼4.05 μm radiation or indirectly via the Cr2+→ Fe2+ ions’ energy transfer-based mechanism by 1.73 μm radiation was demonstrated. Based on the obtained results, the possibility of developing novel coherent laser systems in mid-IR regions (∼2.3–2.5 and ∼4.4–4.9 μm) based on AIIBVI matrices was presented.  相似文献   

5.
This paper reports an XPS surface study of pure phase BiFeO3 thin film produced and later etched by pure argon ions. Analysis of high-resolution spectra from Fe 2p, Bi 4f and 5d, O 1s, and the valence band, exhibited mainly Fe3+ and Bi3+ components, but also reveal Fe2+. High-energy argon etching induces the growth of Fe(0) and Bi(0) and an increment of Fe2+, as expected. The BiFeO3 semiconductor character is preserved despite the oxygen loss, an interesting aspect for the study of the photovoltaic effect through oxygen vacancies in some ceramic films. The metal-oxygen bonds in O 1s spectra are related only to one binding energy contrary to the split from bismuth and iron reported in other works. All these data evidence that the low-pressure argon atmosphere is proved to be efficient to produce pure phase BiFeO3, even after argon etching.  相似文献   

6.
Search for doped superconducting topological insulators is of prime importance for new quantum technologies. We report on fabrication of Sr-doped Bi2Te3 single crystals. We found that Bridgman grown samples have p-type conductivity in the low 1019 cm3, high mobility of 4000 cm2V1s1, crystal structure independent on nominal dopant content, and no signs of superconductivity. We also studied molecular beam epitaxy grown SrxBi2xTe3 films on lattice matched (1 1 1) BaF2 polar surface. Contrary to the bulk crystals thin films have n-type conductivity. Carrier concentration, mobility and c-lattice constant demonstrate pronounced dependence on Sr concentration x. Variation of the parameters did not lead to superconductivity. We revealed, that transport and structural parameters are governed by Sr dopants incorporation in randomly inserted Bi bilayers into the parent matrix. Thus, our data shed light on the structural position of dopant in Bi2Te3 and should be helpful for further design of topological insulator-based superconductors.  相似文献   

7.
8.
Fusion energy stands out as a promising alternative for a future decarbonised energy system. In order to be sustainable, future fusion nuclear reactors will have to produce their own tritium. In the so-called breeding blanket of a reactor, the neutron bombardment of lithium will produce the desired tritium, but also helium, which can trigger nucleation mechanisms owing to the very low solubility of helium in liquid metals. An understanding of the underlying microscopic processes is important for improving the efficiency, sustainability and reliability of the fusion energy conversion process. The spontaneous creation of helium droplets or bubbles in the liquid metal used as breeding material in some designs may be a serious issue for the performance of the breeding blankets. This phenomenon has yet to be fully studied and understood. This work aims to provide some insight on the behaviour of lithium and helium mixtures at experimentally corresponding operating conditions (843 K and pressures between 108 and 1010 Pa). We report a microscopic study of the thermodynamic, structural and dynamical properties of lithium–helium mixtures, as a first step to the simulation of the environment in a nuclear fusion power plant. We introduce a new microscopic model devised to describe the formation of helium droplets in the thermodynamic range considered. Our model predicts the formation of helium droplets at pressures around 109 Pa, with radii between 1 and 2 Å. The diffusion coefficient of lithium (2 Å2/ps) is in excellent agreement with reference experimental data, whereas the diffusion coefficient of helium is in the range of 1 Å2/ps and tends to decrease as pressure increases.  相似文献   

9.
In order to simulate micromachining of Ti-Nb medical devices produced in situ by selective laser melting, it is necessary to use constitutive models that allow one to reproduce accurately the material behavior under extreme loading conditions. The identification of these models is often performed using experimental tension or compression data. In this work, compression tests are conducted to investigate the impact of the loading conditions and the laser-based powder bed fusion (LB-PBF) building directions on the mechanical behavior of β-Ti42Nb alloy. Compression tests are performed under two strain rates (1 s1 and 10 s1) and four temperatures (298 K, 673 K, 873 K and 1073 K). Two LB-PBF building directions are used for manufacturing the compression specimens. Therefore, different metallographic analyses (i.e., optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), electron backscatter diffraction (EBSD) and X-ray diffraction) have been carried out on the deformed specimens to gain insight into the impact of the loading conditions on microstucture alterations. According to the results, whatever the loading conditions are, specimens manufactured with a building direction of 45 exhibit higher flow stress than those produced with a building direction of 90, highlighting the anisotropy of the as-LB-PBFed alloy. Additionally, the deformed alloy exhibits at room temperature a yielding strength of 1180 ± 40 MPa and a micro-hardness of 310 ± 7 HV0.1. Experimental observations demonstrated two strain localization modes: a highly deformed region corresponding to the localization of the plastic deformation in the central region of specimens and perpendicular to the compression direction and an adiabatic shear band oriented with an angle of ±45 with respect to same direction.  相似文献   

10.
Ultrafast detection is an effective method to reveal the transient evolution mechanism of materials. Compared with ultra-fast X-ray diffraction (XRD), the ultra-fast electron beam is increasingly adopted because the larger scattering cross-section is less harmful to the sample. The keV single-shot ultra-fast electron imaging system has been widely used with its compact structure and easy integration. To achieve both the single pulse imaging and the ultra-high temporal resolution, magnetic lenses are typically used for transverse focus to increase signal strength, while radio frequency (RF) cavities are generally utilized for longitudinal compression to improve temporal resolution. However, the detection signal is relatively weak due to the Coulomb force between electrons. Moreover, the effect of RF compression on the transverse focus is usually ignored. We established a particle tracking model to simulate the electron pulse propagation based on the 1-D fluid equation and the 2-D mean-field equation. Under considering the relativity effect and Coulomb force, the impact of RF compression on the transverse focus was studied by solving the fifth-order Rung–Kutta equation. The results show that the RF cavity is not only a key component of longitudinal compression but also affects the transverse focusing. While the effect of transverse focus on longitudinal duration is negligible. By adjusting the position and compression strength of the RF cavity, the beam spot radius can be reduced from 100 μm to 30 μm under the simulation conditions in this paper. When the number of single pulse electrons remains constant, the electrons density incident on the sample could be increased from 3.18×1012 m2 to 3.54×1013 m2, which is 11 times the original. The larger the electron density incident on the sample, the greater the signal intensity, which is more conducive to detecting the transient evolution of the material.  相似文献   

11.
We report on a comprehensive study of laser ablation and micromachining of alumina using a high-power 1030 nm ultrashort-pulsed laser. By varying laser power up to 150 W, pulse duration between 900 fs and 10 ps, repetition rates between 200 kHz and 800 kHz), spatial pulse overlap between 70% and 80% and a layer-wise rotation of the scan direction, the ablation efficiency, ablation rate and surface roughness are determined and discussed with respect to an efficient and optimized process strategy. As a result, the combination of a high pulse repetition rate of 800 kHz and the longest evaluated pulse duration of 10 ps leads to the highest ablation efficiency of 0.76 mm3/(W*min). However, the highest ablation rate of up to 57 mm3/min is achieved at a smaller repetition rate of 200 kHz and the shortest evaluated pulse duration of 900 fs. The surface roughness is predominantly affected by the applied laser fluence. The application of a high repetition rate leads to a small surface roughness Ra below 2 μm even for the usage of 150 W laser power. By an interlayer rotation of the scan path, optimization of the ablation characteristics can be achieved, while an interlayer rotation of 90° leads to increasing the ablation rate, the application of a rotation angle of 11° minimizes the surface roughness. The evaluation by scanning electron microscopy shows the formation of thin melt films on the surface but also reveals a minimized heat affected zone for the in-depth modification. Overall, the results of this study pave the way for high-power ultrashort-pulsed lasers to efficient, high-quality micromachining of ceramics.  相似文献   

12.
We apply the Roeser–Huber formula to the (RE)Ba2Cu3O7δ (REBCO with RE= rare earths) high-Tc superconducting material class to calculate the superconducting transition temperature, Tc, using the electronic configuration and the crystallographic data. In a former publication (H. P. Roeser et al., Acta Astronautica 2008, 62, 733–736), the basic idea was described and Tc was successfully calculated for the YBa2Cu3O7δ compound with two oxygen doping levels δ= 0.04 and 0.45, but several open questions remained. One of the problems remaining was the determination of Tc for the δ= 0.45 sample, which can be explained regarding the various oxygen arrangements being possible within the copper-oxide plane. Having established this proper relation and using the various crystallographic data on the REBCO system available in the literature, we show that the Roeser–Huber equation is capable to calculate the Tc of the various REBCO compounds and the effects of strain and pressure on Tc, when preparing thin film samples. Furthermore, the characteristic length, x, determined for the REBCO systems sheds light on the size of the δTc-pinning sites being responsible for additional flux pinning and the peak effect.  相似文献   

13.
The influence of melt injection temperature on the thermomechanical behaviour of soft–soft overmoulded vulcanized thermoplastic elastomers (TPV) with different elastic properties was studied. Samples with two different overmoulding temperatures were tested under uniaxial loading conditions. The full deformation and temperature fields in each TPV were determined using digital image correlation technique and infrared thermography, respectively. The maximum interface strength was found to be equal to 70N for a maximum injection temperature of 260C, which is consistent with the fact that high temperatures promote interdiffusion between the molten TPV and the TPV insert. The two TPV have different stiffness, leading to a significant change of the interface position along the specimens during stretching and to a significant necking in the softer material. The zone of influence of the interface in terms of stretch gradient is very different in size from one TPV to the other. In addition, thermal investigations have shown that the elasticity of the two TPV is due to both entropic and non-entropic effects, the former being the most significant at large strains.  相似文献   

14.
In this study, some features of molecular dynamics simulation for evaluating the mechanical properties of a Ni/graphene composite and analyzing the effect of incremental and dynamic tensile loading on its deformation are discussed. A new structural type of the composites is considered: graphene network (matrix) with metal nanoparticles inside. Two important factors affecting the process of uniaxial tension are studied: tension strain rate (5 ×103 ps1 and 5 ×104 ps1) and simulation temperature (0 and 300 K). The results show that the strain rate affects the ultimate tensile strength under tension: the lower the strain rate, the lower the critical values of strain. Tension at room temperature results in lower ultimate tensile strength in comparison with simulation at a temperature close to 0 K, at which ultimate tensile strength is closer to theoretical strength. Both simulation techniques (dynamic and incremental) can be effectively used for such a study and result in almost similar behavior. Fabrication technique plays a key role in the formation of the composite with low anisotropy. In the present work, uniaxial tension along three directions shows a big difference in the composite strength. It is shown that the ultimate tensile strength of the Ni/graphene composite is close to that of pure crumpled graphene, while the ductility of crumpled graphene with metal nanoparticles inside is two times higher. The obtained results shed the light on the simulation methodology which should be used for the study of the deformation behavior of carbon/metal nanostructures.  相似文献   

15.
This work studied the relationship between biodegradation rate and grain size itself, excluding other structural factors such as segregations, impure inclusions, second phase particles, sub-structures, internal stresses and textures caused by alloying additions and deformation processing for pure Mg. A spectrum of grain size was obtained by annealing through changing the annealing temperature. Grain boundary influenced the hardness and the biodegradation behavior. The hardness was grain size-dependent, following a typical Hall–Petch relation: HV=18.45+92.31d12. The biodegradation rate decreased with decreasing grain size, following a similar Hall–Petch relation: Pi=0.170.68d12 or Pw=1.346.17d12. This work should be helpful for better controlling biodegradation performance of biodegradable Mg alloys through varying their grain size.  相似文献   

16.
The fullerene family, whose most popular members are the spherical C60 and C70 molecules, has recently added a new member, the cube-shaped carbon molecule C8 called a cubene. A molecular crystal based on fullerenes is called fullerite. In this work, based on relaxational molecular dynamics, two fullerites based on cubenes are described for the first time, one of which belongs to the cubic system, and the other to the triclinic system. Potential energy per atom, elastic constants, and mechanical stress components are calculated as functions of lattice strain. It has been established that the cubic cubene crystal is metastable, while the triclinic crystal is presumably the crystalline phase in the ground state (the potential energies per atom for these two structures are −0.0452 and −0.0480 eV, respectively).The cubic phase has a lower density than the monoclinic one (volumes per cubene are 101 and 97.7 Å3). The elastic constants for the monoclinic phase are approximately 4% higher than those for the cubic phase. The presented results are the first step in studying the physical and mechanical properties of C8 fullerite, which may have potential for hydrogen storage and other applications. In the future, the influence of temperature on the properties of cubenes will be analyzed.  相似文献   

17.
The correct setting of laser beam parameters and scanning strategy for Selective Laser Melting (SLM) technology is a demanding process. Usually, numerous experimental procedures must be taken before the final strategy can be applied. The presented work deals with SLM technology and the impact of its technological parameters on the porosity and hardness of AISI H13 tool steel. In this study, we attempted to map the dependency of porosity and hardness of the tested tool steel on a broad spectrum of scanning speed—laser power combinations. Cubic samples were fabricated under parameters defined by full factorial DOE, and metallurgic specimens were prepared for measurement of the two studied quantities. The gathered data were finally analyzed, and phenomenological models were proposed. Analysis of the data revealed a minimal energy density of 100.3 J/mm3 was needed to obtain a dense structure with a satisfactory hardness level. Apart from this, the model may be used for approximation of non-tested combinations of input parameters.  相似文献   

18.
Light-weight metal matrix composites, especially magnesium-based composites, have recently become more widespread for high-efficiency applications, including aerospace, automobile, defense, and telecommunication industries. The squeeze cast AZ91 base material (AZ91-BM) and its composites having 23 vol.% short carbon fibers were fabricated and investigated. The composite specimens were machined normal to the reinforced plane (Composite-N) and parallel to the reinforced plane (Composite-P). All the as-casted materials were subjected to different tests, such as hardness, compression, and wear testing, evaluating the mechanical properties. Dry wear tests were performed using a pin-on-disk machine at room temperature under different applied wear loads (1–5 N) and different sliding distances (0.4461×1043.12×104 m). The microstructures and worn surfaces of the fabricated AZ91-BM and the two composite specimens were investigated using a scanning electron microscope (SEM) equipped with an energy dispersive spectroscopy (EDS) advanced analysis system. The wear debris was collected and investigated also under the SEM. The results showed significant improvement in hardness, compressive strength, and wear resistance of the composite specimens (Composite-N and Composite-P) over the AZ91-BM. The compressive strength and wear resistance are more fibers orientation sensitive than the hardness results. When the fiber orientation is parallel to the sliding direction (Composite-N), the weight loss is somewhat lower than that of the fiber orientation perpendicular to the sliding direction (Composite-P) at a constant wear load of 2 N and the sliding distances of 0.4461×104, 1.34×104 , and 2.23×104 m. In contrast, the weight loss of Composite-P is lower than Composite-N, especially at the highest sliding distance of 3.12×104 m due to the continuous feeding of graphite lubricant film and the higher compressive strength. Plastic deformation, oxidation, and abrasive wear are the dominant wear mechanisms of AZ91-BM; in contrast, abrasive and delamination wear are mainly the wear mechanisms of the two composites under the applied testing conditions.  相似文献   

19.
The serrated structural plane is the basic unit of structural plane morphology. However, the understanding of its internal stress distribution, failure mode and crack evolution law was not clear enough in previous studies. In this paper, the shear mechanical properties of the serrated structural planes were studied by numerical simulation, and the crack evolution law of the serrated structural planes and the effects of four microscopic parameters on the shear properties were analyzed. The results show that: (1) the number of microcracks increases with the increase in normal stress; the crack expansion rate is slow before the shear stress reaches the peak. After the shear stress reaches the peak, the crack expansion rate continues to increase, and the microcracks keep sprouting and expanding, and the number of microcracks tends to stabilize when the shear stress reaches the residual shear strength. (2) The particle contact stiffness ratio kn/ks and parallel bond stiffness ratio kn/ks were negatively correlated with the shear strength; and the particle contact modulus E and parallel bond modulus E were positively correlated with the shear strength. As the particle contact modulus E and parallel bond modulus E increase, the peak shear displacement gradually decreases. The parallel bond stiffness ratio kn/ks has a negative correlation with the peak shear displacement. This study is expected to provide theoretical guidance for the microscopic parameter calibration and shear mechanical analysis of serrated structural planes. (3) Several XGBoost, WOA-XGBoost, and PSO-XGBoost algorithms are introduced to construct the quantitative prediction model, and the comparative analysis found that WOA-XGBoost has the best fitting effect and can be used for the prediction of shear strength. When using this model to calculate the weight shares of micro-parameters, it was found that kn/ks has the greatest influence on shear strength, followed by E; E and kn/ks had the least influence.  相似文献   

20.
Formamidinium tin iodide (FASnI3)-based perovskite solar cells (PSCs) have achieved significant progress in the past several years. However, these devices still suffer from low power conversion efficiency (PCE=6%) and poor stability. Recently, Cesium (Cs)-doped Formamidinium tin iodide (FA1xCsxSnI3) showed enhanced air, thermal, and illumination stability of PSCs. Hence, in this work, FA1xCsxSnI3 PSCs have been rigorously studied and compared to pure FASnI3 PSCs using a solar cell capacitance simulator (SCAPS) for the first time. The aim was to replace the conventional electron transport layer (ETL) TiO2 that reduces PSC stability under solar irradiation. Therefore, FA1xCsxSnI3 PSCs with different Cs contents were analyzed with TiO2 and stable ZnOS as the ETLs. Perovskite light absorber parameters including Cs content, defect density, doping concentration and thickness, and the defect density at the interface were tuned to optimize the photovoltaic performance of the PSCs. The simulation results showed that the device efficiency was strongly governed by the ETL material, Cs content in the perovskite and its defect density. All the simulated devices with ZnOS ETL exhibited PCEs exceeding 20% when the defect density of the absorber layer was below 1015 cm3, and deteriorated drastically at higher values. The optimized structure with FA75Cs25SnI3 as light absorber and ZnOS as ETL showed the highest PCE of 22% with an open circuit voltage Voc of 0.89 V, short-circuit current density Jsc of 31.4 mA·cm2, and fill factor FF of 78.7%. Our results obtained from the first numerical simulation on Cs-doped FASnI3 could greatly increase its potential for practical production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号