首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
MAX phases are an advanced class of ceramics based on ternary carbides or nitrides that combine some of the ceramic and metallic properties, which make them potential candidate materials for many engineering applications under severe conditions. The present work reports the successful synthesis of nearly single bulk Ti2AlN MAX phase (>98% purity) through solid-state reaction and from a Ti and AlN powder mixture in a molar ratio of 2:1 as starting materials. The mixture of Ti and AlN powders was subjected to reactive spark plasma sintering (SPS) under 30 MPa at 1200 °C and 1300 °C for 10 min in a vacuum atmosphere. It was found that the massive formation of Al2O3 particles at the grain boundaries during sintering inhibits the development of the Ti2AlN MAX phase in the outer zone of the samples. The effect of sintering temperature on the microstructure and mechanical properties of the Ti2AlN MAX phase was investigated and discussed.  相似文献   

2.
Highly transparent Y2O3 ceramics were successfully fabricated with CaO as sintering aid. The microstructure evolution, optical transmittance, hardness and thermal conductivity of the Y2O3 ceramics were investigated. It was found that doping a small amount (0.01–0.15 wt.%) of CaO could greatly improve the densification rate of Y2O3. With an optimized CaO dosage of 0.02 wt.% combined with the low temperature vacuum sintering plus hot isostatic pressing (HIP-ing), Y2O3 ceramics with in-line transmittance of 84.87% at 1200 nm and 81.4% at 600 nm were obtained.  相似文献   

3.
Sintering aid was very crucial to influence the microstructure and thus the optical property of the sintered optical ceramics. The purpose of this work was to explain the difference between the sintering aids of Li+ and Y3+ on Al23O27N5 (AlON) ceramic via reaction sintering method. The effects of LiAl5O8 (LA) and Y2O3 on the sintering of Al2O3–AlN system were carefully compared, in terms of X-ray diffraction (XRD), microstructure, density, X-ray photoelectron spectroscopy (XPS) and optical transmittance. According to the XPS and XRD lattice analysis, the chemical structure of the materials was not obviously affected by different dopants. We firstly reported that, there was obvious volume expansion in the Y3+ dopped AlON ceramics, which was responsible for the low transparency of the ceramics. Obvious enhancements were achieved using Li+ aids from the results that Li: AlONs showing a higher transparency and less optical defects. A higher LA content (20 wt%) was effective to remove pores and thus obtain a higher transmittance (~86.8% at ~3.5 μm). Thus, pores were the main contributions to the property difference between the dopant samples. The importance of sintering aids should be carefully realized for the reaction sintering fabrication of AlON based ceramics towards high transparency.  相似文献   

4.
The influence of the mechanical activation process and sintering atmosphere on the microstructure and mechanical properties of bulk Ti2AlN has been investigated. The mixture of Ti and AlN powders was prepared in a 1:2 molar ratio, and a part of this powder mixture was subjected to a mechanical activation process under an argon atmosphere for 10 h using agate jars and balls as milling media. Then, the sintering and production of the Ti2AlN MAX phase were carried out by Spark Plasma Sintering under 30 MPa with vacuum or nitrogen atmospheres and at 1200 °C for 10 min. The crystal structure and microstructure of consolidated samples were characterized by X-ray Diffraction, Scanning Electron Microscopy, and Energy Dispersive X-ray Spectroscopy. The X-ray diffraction patterns were fitted using the Rietveld refinement for phase quantification and determined their most critical microstructural parameters. It was determined that by using nitrogen as a sintering atmosphere, Ti4AlN3 MAX phase and TiN were increased at the expense of the Ti2AlN. In the samples prepared from the activated powders, secondary phases like Ti5Si3 and Al2O3 were formed. However, the higher densification level presented in the sample produced by using both nitrogen atmosphere and MAP powder mixture is remarkable. Moreover, the high-purity Ti2AlN zone of the MAX-1200 presented a hardness of 4.3 GPa, and the rest of the samples exhibited slightly smaller hardness values (4.1, 4.0, and 4.2 GPa, respectively) which are matched with the higher porosity observed on the SEM images.  相似文献   

5.
This paper presents a study of Al2O3–ZrO2 (ZTA) nanocomposites with different contents of reduced graphene oxide (rGO). The influence of the rGO content on the physico-mechanical properties of the oxide composite was revealed. Graphene oxide was obtained using a modified Hummers method. Well-dispersed ZTA-GO nanopowders were produced using the colloidal processing method. Using spark plasma sintering technology (SPS), theoretically dense composites were obtained, which also reduced GO during SPS. The microstructure, phase composition, and physico-mechanical properties of the sintered composites were studied. The sintered ZTA composite with an in situ reduced graphene content of 0.28 wt.% after the characterization showed improved mechanical properties: bending strength was 876 ± 43 MPa, fracture toughness—6.8 ± 0.3 MPa·m1/2 and hardness—17.6 ± 0.3 GPa. Microstructure studies showed a uniform zirconia distribution in the ZTA ceramics. The study of the electrical conductivity of reduced graphene oxide-containing composites showed electrical conductivity above the percolation threshold with a small content of graphene oxide (0.28 wt.%). This electrical conductivity makes it possible to produce sintered ceramics by electrical discharge machining (EDM), which significantly reduces the cost of manufacturing complex-shaped products. Besides improved mechanical properties and EDM machinability, 0.28 wt.% rGO composites demonstrated high resistance to hydrothermal degradation.  相似文献   

6.
The aim of this study is to present a novel, lower sintering temperature preparation, processing, structural, mechanical, and tribological testing of the AlN-Al2O3 ceramics. The precursor powder of AlN was subjected to oxidation in ambient environment at 900 °C for 3, 10, and 20 h, respectively. These oxidized powders were characterized by SEM and XRD to reveal their morphology, phase, and crystal structure. The SEM results showed coarse powder particles and the presence of aluminum oxide (Al2O3) phase at the surface of aluminum nitride (AlN). The XRD analysis has shown increasing aluminum-oxy-nitride conversion of aluminum nitride as the holding time of oxidation increased. The highest percentage of conversion of AlN powder to AlN-Al2O3 was observed after 10 h. Simultaneously the powders were compacted and sintered using the hot isostatic pressing (HIP) under inert environment (N2 gas) at 1700 °C, 20 MPa for 5 h. This led to the compaction and increase in density of the final samples. Mechanical tests, such as bending test and tribology tests, were carried out on the samples. The mechanical properties of the samples were observed to improve in the oxidized samples compared to the precursor AlN. Moreover, applying longer oxidation time, the mechanical properties of the sintered samples enhanced significantly. Optimum qualitative (microstructure, oxide percentage) and quantitative (tribology, hardness, and bending tests) properties were observed in samples with 10-h oxidation time.  相似文献   

7.
In order to reduce the sintering temperature and improve the mechanical properties of B4C ceramics, ZrB2 was formed in situ using the SPS sintering method with ZrO2 and B4C as raw materials. Thermodynamic calculations revealed that CO pressure affected the formation of ZrB2 at temperatures from 814 °C to 1100 °C. The experimental results showed that the ZrB2 grain size was <5 µm and that the grains were uniformly distributed within the B4C ceramics. With an increase in ZrO2 content, the Vickers hardness and flexural strength of the B4C ceramics first increased and then decreased, while the fracture toughness continuously increased. When the content of ZrO2 was 15 wt%, the Vickers hardness, fracture toughness and flexural strength of B4C ceramics were 35.5 ± 0.63 GPa, 3.6 ± 0.24 MPa·m1/2 and 403 ± 10 MPa, respectively. These results suggest that ZrB2 inhibits B4C grain growth, eliminates crack tip stress, and provides fine grain to strengthen and toughen B4C ceramics.  相似文献   

8.
In this work, La-doped Sr0.6Ba0.4Nb2O6 ferroelectric ceramics were fabricated by the conventional solid state reaction method (CS) and spark plasma sintering (SPS), respectively. The microstructure, phase structure, dielectric properties, relaxor behavior, ferroelectric and energy storage properties were investigated and compared to indicate the effects of spark plasma sintering on their performances. The results show that the grain shape changes from columnar to isometric crystal and the grain size decreases obviously after spark plasma sintering. The dielectric constant of the CS sample and the SPS sample both show a typical relaxor behavior with obvious frequency dispersion. The diffusion parameters (γ) of both CS sample and SPS sample are close to 2 and all the samples present slim polarization–electric (P-E) loops, which verify the relaxor behavior. Moreover, the breakdown strength, Eb, and discharge energy storage density, Wrec, of La-doped Sr0.6Ba0.4Nb2O6 ferroelectric ceramics prepared by SPS are improved significantly. This work provides guidance for improving the energy storage performance of ferroelectric ceramics with tungsten bronze structures by decreasing the grain size through adopting a different sintering method.  相似文献   

9.
Garnet-type Li7La3Zr2O12 (LLZO) is considered as a promising solid electrolyte. Nb-doped LLZO ceramics exhibit significantly improved ion conductivity. However, how to prepare the Nb-doped LLZO ceramics in a simple and economical way, meanwhile to investigate the relationship between process conditions and properties in Li7-xLa3Zr2-xNbxO12 ceramics, is particularly important. In this study, Li7-xLa3Zr2-xNbxO12 (LLZNxO, x = 0, 0.2, 0.4, 0.6) ceramics were prepared by conventional solid-state reaction. The effect of sintering process on the structure, microstructure, and ionic conductivity of LLZNxO (x = 0, 0.2, 0.4, 0.6) ceramics was investigated. Due to the more contractive Nb-O bonds in LLZNxO ceramics, the cubic structures are much easier to form and stabilize, which could induce the decreased preparation time. High-performance garnet LLZNxO ceramics can be obtained by optimizing the sintering process with lower calcining temperature and shorter holding time. The garnet samples with x = 0.4 calcined at 850 °C for 10 h and sintered at 1250 °C for 4 h exhibit the highest ionic conductivity of 3.86 × 10−4 S·cm−1 at room temperature and an activation energy of 0.32 eV, which can be correlated to the highest relative density of 96.1%, and good crystallinity of the grains.  相似文献   

10.
Aluminum nitride, with its high thermal conductivity and insulating properties, is a promising candidate as a thermal dissipation material in optoelectronics and high-power logic devices. In this work, we have shown that the thermal conductivity and electrical resistivity of AlN ceramics are primarily governed by ionic defects created by oxygen dissolved in AlN grains, which are directly probed using 27Al NMR spectroscopy. We find that a 4-coordinated AlN3O defect (ON) in the AlN lattice is changed to intermediate AlNO3, and further to 6-coordinated AlO6 with decreasing oxygen concentration. As the aluminum vacancy (VAl) defect, which is detrimental to thermal conductivity, is removed, the overall thermal conductivity is improved from 120 to 160 W/mK because of the relatively minor effect of the AlO6 defect on thermal conductivity. With the same total oxygen content, as the AlN3O defect concentration decreases, thermal conductivity increases. The electrical resistivity of our AlN ceramics also increases with the removal of oxygen because the major ionic carrier is VAl. Our results show that to enhance the thermal conductivity and electrical resistivity of AlN ceramics, the dissolved oxygen in AlN grains should be removed first. This understanding of the local structure of Al-related defects enables us to design new thermal dissipation materials.  相似文献   

11.
In this study, we report a low-temperature approach involving a combination of a sol–gel hydrothermal method and spark plasma sintering (SPS) for the fabrication of cubic phase ZrW2−xMoxO8 (0.00 ≤ x ≤ 2.00) bulk ceramics. The cubic-ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.50) bulk ceramics were successfully synthesized within a temperature range of 623–923 K in a very short amount of time (6–7 min), which is several hundred degrees lower than the typical solid-state approach. Meanwhile, scanning electron microscopy and density measurements revealed that the cubic-ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.50) bulk ceramics were densified to more than 90%. X-ray diffraction (XRD) results revealed that the cubic phase ZrW2−xMoxO8 (0.00 ≤ x ≤ 1.5) bulk ceramics, as well as the sol–gel-hydrothermally synthesized ZrW2−xMoxO7(OH)2·2H2O precursors correspond to their respective pure single phases. The bulk ceramics demonstrated negative thermal expansion characteristics, and the coefficients of negative thermal expansion were shown to be tunable in cubic-ZrW2−xMoxO8 bulk ceramics with respect to x value and sintering temperature. The cubic-ZrW2−xMoxO8 solid solution can thus have potential applications in electronic devices such as heat sinks that require regulation of thermal expansion.  相似文献   

12.
The traditional solid-state reaction method was employed to synthesize bulk calcium cobaltite (Ca349/Ca3Co4O9) ceramics via ball milling the precursor mixture. The samples were compacted using conventional sintering (CS) and spark plasma sintering (SPS) at 850, 900, and 950 °C. The X-ray diffraction (XRD) pattern indicates the presence of the Ca349 phase for samples sintered at 850 and 900 °C. In addition, SPS fosters higher densification (81.18%) than conventional sintering (50.76%) at elevated sintering temperatures. The thermo-gravimetric analysis (TGA) and differential thermal analysis (DTA) performed on the precursor mixture reported a weight loss of ~25.23% at a temperature range of 600–820 °C. This current work aims to analyze the electrical properties (Seebeck coefficient (s), electrical resistivity (ρ), and power factor) of sintered samples as a function of temperature (35–500 °C). It demonstrates that the change in sintering temperature (conventional sintering) did not evince any significant change in the Seebeck coefficient (113–142 μV/K). However, it reported a low resistivity of 153–132 μΩ-m and a better power factor (82–146.4 μW/mK2) at 900 °C. On the contrary, the SPS sintered samples recorded a higher Seebeck coefficient of 121–181 μV/K at 900 °C. Correspondingly, the samples sintered at 950 °C delineated a low resistivity of 145–158 μΩ-m and a better power factor (97–152 μW/mK2).  相似文献   

13.
In this study, ceramic CaCu3Ti4O12 (CCTO) and CaCu3−xMgxTi4O12 solid solutions in which 0.1 ≤ x ≤ 0.5 were prepared by the mechanochemical method, realized by a high-energy ball milling technique. The effects of the Mg2+ ion concentration and sintering time on the dielectric response in the prepared ceramics were investigated and discussed. It was demonstrated that, by the use of a sufficiently high energy of mechanochemical treatment, it is possible to produce a crystalline product after only 2 h of milling the mixture of the oxide substrates. Both the addition of magnesium ions and the longer sintering time of the mechanochemically-produced ceramics cause excessive grain growth and significantly affect the dielectric properties of the materials. The X-ray diffraction (XRD) analysis showed that all of the as-prepared solid solutions, CaCu3−xMgxTi4O12 (0.0 ≤ x ≤ 0.5), regardless of the sintering time, exhibit a cubic perovskite single phase. The dielectric study showed two major contributions associated with the grains and the grain boundaries. The analysis of the electric modules of these ceramics confirmed the occurrence of Maxwell–Wagner type relaxation, which is dependent on the temperature.  相似文献   

14.
Low-temperature co-fired ceramics (LTCCs) are dielectric materials that can be co-fired with Ag or Cu; however, conventional LTCC materials are mostly poorly thermally conductive, which is problematic and requires improvement. We focused on ZnAl2O4 (gahnite) as a base material. With its high thermal conductivity (~59 W·m−1·K−1 reported for 0.83ZnAl2O4–0.17TiO2), ZnAl2O4 is potentially more thermally conductive than Al2O3 (alumina); however, it sinters densely at a moderate temperature (~1500 °C). The addition of only 4 wt.% of Cu3Nb2O8 significantly lowered the sintering temperature of ZnAl2O4 to 910 °C, which is lower than the melting point of silver (961 °C). The sample fired at 960 °C for 384 h exhibited a relative permittivity (εr) of 9.2, a quality factor by resonant frequency (Q × f) value of 105,000 GHz, and a temperature coefficient of the resonant frequency (τf) of −56 ppm·K−1. The sample exhibited a thermal conductivity of 10.1 W·m−1·K−1, which exceeds that of conventional LTCCs (~2–7 W·m−1·K−1); hence, it is a superior LTCC candidate. In addition, a mixed powder of the Cu3Nb2O8 additive and ZnAl2O4 has a melting temperature that is not significantly different from that (~970 °C) of the pristine Cu3Nb2O8 additive. The sample appears to densify in the solid state through a solid-state-activated sintering mechanism.  相似文献   

15.
In the present study, high-purity ternary-phase nitride (Ti2AlN) powders were synthesized through microwave sintering using TiH2, Al, and TiN powders as raw materials. X-ray diffraction (XRD), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were adopted to characterize the as-prepared powders. It was found that the Ti2AlN powder prepared by the microwave sintering of the 1TiH2/1.15Al/1TiN mixture at 1250 °C for 30 min manifested great purity (96.68%) with uniform grain size distribution. The formation mechanism of Ti2AlN occurred in four stages. The solid-phase reaction of Ti/Al and Ti/TiN took place below the melting point of aluminum and formed Ti2Al and TiN0.5 phases, which were the main intermediates in Ti2AlN formation. Therefore, the present work puts forward a favorable method for the preparation of high-purity Ti2AlN powders.  相似文献   

16.
Lead-free piezoelectric ceramics with nominal composition at morphotropic phase boundary Ba0.85Ca0.15Ti0.9Zr0.1O3 (BCTZ) prepared by different processing routes and sintered either by conventional solid-state reaction or by spark plasma sintering (SPS) techniques were comparatively investigated to observe the role of structural modifications and of microstructures on the dielectric, ferroelectric, piezoelectric and electrocaloric responses. The ceramics presented relative densities from 75% to 97% and showed variations in their phase composition as a result of variable mixing and different synthesis and sintering parameters providing local compositional heterogeneity. As result, all of the ceramics showed diffuse phase transition and ferroelectric switching responses, with parameters affected mostly by density (Pr between 3.6 to 10.1 μC/cm2). High values for the electrocaloric response in the Curie range were found for the ceramics with predominantly orthorhombic character. Field-induced structural modifications were probed by tunability anomalies and by XRD experiments in remanence conditions. Piezoelectric effects with notably high figure of merit values were assigned to the better densification and poling efficiency of BCTZ ceramics.  相似文献   

17.
NiAl-Al2O3 composites, fabricated from the prepared composite powders by mechanical alloying and then consolidated by pulse plasma sintering, were presented. The use of nanometric alumina powder for reinforcement of a synthetized intermetallic matrix was the innovative concept of this work. Moreover, this is the first reported attempt to use the Pulse Plasma Sintering (PPS) method to consolidate composite powder with the contribution of nanometric alumina powder. The composite powders consisting of the intermetallic phase NiAl and Al2O3 were prepared by mechanical alloying from powder mixtures containing Ni-50at.%Al with the contribution of 10 wt.% or 20 wt.% nanometric aluminum oxide. A nanocrystalline NiAl matrix was formed, with uniformly distributed Al2O3 inclusions as reinforcement. The PPS method successfully consolidated NiAl-Al2O3 composite powders with limited grain growth in the NiAl matrix. The appropriate sintering temperature for composite powder was selected based on analysis of the grain growth and hardness of Al2O3 subjected to PPS consolidation at various temperatures. As a result of these tests, sintering of the NiAl-Al2O3 powders was carried out at temperatures of 1200 °C, 1300 °C, and 1400 °C. The microstructure and properties of the initial powders, composite powders, and consolidated bulk composite materials were characterized by SEM, EDS, XRD, density, and hardness measurements. The hardness of the ultrafine-grained NiAl-Al2O3 composites obtained via PPS depends on the Al2O3 content in the composite, as well as the sintering temperature applied. The highest values of the hardness of the composites were obtained after sintering at the lowest temperature (1200 °C), reaching 7.2 ± 0.29 GPa and 8.4 ± 0.07 GPa for 10 wt.% Al2O3 and 20 wt.% Al2O3, respectively, and exceeding the hardness values reported in the literature. From a technological point of view, the possibility to use sintering temperatures as low as 1200 °C is crucial for the production of fully dense, ultrafine-grained composites with high hardness.  相似文献   

18.
This work focuses on research on obtaining and characterizing Al2O3/ZrO2 materials formed via slip casting method. The main emphasis in the research was placed on environmental aspects and those related to the practical use of ceramic materials. The goal was to analyze the environmental loads associated with the manufacturing of Al2O3/ZrO2 composites, as well as to determine the coefficient of thermal expansion of the obtained materials, classified as technical ceramics. This parameter is crucial in terms of their practical applications in high-temperature working conditions, e.g., as parts of industrial machines. The study reports on the four series of Al2O3/ZrO2 materials differing in the volume content of ZrO2. The sintering process was preceded by thermogravimetric measurements. The fabricated and sintered materials were characterized by dilatometric study, scanning electron microscopy, X-ray diffraction, and stereological analysis. Further, life cycle assessment was supplied. Based on dilatometric tests, it was observed that Al2O3/ZrO2 composites show a higher coefficient of thermal expansion than that resulting from the content of individual phases. The results of the life cycle analysis showed that the environmental loads (carbon footprint) resulting from the acquisition and processing of raw materials necessary for the production of sinters from Al2O3 and ZrO2 are comparable to those associated with the production of plastic products such as polypropylene or polyvinyl chloride.  相似文献   

19.
Shape Memory Alloys (SMAs) can play an essential role in developing novel active sensors for self-healing, including aeronautical systems. However, the NiTi SMAs available in the market are almost limited to wires, small sheets, and coatings. This restriction is mainly due to the difficulty in processing NiTi through conventional processes. Thus, the objective of this study is to evaluate the potential of one of the most promising routes for NiTi additive manufacturing—material extrusion (MEX). Optimizing the different steps during processing is mandatory to avoid brittle secondary phases formation, such as Ni3Ti. The prime NiTi powder is prealloyed, but it also contains NiTi2 and Ni as secondary phases. The present study highlights the role of Ni and NiTi2, with the later having a melting temperature (Tm = 984 °C) lower than the NiTi sintering temperature, thus allowing a welcome liquid phase sintering (LPS). Nevertheless, the reaction of the liquid phase with the Ni phase could contribute to the formation of brittle intermetallic compounds, particularly around NiTi and NiTi2 phases, affecting the final structural properties of the 3D object. The addition of TiH2 to the virgin prealloyed NiTi powder was also studied and revealed the non-formation of Ni3Ti for a specific composition. The balancing addition of extra Ni revealed priority in the Ni3Ti appearance, emphasizing the role of Ni. Feedstocks extruded (filaments) and green strands (layers), before and after debinding & sintering, were used as homothetic of 3D objects for evaluation of defects (microtomography), microstructures, and mechanical properties. The composition of prealloyed powder with 5 wt.% TiH2 addition after sintering showed a homogeneous matrix with the NiTi2 second phase uniformly dispersed.  相似文献   

20.
In this work, novel MgCu2Nb2O8 (MCN) ceramics were synthesized by the two-step sintering (TSS) technique, and the phase composition, crystal structures, and microwave dielectric properties were comprehensively studied. X-ray diffraction (XRD) and Raman analysis demonstrated that MCN ceramics are multi-phase ceramics consisting of MgNb2O6 and CuO phases. X-ray photoelectron spectroscopy (XPS) was utilized to investigate the chemical composition and element valence of MgCu2Nb2O8 ceramics. Scanning electron microscopy (SEM) analysis demonstrated dense microstructures in the MCN ceramics prepared at a sintering temperature of 925 °C. The microwave dielectric properties were largely affected by the lattice vibrational modes and densification level of the ceramics. The outstanding microwave dielectric properties of εr = 17.15, Q × f = 34.355 GHz, and τf = −22.5 ppm/°C were obtained for the MCN ceramics sintered at 925 °C, which are results that hold promise for low temperature co-fired ceramic (LTCC) applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号