首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Introduction: It has been suggested that the gut microbiome of patients with inflammatory bowel disease (IBD) is unable to ferment dietary fibre. This project explored the in vitro effect of fibre fermentation on production of short-chain fatty acids (SCFA) and on microbiome composition. Methods: Faecal samples were collected from 40 adults (>16 y) with IBD (n = 20 with Crohn’s disease and n = 20 with ulcerative colitis) in clinical remission and 20 healthy controls (HC). In vitro batch culture fermentations were carried out using as substrates maize starch, apple pectin, raftilose, wheat bran, α cellulose and a mixture of these five fibres. SCFA concentration (umol/g) was quantified with gas chromatography and microbiome was profiled with 16S rRNA sequencing. Results: Fibre fermentation did not correct the baseline microbial dysbiosis or lower diversity seen in either patients with CD or UC. For all fibres, up to 51% of baseline ASVs or genera changed in abundance in HC. In patients with IBD, fermentation of fibre substrates had no effect on species or genera abundance. Production of SCFA varied among the different fibre substrates but this was not different between the two IBD groups and compared to HC after either 5 or 24 h fermentation. Conclusions: Despite extensive microbial dysbiosis, patients with IBD have a similar capacity to ferment fibre and release SCFA as HC. Fibre supplementation alone may be unlikely to restore to a healthy status the compositional shifts characteristic of the IBD microbiome.  相似文献   

2.
Undernutrition is associated with gut microbiota unbalance, and probiotics are believed to restore it and improve gut integrity. A randomized double-blind controlled trial was conducted to evaluate the efficacy of gummy L. plantarum Dad-13 (108−9 CFU/3 g) to prevent the progression of severe undernutrition. Two groups of moderate undernutrition infants were involved in this study, namely the placebo (n = 15) and probiotics (n = 15) groups, and were required to consume the product for 50 days. 16S rRNA sequencing and qPCR were used for gut microbiota analysis, and gas chromatography was used to analyze Short-Chain Fatty Acid (SCFA). The daily food intake of both groups was recorded using food records. Our results revealed that the probiotic group had better improvements regarding the anthropometry and nutritional status. In addition, L. plantarum Dad-13 modulated the butyric acid-producing bacteria to increase and inhibit the growth of Enterobacteriaceae. This gut modulation was associated with the increment in SCFA, especially total SCFA, propionic, and butyric acid. The number of L. plantarum was increased after the probiotic intervention. However, L. plantarum Dad-13 was not able to change the alpha and beta diversity. Therefore, L. plantarum Dad-13 has been proven to promote the growth of beneficial bacteria.  相似文献   

3.
Maternal nutrition intake during pregnancy may affect the mother-to-child transmission of bacteria, resulting in gut microflora changes in the offspring, with long-term health consequences in later life. Longitudinal human studies are lacking, as only a small amount of studies showing the effect of nutrition intake during pregnancy on the gut microbiome of infants have been performed, and these studies have been mainly conducted on animals. This pilot study explores the effects of high or low fruit and vegetable gestational intake on the infant microbiome. We enrolled pregnant women with a complete 3-day dietary record and received postpartum follow-up. The 16S rRNA gene sequence was used to characterize the infant gut microbiome at 2 months (n = 39). Principal coordinate analysis ordination revealed that the infant gut microbiome clustered differently for high and low maternal fruit and vegetable consumption (p < 0.001). The linear discriminant analysis effect size and feature selection identified 6 and 17 taxa from both the high and low fruit and vegetable consumption groups. Among the 23 abundant taxa, we observed that six maternal intake nutrients were associated with nine taxa (e.g., Erysipelatoclostridium, Isobaculum, Lachnospiraceae, Betaproteobacteria, Burkholderiaceae, Sutterella, Clostridia, Clostridiales, and Lachnoclostridium). The amount of gestational fruit and vegetable consumption is associated with distinct changes in the infant gut microbiome at 2 months of age. Therefore, strategies involving increased fruit and vegetable consumption during pregnancy should be employed for modifying the gut microbiome early in life.  相似文献   

4.
The complex interactions between the diet, gut microbiome, and host characteristics that provide a functional benefit to the host are an area of great interest and current exploration in the nutrition and health science community. New technologies are available to assess mechanisms that may explain these functional benefits to the host. One emerging functional benefit from changes in the gut microbiome is increased calcium absorption, increased calcium retention, and improved indices of bone health. Prebiotic fibers enhance microbial fermentation in the gut, providing an ecological advantage to specific nonpathogenic bacteria that have the ability to modify an individual's metabolic potential. Fermentation of fibers also leads to increased production of short-chain fatty acids. These changes have been positively correlated with increased calcium absorption in humans and increased bone density and strength in animal models. Dietary fibers may offer an additional means to enhance calcium absorption with the possibility of stimulating the gut microbiome to ultimately influence bone health. This hot topic perspectives piece reviews innovative technologies that can be used to assess the impact of prebiotic fibers on the gastrointestinal tract (GIT) as well as the potential mechanisms that may explain their health effects on bone. Validated in vitro models used to measure alterations in the gut microbiome, as well as animal and clinical studies assessing the role of prebiotic fibers on calcium absorption and bone indices through alternations in the gut microbiome, are presented.  相似文献   

5.
Because of the recognized health benefits of breast milk, it is recommended as the sole nutrition source during the first 6 months of life. Among the bioactive components are human milk oligosaccharides (HMOs) that exert part of their activity via the gut microbiota. Here, we investigated the gut microbiota fermentation of HMO 2’fucosyllactose (2’-FL), using two in vitro models (48 h fecal incubations and the long-term mucosal simulator of the human intestinal microbial ecosystem [M-SHIME®]) with fecal samples from 3-month-old breastfed (BF) infants as well as 2–3 year old toddlers. The short-term model allowed the screening of five donors for each group and provided supportive data for the M-SHIME® study. A key finding was the strong and immediate increase in the relative abundance of Bifidobacteriaceae following 2’-FL fermentation by both the BF infant and toddler microbiota in the M-SHIME®. At the metabolic level, while decreasing branched-chain fatty acids, 2’-FL strongly increased acetate production together with increases in the health-related propionate and butyrate whilst gas production only mildly increased. Notably, consistently lower gas production was observed with 2’-FL fermentation as compared to lactose, suggesting that reduced discomfort during the dynamic microbiome establishment in early life may be an advantage along with the bifidogenic effect observed.  相似文献   

6.
Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiataUlva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35–81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.  相似文献   

7.
Consumption of prebiotic inulin has been found to increase calcium absorption, which may protect against gut diseases such as colorectal cancer. This dietary relation may be modulated by compositional changes in the gut microbiota; however, no human study has addressed this hypothesis. We determined the feasibility of a randomized crossover trial to evaluate the effect of three interventions (combined calcium and inulin supplementation, calcium supplementation alone, and inulin supplementation alone) on the intestinal microbiota composition and function. We conducted a 16-week pilot study in 12 healthy adults who consumed the three interventions in a random sequence. Participants provided fecal and blood samples before and after each intervention. Each intervention period lasted four weeks and was flanked by one-week washout periods. 16S ribosomal RNA sequencing and quantification of short chain fatty acids (SCFA) was determined in fecal samples. Systemic lipopolysaccharide binding protein (LBP) was quantified in serum. Of the 12 individuals assigned to an intervention sequence, seven completed the study. Reasons for dropout included time (n = 3), gastrointestinal discomfort (n = 1), and moving (n = 1). Overall, participants reported positive attitudes towards the protocol (n = 9) but were unsatisfied by the practicalities of supplement consumption (44%) and experienced digestive discomfort (56%). We found no appreciable differences in microbial composition, SCFA concentration, nor LBP concentrations when comparing intervention periods. In conclusion, an intervention study using a randomized crossover design with calcium and a prebiotic fiber is feasible. Improvements of our study design include using a lower dose prebiotic fiber supplement and a larger sample size.  相似文献   

8.
The present study aims to evaluate the effects of an infant formula supplemented with a mixture of prebiotic short and long chain inulin-type oligosaccharides on health outcomes, safety and tolerance, as well as on fecal microbiota composition during the first year of life. In a prospective, multicenter, randomized, double-blind study, n = 160 healthy term infants under 4 months of age were randomized to receive either an infant formula enriched with 0.8 g/dL of Orafti®Synergy1 or an unsupplemented control formula until the age of 12 months. Growth, fever (>38 °C) and infections were regularly followed up by a pediatrician. Digestive symptoms, stool consistency as well as crying and sleeping patterns were recorded during one week each study month. Fecal microbiota and immunological biomarkers were determined from a subgroup of infants after 2, 6 and 12 months of life. The intention to treat (ITT) population consisted of n = 149 infants. Both formulae were well tolerated. Mean duration of infections was significantly lower in the prebiotic fed infants (p < 0.05). The prebiotic group showed higher Bifidobacterium counts at month 6 (p = 0.006), and higher proportions of Bifidobacterium in relation to total bacteria at month 2 and 6 (p = 0.042 and p = 0.013, respectively). Stools of infants receiving the prebiotic formula were softer (p < 0.05). Orafti®Synergy1 tended to beneficially impact total daily amount of crying (p = 0.0594). Supplementation with inulin-type prebiotic oligosaccharides during the first year of life beneficially modulates the infant gut microbiota towards higher Bifidobacterium levels at the first 6 months of life, and is associated with reduced duration of infections.  相似文献   

9.
Helicobacter pylori (Hp) eradication therapy alters gut microbiota, provoking gastrointestinal (GI) symptoms that could be improved by probiotics. The study aim was to assess the effect in Hp patients of a Test fermented milk containing yogurt and Lacticaseibacillus (L. paracasei CNCM I-1518 and I-3689, L. rhamnosus CNCM I-3690) strains on antibiotic associated diarrhea (AAD) (primary aim), GI-symptoms, gut microbiota, and metabolites. A randomised, double-blind, controlled trial was performed on 136 adults under 14-day Hp treatment, receiving the Test or Control product for 28 days. AAD and GI-symptoms were reported and feces analysed for relative and quantitative gut microbiome composition, short chain fatty acids (SCFA), and calprotectin concentrations, and viability of ingested strains. No effect of Test product was observed on AAD or GI-symptoms. Hp treatment induced a significant alteration in bacterial and fungal composition, a decrease of bacterial count and alpha-diversity, an increase of Candida and calprotectin, and a decrease of SCFA concentrations. Following Hp treatment, in the Test as compared to Control group, intra-subject beta-diversity distance from baseline was lower (padj = 0.02), some Enterobacteriaceae, including Escherichia-Shigella (padj = 0.0082) and Klebsiella (padj = 0.013), were less abundant, and concentrations of major SCFA (p = 0.035) and valerate (p = 0.045) were higher. Viable Lacticaseibacillus strains were detected during product consumption in feces. Results suggest that, in patients under Hp treatment, the consumption of a multi-strain fermented milk can induce a modest but significant faster recovery of the microbiota composition (beta-diversity) and of SCFA production and limit the increase of potentially pathogenic bacteria.  相似文献   

10.
There is growing evidence that gut dysbiosis contributes to the progression of chronic kidney disease (CKD) owing to several mechanisms, including microbiota-derived uremic toxins, diet and immune-mediated factors. The aim of this study was to investigate the effect of a ß-glucan prebiotic on kidney function, uremic toxins and the gut microbiome in stage 3 to 5 CKD participants. Fifty-nine participants were randomized to either the ß-glucan prebiotic intervention group (n = 30) or the control group (n = 29). The primary outcomes were to assess kidney function (urea, creatinine and glomerular filtration rate), plasma levels of total and free levels of uremic toxins (p-cresyl sulfate (pCS), indoxyl-sulfate (IxS), p-cresyl glucuronide (pCG) and indoxyl 3-acetic acid (IAA) and gut microbiota using 16S rRNA sequencing at baseline, week 8 and week 14. The intervention group (age 40.6 ± 11.4 y) and the control group (age 41.3 ± 12.0 y) did not differ in age or any other socio-demographic variables at baseline. There were no significant changes in kidney function over 14 weeks. There was a significant reduction in uremic toxin levels at different time points, in free IxS at 8 weeks (p = 0.003) and 14 weeks (p < 0.001), free pCS (p = 0.006) at 14 weeks and total and free pCG (p < 0.001, p < 0.001, respectively) and at 14 weeks. There were no differences in relative abundances of genera between groups. Enterotyping revealed that the population consisted of only two of the four enterotypes: Bacteroides 2 and Prevotella. The redundancy analysis showed a few factors significantly affected the gut microbiome: these included triglyceride levels (p < 0.001), body mass index (p = 0.002), high- density lipoprotein (p < 0.001) and the prebiotic intervention (p = 0.002). The ß-glucan prebiotic significantly altered uremic toxin levels of intestinal origin and favorably affected the gut microbiome.  相似文献   

11.
Microbial colonization of very preterm (VPT) infants is detrimentally affected by the complex interplay of physiological, dietary, medical, and environmental factors. The aim of this study was to evaluate the effects of an infant formula containing the specific prebiotic mixture of scGOS/lcFOS (9:1) and glycomacropeptide (GMP) on the composition and function of VPT infants’ gut microbiota. Metagenomic analysis was performed on the gut microbiota of VPT infants sampled at four time points: 24 h before the trial and 7, 14, and 28 days after the trial. Functional profiling was aggregated into gut and brain modules (GBMs) and gut metabolic modules (GMMs) based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Enterococcus faecium, Escherichia coli, Klebsiella aerogenes, and Klebsiella pneumoniae were dominant species in both the test group and the control group. After the 4-week intervention, the abundance of Bifidobacterium in the test group was significantly increased. We found two GBMs (quinolinic acid synthesis and kynurenine degradation) and four GMMs (glutamine degradation, glyoxylate bypass, dissimilatory nitrate reduction, and preparatory phase of glycolysis) were significantly enriched in the test group, respectively. The results of this study suggested that formula enriched with scGOS/lcFOS (9:1) and GPM is beneficial to the intestinal microecology of VPT infants.  相似文献   

12.
The gut microbiota is a key factor in the correct development of the gastrointestinal immune system. Studies have found differences between the gut microbiota of newborns delivered by cesarean section compared to those vaginally delivered. Our objective was to evaluate the effect of ingestion of probiotics, prebiotics, or synbiotics during pregnancy and/or lactation on the development of the gut microbiota of the C-section newborns. We selected experimental studies in online databases from their inception to October 2021. Of the 83 records screened, 12 met the inclusion criteria. The probiotics used belonged to the genera Lactobacillus, Bifidobacterium, Propionibacterium, and Streptococcus, or a combination of those, with dosages varying between 2 × 106 and 9 × 1011 CFU per day, and were consumed during pregnancy and/or lactation. Probiotic strains were combined with galacto-oligosaccharides, fructo-oligosaccharides, or bovine milk-derived oligosaccharides in the synbiotic formulas. Probiotic, prebiotic, and synbiotic interventions led to beneficial gut microbiota in cesarean-delivered newborns, closer to that in vaginally delivered newborns, especially regarding Bifidobacterium colonization. This effect was more evident in breastfed infants. The studies indicate that this beneficial effect is achieved when the interventions begin soon after birth, especially the restoration of bifidobacterial population. Changes in the infant microbial ecosystem due to the interventions seem to continue after the end of the intervention in most of the studies. More interventional studies are needed to elucidate the optimal synbiotic combinations and the most effective strains and doses for achieving the optimal gut microbiota colonization of C-section newborns.  相似文献   

13.
Resistant starch as a prebiotic and synbiotic: state of the art   总被引:2,自引:0,他引:2  
Non-infectious diseases such as CHD and certain cancers have become major causes of death and disability in affluent countries. Probiotics (principally lactic acid bacteria; LAB) may assist in lowering the risk of these diseases. Experimental studies with probiotics have given generally inconclusive outcomes for infectious disease and for biomarkers for non-infectious disease. In part this situation may reflect their inability to colonise the adult human gut effectively. Prebiotics can assist in promoting colonisation, and resistant starch (RS), as a high-amylose starch, is a prebiotic and synbiotic. This starch exerts its synbiotic action through adhesion of the bacteria to the granule surface. Consumption of RS assists in recovery from infectious diarrhoea in man and animals. A rice porridge, high in RS, appears to modify the autochthonous porcine large-bowel microflora favourably through lowering Escherichia coli and coliform numbers. Many of the beneficial effects of RS on large-bowel function appear to be exerted through short-chain fatty acids (SCFA)formed by bacterial fermentation. In man LAB are found in relatively highest numbers in milk-fed infants where the profile of fermentation products differs quite markedly from that in adults.It appears unlikely that ingestion of current probiotics will alter either total SCFA or the proportions of the major acids. More emphasis needs to be given to the investigation of the effects of complex carbohydrates, including RS, on the autochthonous microflora of the human large bowel.  相似文献   

14.
Premature infants have a fragile ecology of the gut microbiota, which is associated with many health problems and may be influenced by formula versus breast feeding. The present study investigated differences in the process of gut microbiota colonisation in preterm infants fed with breastmilk or formula with or without probiotics before 12 weeks. This cohort study recruited 138 premature infants; 31 in the breastmilk (BM) group, 59 in the probiotics formula (PF) group and 48 in the non-probiotics formula (NPF) group, according to the feeding practice they received at birth. Gut bacterial composition was identified with 16S rRNA gene sequencing in faecal samples collected at 1 week, 6 weeks and 12 weeks after birth. The alpha diversity was higher in the PF group compared to the other groups at week 1 and 6 (both p < 0.01) but showed no difference at week 12. The beta diversity of the three groups showed a trend towards similarity at the first two stages (p < 0.001 and p = 0.009, respectively) and finally showed no difference at week 12. Canonical redundancy analysis showed that feeding type could explain the difference in gut microbiota composition at week one and six (both p < 0.01). At genus level, Bifidobacterium was enriched in the PF group, while the Enterococcus and Streptococcus was enriched in the NPF group. In summary, formula with probiotics feeding after birth can affect gut microbiota colonisation and lead to a bacterial community with less potential pathogens.  相似文献   

15.
Obesity and overweight are closely related to diet, and the gut microbiota play an important role in body weight and human health. The aim of this study was to explore how Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 supplementation alleviate obesity by modulating the human gut microbiome. A randomized, double-blind, placebo-controlled study was conducted on 72 individuals with overweight. Over a 12-week period, probiotic groups consumed 1 × 1010 colony-forming units of HY7601 and KY1032, whereas the placebo group consumed the same product without probiotics. After treatment, the probiotic group displayed a reduction in body weight (p < 0.001), visceral fat mass (p < 0.025), and waist circumference (p < 0.007), and an increase in adiponectin (p < 0.046), compared with the placebo group. Additionally, HY7601 and KY1032 supplementation modulated bacterial gut microbiota characteristics and beta diversity by increasing Bifidobacteriaceae and Akkermansiaceae and decreasing Prevotellaceae and Selenomonadaceae. In summary, HY7601 and KY1032 probiotics exert anti-obesity effects by regulating the gut microbiota; hence, they have therapeutic potential for preventing or alleviating obesity and living with overweight.  相似文献   

16.
Background: The infant gut microbiota establishes during a critical window of opportunity when metabolic and immune functions are highly susceptible to environmental changes, such as diet. Human milk oligosaccharides (HMOs) for instance are suggested to be beneficial for infant health and gut microbiota. Infant formulas supplemented with the HMOs 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) reduce infant morbidity and medication use and promote beneficial bacteria in the infant gut ecosystem. To further improve infant formula and achieve closer proximity to human milk composition, more complex HMO mixtures could be added. However, we currently lack knowledge about their effects on infants’ gut ecosystems. Method: We assessed the effect of lactose, 2′-FL, 2′-FL + LNnT, and a mixture of six HMOs (HMO6: consisting of 2′-FL, LNnT, difucosyllactose, lacto-N-tetraose, 3′- and 6′-sialyllactose) on infant gut microbiota and intestinal barrier integrity using a combination of in vitro models to mimic the microbial ecosystem (baby M-SHIME®) and the intestinal epithelium (Caco-2/HT29-MTX co-culture). Results: All the tested products had bifidogenic potential and increased SCFA levels; however, only the HMOs’ fermented media protected against inflammatory intestinal barrier disruption. 2′-FL/LNnT and HMO6 promoted the highest diversification of OTUs within the Bifidobactericeae family, whereas beneficial butyrate-producers were specifically enriched by HMO6. Conclusion: These results suggest that increased complexity in HMO mixture composition may benefit the infant gut ecosystem, promoting different bifidobacterial communities and protecting the gut barrier against pro-inflammatory imbalances.  相似文献   

17.
Intestinal colonization of the neonate is highly dependent on the term of pregnancy, the mode of delivery, the type of feeding [breast feeding or formula feeding]. Postnatal immune maturation is dependent on the intestinal microbiome implementation and composition and type of feeding is a key issue in the human gut development, the diversity of microbiome, and the intestinal function. It is well established that exclusive breastfeeding for 6 months or more has several benefits with respect to formula feeding. The composition of the new generation of infant formulas aims in mimicking HM by reproducing its beneficial effects on intestinal microbiome and on the gut associated immune system (GAIS). Several approaches have been developed currently for designing new infant formulas by the addition of bioactive ingredients such as human milk oligosaccharides (HMOs), probiotics, prebiotics [fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs)], or by obtaining the so-called post-biotics also known as milk fermentation products. The aim of this article is to guide the practitioner in the understanding of these different types of Microbiota Influencing Formulas by listing and summarizing the main concepts and characteristics of these different models of enriched IFs with bioactive ingredients.  相似文献   

18.
Dietary habits are amongst the main factors that influence the gut microbiome. Accumulating evidence points to the impact of a high-salt diet (HSD) on the composition and function of the intestinal microbiota, immune system and disease. In the present study, we thus investigated the effects of different NaCl content in the food (0.03%/sodium deficient, 0.5%/control, 4% and 10% NaCl) on the gut microbiome composition in mice. The bacterial composition was profiled using the 16S ribosomal RNA (rRNA) gene amplicon sequencing. Our results revealed that HSD led to distinct gut microbiome compositions compared to sodium-deficient or control diets. We also observed significant reduction in relative abundances of bacteria associated with immuno-competent short-chain fatty acid (SCFA) production (Bifidobacterium, Faecalibaculum, Blautia and Lactobacillus) in HSD-fed mice along with significant enrichment of Clostridia, Alistipes and Akkermansia depending on the sodium content in food. Furthermore, the predictive functional profiling of microbial communities indicated that the gut microbiota found in each category presents differences in metabolic pathways related to carbohydrate, lipid and amino acid metabolism. The presented data show that HSD cause disturbances in the ecological balance of the gastrointestinal microflora primarily through depletion of lactic acid-producing bacteria in a dose-dependent manner. These findings may have important implications for salt-sensitive inflammatory diseases.  相似文献   

19.
BackgroundCaribbean Latino adults have disproportionately high prevalence of chronic disease; however, underlying mechanisms are unknown. Unique gut microbiome profiles and relation to dietary quality may underlie health disparities.ObjectivesTo examine the dietary quality of an underrepresented group of Caribbean Latino older adults with high prevalence of chronic disease; characterize gut microbiome profiles in this cohort; determine associations between dietary quality, gut microbiome composition, and short-chain fatty acid (SCFA) production; examine associations of clinical factors (body mass index, type 2 diabetes [T2D] status, and laxative use) with gut microbiome composition.DesignThe study design was cross-sectional.Participants/settingRecruitment and interviews occurred at the Senior Center in Lawrence, MA, from September 2016-September 2017. A total of 20 adults aged ≥50 years, self-identified of Caribbean Latino origin, without use of antibiotics in 6 months or intestinal surgery were included in the study.Exposure and outcome measuresDiet was assessed by two, 24-hour recalls and dietary quality was calculated using the Healthy Eating Index 2015 and the Mediterranean Diet Score. The gut microbiome was assessed by 16S rRNA sequencing and fecal SCFA content. Anthropometrics (ie, weight and height) were measured by a trained interviewer, and self-reported laxative use, and other self-report health outcomes (ie, T2D status) were assessed by questionnaire.Statistical analysesFaith Phylogenetic Diversity (alpha diversity) and unique fraction metric, or UniFrac (beta diversity) and nonphylogenetic metrics, including Shannon diversity index (alpha diversity) were calculated. Spearman correlations and group comparisons using Kruskal-Wallis test between alpha diversity indexes and nutrient intakes were calculated. Patterns in the microbiome were estimated using a partitioning around medoids with estimation of number of clusters, with optimum average silhouette width. Log odds were calculated to compare predefined nutrients and diet score components between microbiome clusters using multivariable logistic regression, controlling for age and sex. Pearson correlation was used to relate SCFA fecal content to individual nutrients and diet indexes. Final models were additionally adjusted for laxative use. Differences in lifestyle factors by gut microbiome cluster were tested by Fisher's exact test.ResultsGenerally, there was poor alignment of participant’s diets to either the Mediterranean Diet score or Healthy Eating Index 2015. Range in the Healthy Eating Index 2015 was 36 to 90, where only 5% (n=1) of the sample showed high adherence to the Dietary Guidelines for Americans. Mediterranean Diet scores suggested low conformance with a Mediterranean eating pattern (score range=2 to 8, where 45% scored ≤3 [poor adherence]). The gut microbiome separated into two clusters by difference in a single bacterial taxon: Prevotella copri (P copri) (permutational multivariate analysis of variance [PERMANOVA] R2=0.576, ADONIS function P=0.001). Significantly lower P copri abundance was observed in cluster 1 compared with cluster 2 (Mann-Whitney P<0.0001). Samples in the P copri dominated cluster 2 showed significantly lower alpha diversity compared with P copri depleted cluster 1 (Shannon diversity index P=0.01). Individuals in the P copri dominated cluster showed a trend toward higher 18:3 α-linolenic fatty acid intakes (P=0.09). Percentage of energy from total fat intake was significantly, positively correlated with fecal acetate (r=0.46; P=0.04), butyrate (r=0.50; P=0.03) and propionate (r=0.52; P=0.02). Associations between dietary intake and composition of the gut microbiome were attenuated by self-report recent laxative use. Individuals with T2D exhibited a significantly greater abundance of the Enterobacteriales (P=0.01) and a trend toward lower fecal content of butyric acid compared to subjects without T2D (P=0.08). Significant beta diversity differences were observed by weight (Mantel P<0.003) and body mass index (Mantel P<0.07).ConclusionsTwo unique microbiome profiles, identified by abundance of P copri, were identified among Caribbean Latino adults. Microbiome profiles and SCFA content were associated with diet, T2D, and lifestyle. Further research is needed to determine the role of P copri and SCFA production in the risk for chronic disease and associated lifestyle predictors.  相似文献   

20.
The gut microbiome (GMB) plays an important role in developmental processes and has been implicated in the etiology of psychiatric disorders. However, the relationship between GMB and schizophrenia remains unclear. In this article, we review the existing evidence surrounding the gut microbiome in schizophrenia and the potential for antipsychotics to cause adverse metabolic events by altering the gut microbiome. We also evaluate the current evidence for the clinical use of probiotic and prebiotic treatment in schizophrenia. The current data on microbiome alteration in schizophrenia remain conflicting. Longitudinal and larger studies will help elucidate the confounding effect on the microbiome. Current studies help lay the groundwork for further investigations into the role of the GMB in the development, presentation, progression and potential treatment of schizophrenia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号