首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Virtually all asthma patients use brorichodilators. Formoterol and salbutamol have a rapid onset of bronchodilating effect, whereas salmeterol acts slower. We studied the onset of improvement of dyspnoea sensation after inhalation with these bronchodilators and placebo to reverse a methacholine-induced bronchoconstriction as a model for an acute asthma attack. Seventeen patients with asthma completed this randomised, double-blind, crossover, double-dummy study. On 4 test days, forced expiratory volume in 1 s (FEV1) and Borg score were recorded and patients were challenged with methacholine until FEV1 fell with > or = 30% of baseline value. Thereafter, formoterol 12 microg via Turbuhaler, salbutamol 50 microg via Turbuhaler, salmeterol 50 microg via Diskhaler, or placebo was inhaled. FEV1 and Borg scores were assessed during the following 60 min. The first sensed improvement of Borg score was significantly (P<0.05) faster achieved with formoterol (geometric mean (Gmean) (range) 1.5 (1-40) min) and salbutamol 1.8 (1-10) min than with salmeterol 4.5 (1-30) min and placebo 3.4 (1-40) min. The Borg score returned significantly faster to the baseline value with formoterol, salbutamol, and salmeterol (Gmean time 13.8 (1-75), 13.4 (1-60), and 18.0 (1-75) min, respectively) than with placebo (33.6 (1-75 min). Formoterol and salbutamol act significantly faster than salmeterol in relieving dyspnoea induced by methacholine-induced bronchoconstriction, in patients with asthma.  相似文献   

2.
Inhalers containing corticosteroids and long-acting beta2-agonists are becoming increasingly important in asthma management. A rapid effect is important to patients, particularly during exacerbations. We compared the onset of bronchodilation and patient-perceived relief from dyspnoea following single-inhaler budesonide/formoterol or salmeterol/fluticasone in a model of acute bronchoconstriction. A randomised, double-blind, double-dummy, single-dose, crossover study included 27 outpatients with asthma (mean age 35 years; mean FEV1 90% predicted normal). Immediately following methacholine-induced bronchoconstriction (fall in FEV1 > or = 30%), patients inhaled budesonide/formoterol (160/4.5 microg, 1 or 2 inhalations; Symbicort Turbuhaler), salmeterol/fluticasone (50/250 microg; Seretide Diskus) or placebo on 4 study days. Lung function and Borg score were assessed for 30 min. During methacholine-induced provocation (final mean FEV1 62.5% of baseline), mean Borg score increased 10-fold (from 0.3 to 3.0 units). Hereafter, mean FEV1 at 3 min improved significantly more after budesonide/formoterol 1 and 2 inhalations (37 and 38%, respectively) than after salmeterol/fluticasone (23%; P < 0.001) or placebo (10%; P < 0.001). Median recovery times to 85% of baseline FEV1 were shorter for budesonide/formoterol (1 or 2 inhalations: 3.3 and 2.8 min, respectively) than salmeterol/fluticasone (8.9 min; P < 0.001) and placebo (> 30 min). One min after budesonide/formoterol, dyspnoea was significantly reduced (Borg score -0.86 units, both doses) compared with salmeterol/fluticasone (-0.55 units; P < 0.05) and placebo (-0.23 units; P < 0.001). Budesonide/formoterol provides immediate bronchodilation, faster than salmeterol/fluticasone, which patients can feel during acute methacholine-induced bronchoconstriction.  相似文献   

3.
The onset of bronchoprotection as obtained by various beta2-agonists has not been examined in a comparitive study. In this study, the onset of bronchodilation and protection against exercise-induced bronchoconstriction in asthmatics after inhalation of the long-acting beta2-agonists formoterol and salmeterol and the short-acting beta2-agonist terbutaline were measured. Twenty-five subjects with asthma and a history of exercise-induced bronchoconstriction (mean baseline forced expiratory volume in one second (FEV1): 90% predicted; mean fall in FEV1 after exercise: 31% from baseline) were enrolled in this double-blind, double-dummy, placebo-controlled, randomized, four-period crossover study. Exercise challenges were performed on 12 days at either 5, 30, or 60 min after inhalation of a single dose of formoterol (12 microg Turbuhaler), salmeterol (50 microg Diskus), terbutaline (500 microg Turbuhaler) or placebo. Exercise-induced bronchoconstriction (maximum fall in FEV1 or area under the curve) did not differ significantly between terbutaline, formorerol and salmeterol either 5, 30, or 60 min after inhalation of the study medication. In contrast, the onset of bronchodilation was slower after salmeterol compared to terbutaline and formoterol (p<0.05, each), which both showed a similar time course. At all time points between 5 and 60 min, formoterol provided significantly greater bronchodilation than salmeterol (p<0.05). These data indicate that equipotent doses of the bronchodilators salmeterol, formoterol and terbutaline were similarly effective with respect to their short-term protective potency against exercise-induced bronchoconstriction, despite the fact that the time course of bronchodilation was significantly different between the three beta2-agonists.  相似文献   

4.
We studied 16 patients with stable COPD in a double blind, double dummy, placebo-controlled, within patient study to see if formoterol could be used as a rescue drug. We compared the of onset of bronchodilation obtained with formoterol 12 microg (metered dose corresponding to 9 microg delivered dose) and formoterol 24 microg (metered dose corresponding to 18 microg delivered dose), both delivered via Turbuhaler, with that of salbutamol 400 microg and salbutamol 800 microg delivered via pressurized metered-dose inhaler (pMDI). Patients inhaled single doses of placebo, formoterol and salbutamol on five separate days. FEV1 was measured in baseline condition and 3, 6, 9, 12, 15, 18, 21, 24, 30, 40, 50, and 60 min after inhalation of each treatment. We examined two separate criteria for deciding if a response was greater than that expected by a random variation of the measurement: (1) a rise in FEV1 of at least 15% from the baseline value; (2) an absolute increase in FEV1 of at least 200 ml. Formoterol 12 microg (15.2 min; 95% CI 9.5-21.0) and formoterol 24 microg (15.1 min; 95% CI 8.9-21.2) caused a rise in FEV1 of at least 15% from the baseline value almost rapidly as salbutamol 400 microg (13.6 min; 95% CI 7.1-20.1) and salbutamol 800 microg (14.5 min; 95% CI 7.1-21.9). No significant difference (P=0.982) in onset of action was seen between the four active treatments. According to Criterion 2, the mean time to 200 ml increase in FEV1 was 11.1 min (95% CI: 7.0-15.2) after salbutamol 400 microg, 13.0 min (95% CI: 7.9-18.1) after salbutamol 800 microg, 14.7 min (95% CI: 7.1-22.4) after formoterol 12 microg, and 12.7 min (95% CI: 7.4-18.0) after formoterol 24 microg. Again, there was no significant difference (P= 0.817) between the four active treatments. Formoterol Turbuhaler 12 microg and 24 microg caused bronchodilation as rapidly as salbutamol 400 microg and 800 microg given via pMDI.  相似文献   

5.
Continuous treatment with a short-acting beta2-agonist can lead to reduced bronchodilator responsiveness during acute bronchoconstriction. This study evaluated bronchodilator tolerance to salbutamol following regular treatment with a long-acting beta2-agonist, formoterol. The modifying effect of intravenous corticosteroid was also studied. Ten asthmatic subjects (using inhaled steroids) participated in a randomised, double-blind, placebo-controlled, cross-over study. Formoterol 12 microg b.i.d. or matching placebo was given for 10-14 days with >2 weeks washout. Following each treatment, patients underwent a methacholine challenge to induce a fall in forced expired volume in one second (FEV1) of at least 20%, then salbutamol 100 microg, 100 microg, and 200 microg was inhaled via a spacer at 5 min intervals, with a further 400 microg at 45 min. After a third single-blind formoterol treatment period, hydrocortisone 200 mg was given intravenously prior to salbutamol. Dose-response curves for change in FEV1 with salbutamol were compared using analysis of covariance to take account of methacholine-induced changes in spirometry. Regular formoterol resulted in a significantly lower FEV1 after salbutamol at each time point compared to placebo (p<0.01). The area under the curves (AUCs) for 15 (AUC0-15) and 45 (AUC0-45) min were 28.8% and 29.5% lower following formoterol treatment (p<0.001). Pretreatment with hydrocortisone had no significant modifying effect within 2 h of administration. It is concluded that significant tolerance to the bronchodilator effects of inhaled salbutamol occurs 36 h after stopping the regular administration of formoterol. This bronchodilator tolerance is evident in circumstances of acute bronchconstriction.  相似文献   

6.
Thirty-six adult patients (16 women) with mild to moderate asthma with a mean baseline forced expiratory volume in 1 sec (FEV1) of 73.8% (46-106%) of predicted normal value and mean reversibility of 24.2% (14.6-47.1%) were included in this double-blind, double-dummy, randomized, placebo-controlled and cross-over study. The patients inhaled single doses 4.5 or 9 microg of formoterol (Oxis) via Turbuhaler salbutamol (Ventolin) 100 or 200 microg from a pressurized metered dose inhaler (pMDI) or placebo at five randomized visits. Efficacy was measured by FEV1 pre-dose and then 1, 3, 5, 7, 10, 15, 20, 25 and 30 min after inhalation of the study drug. The primary variable of efficacy was the FEV1-value 3 min after dose intake. No statistically significant differences were found between active treatments. All active treatments gave a higher bronchodilating effect at 3 min than placebo: 10.0, 11.4% for salbutamol 100 and 200 microg and 11.7, 11.8% for formoterol 4.5 and 9 microg (P<0.001 in all cases). There was a correlation between the measured response at 3 min and the subjective experience of the patients. The relative difference vs. placebo remained throughout the study period for all active treatments except for low dose salbutamol. All treatments were well tolerated. In conclusion, formoterol Turbuhaler has as rapid an onset of action as salbutamol pMDI when given at recommended doses.  相似文献   

7.
This study compared the efficacy and safety of budesonide/formoterol (Symbicort) Turbuhaler)) with salbutamol pressurized metered-dose inhaler (pMDI) with spacer for relief of acute bronchoconstriction in patients with asthma. In this randomized, double-blind, parallel-group study, patients (n = 104 allocated to treatment; n = 103 received treatment; mean age 45 years) seeking medical attention for acute asthma (mean FEV(1) 43% of predicted) received two doses repeated at t = -5 and 0 min of either budesonide/formoterol (320/9 microg, two inhalations) or salbutamol (100 microg x eight inhalations); total doses 1280/36 microg and 1600 microg, respectively. All patients received prednisolone 60 mg at 90 min and FEV(1) was assessed over 3h. FEV(1) 90 min after dosing (primary variable) increased compared with pre-dose FEV(1) by an average of 30% and 32% for budesonide/formoterol and salbutamol, respectively (P = 0.66), with similar increases at all timepoints from 3 to 180 min for both groups. Mean pulse rate over 3h was significantly higher in the salbutamol group versus the budesonide/formoterol group (92 vs. 88 bpm; P < 0.01). No treatment differences were seen for other vital signs, including ECG. High-dose budesonide/formoterol was effective and well tolerated for the treatment of acute asthma, with rapid onset of efficacy and a safety profile over 3h similar to high-dose salbutamol.  相似文献   

8.
Clinical trials show that formoterol (Oxis) Turbuhaler 4.5 microg delivered dose (6 microg metered dose) has a rapid onset of bronchodilation similar to that of salbutamol and a 12-h duration of action. Maximum increase in FEV(1) and duration of bronchodilation are dose-dependent, the 4.5 microg dose being the lowest dose tested giving both effects.Clinical studies investigating onset of bronchodilation show a significant increase in specific airway conductance occurring within 1 min after inhalation of formoterol Turbuhaler 4.5 microg. When measured from 3-20 min after inhalation, formoterol Turbuhaler 4.5 microg showed similar increases in FEV(1) to salbutamol administered via pMDI. No difference in onset of bronchodilation was observed between the formoterol Turbuhaler 4.5 and 9 microg doses.Single-dose studies and studies of 1-12 weeks' duration show that formoterol Turbuhaler 4.5 microg produces a significant and clinically important mean bronchodilating effect for > or =12 h after inhalation. In the cited studies no significant differences in duration of bronchodilation were observed between the formoterol Turbuhaler 4.5 and 9 microg doses.Conclusion: clinical data show that formoterol Turbuhaler 4.5 microg is an effective dose in patients with asthma, with a rapid onset of bronchodilation and a duration of at least 12 h.  相似文献   

9.
Increase in pulmonary artery pressure (PAP), which is common in severe chronic obstructive pulmonary disease (COPD), is a predictor of mortality independent of airflow limitation. beta-agonists might slightly attenuate this increase because they exert a vasodilating effect on pulmonary circulation when systematically administered. We have investigated the acute effects of salmeterol and formoterol on echocardiographic systolic pulmonary artery pressure (sPAP) in 20 patients with COPD and a sPAP greater than 20mmHg at rest. Acute haemodynamic responses to inhaled formoterol or salmeterol were assessed in all patients, in a randomized, double-blind double-dummy fashion. On two consecutive days, patients received, in a randomized order, formoterol 12microg via Turbuhaler plus placebo via Diskus or salmeterol 50microg via Diskus plus placebo via Turbuhaler. Transthoracic Doppler echocardiography measurements of sPAP were made before and 15, 30, 60 and 180min after bronchodilator inhalation. Lung function, pulse oximetry and heart rate were also monitored at the same times. Mean sPAP significantly (p<0.05) decreased in comparison with baseline at 15, 30, and 60min post inhalation but returned towards control levels at 180min after both salmeterol and formoterol. There was no correlation between the maximum increase in FEV(1) and maximum decrease in sPAP either after inhalation of salmeterol (r(2)=0.071) or after that of formoterol (r(2)=0.0006). The increases in FEV(1) in comparison with baseline were always significant (p<0.05) from 15 to 180min post inhalation after either salmeterol or formoterol. Neither pulse oximetry nor heart rate changed in a significant manner (p>0.05). This study demonstrated that salmeterol and formoterol were equally beneficial for pulmonary haemodynamics in patients with COPD. A direct vasodilatation due to the activation of beta-adrenoceptors that are present in pulmonary vessels is a likely mechanism of their action in inducing the decrease in sPAP.  相似文献   

10.
Formoterol has a similar onset of effect to salbutamol but a prolonged duration of action. However, the relative efficacy of the two drugs in acute severe asthma is not known. This double-blind, double-dummy study compared the safety and efficacy of the maximum recommended daily dose of formoterol and a predicted equivalent dose of salbutamol in 88 patients presenting to the emergency department with acute severe asthma. Patients were randomized to formoterol 54 microg via Turbuhaler or salbutamol 2400 microg via pressurized metered dose inhaler (pMDI) plus spacer in three equal doses over 1 h. Following the full dose, mean FEV1 at 75 min increased by 37% for formoterol and 28% for salbutamol (P = 0.18). The maximum increase in FEV1 over 4 h was significantly greater with formoterol compared with salbutamol (51% vs. 36%, respectively P < 0.05) and formoterol was as effective as salbutamol at improving symptoms and wellbeing. Both treatments were well tolerated. Formoterol caused a greater decrease in serum potassium (difference -0.2 mmol/l). In severe acute asthma, bronchodilator therapy with high-dose (54 microg) formoterol Turbuhaler provided equally rapid improvements in lung function of greater magnitude over 4 h than high-dose (2400 microg) salbutamol pMDI plus spacer.  相似文献   

11.
Lipworth BJ  Dempsey OJ  Aziz I 《Chest》2000,118(2):321-328
BACKGROUND: Formoterol and salmeterol differ in their relative intrinsic activity at airway beta(2)-adrenoceptors, with formoterol being a full agonist. The homozygous glycine-16 polymorphism of the beta(2)-adrenoceptor occurs in approximately 40% of patients and is known to predispose to agonist-induced downregulation and desensitization. OBJECTIVES: To evaluate possible differences in intrinsic beta(2)-adrenoceptor agonist activity between salmeterol and formoterol in terms of their functional antagonism against methacholine-induced bronchoconstriction (the primary end point) in genetically susceptible patients who exhibited the homozygous glycine-16 polymorphism. METHODS: Eighteen patients with mild-to-moderate persistent asthma receiving inhaled corticosteroid who expressed the homozygous glycine-16 genotype were randomized to completion (mean [SEM] age, 35.8 [3.2] years; mean FEV(1), 76.9 [2. 5]% predicted). Patients received three different treatments for 1 week in randomized, double-blind, crossover fashion, with a 1-week washout period between treatments: formoterol, 12 microg bid; salmeterol, 50 microg bid; and placebo. For each of the randomized treatment periods, there were three separate methacholine challenges: baseline after washout, 12 h after the first dose, and 12 h after the last dose. RESULTS: Both salmeterol and formoterol exhibited significantly (p < 0.05) greater bronchoprotection than placebo for their effects after single or repeated dosing, although there was no significant difference between the two drugs. The geometric mean fold protection vs placebo (95% confidence interval [CI]) for the first dose was 1.6-fold (95% CI, 1.1 to 2.2) for salmeterol and 1.9-fold (95% CI, 1.1 to 3.2) for formoterol, and for last dose was 1.6-fold (95% CI, 1.2 to 2.3) for salmeterol and 1. 9-fold (95% CI, 1.2 to 2.8) for formoterol. Salmeterol and formoterol produced significant (p < 0.05) increases in FEV(1) and forced expiratory flow after 25 to 75% of vital capacity has been expelled, after the first but not the last dose compared to placebo, while there were significant (p < 0.05) improvements in domiciliary peak flows during treatment with both drugs. CONCLUSION: Our results showed no difference between formoterol and salmeterol in the degree of functional antagonism against methacholine-induced bronchoconstriction at the end of a 12-h dosing interval in patients who expressed the homozygous glycine-16 genotype. There was a significant residual degree of bronchoprotection after 1 week of treatment, which was not significantly different compared to the first-dose effect.  相似文献   

12.
Combinations of inhaled glucocorticoids and long-acting beta2-agonists in the same inhaler device have become available in recent years. In this double-blind, randomized, placebo-controlled and crossover study we have evaluated the onset of action of budesonide and formoterol in a single inhaler (Symbicort Turbuhaler) and that of the fixed combination of salmeterol and fluticasone (Seretide Diskus). Thirty patients with a mean FEV1 of 2.54 l (range: 1.48-4.28) and a mean inclusion reversibility in FEV1 of 19.1% were included. Single doses of budesonide/formoterol 160/4.5 microg and 2x (160/4.5) microg, salmeterol/fluticasone 50/250 microg, or placebo were given. Serial measurements of FEV1 were performed over 3 h. The combination of one or two inhalations of budesonide/formoterol showed a faster onset of action than salmeterol/fluticasone, both evaluated as mean FEV1 at 3 min (2.74, 2.75 and 2.56 l respectively P<0.001 for both doses of budesonide/formoterol), or as average FEV1 from 0 to 15 min (2.80, 2.83 and 2.67 l respectively P<0.001 for both doses of budesonide/formoterol). For placebo, mean FEV1 at 3 min was 2.46 l, and the average FEV1 at 0-15 min was 2.50 l. Furthermore, budesonide/formoterol at both doses resulted in higher FEV1 than salmeterol/fluticasone at 3 h. We conclude that the combination of budesonide/formoterol has a faster onset of action than salmeterol/fluticasone.  相似文献   

13.
The aim of this study was to compare the efficacy and safety of formoterol versus salbutamol as reliever medication in patients presenting at an emergency dept with acute asthma. A randomised, double-blind, double-dummy, parallel group study was performed in four Australian emergency treatment centres. The study included a total of 78 adult patients (mean baseline forced expiratory volume in one second (FEV1) 1.83 L; 59% predicted) with acute asthma. Based on the expected dose equivalence of formoterol Turbuhaler 4.5 microg (delivered dose) and salbutamol pressurised metered-dose inhaler 200 microg (metered dose), patients received a total of formoterol Turbuhaler 36 microg (delivered) or salbutamol pressurised metered-dose inhaler with spacer 1,600 microg (metered), divided into two equal doses at 0 and 30 min. FEV1, peak expiratory flow and systemic beta2-agonist effects were monitored for 4 h. The primary variable was FEV1% pred at 45 min. At 45 min, mean increases in FEV1 expressed in % pred were 6.6% and 9.3%, respectively, with a small adjusted mean difference in favour of salbutamol (3.0%, 95% confidence interval -2.0-8.0). Transient increases in systemic beta2-agonist effects occurred predominantly with salbutamol, although no significant treatment differences were observed. Eight patients discontinued due to adverse events. In this study of patients presenting at emergency depts with acute asthma, formoterol Turbuhaler 36 microg was well tolerated and, as rescue therapy, had an efficacy that was not different from that of salbutamol pressurised metered-dose inhaler with spacer 1,600 microg in the number of patients studied.  相似文献   

14.
BACKGROUND: In contrast to the well-known activity profile in asthma, the precise efficacy and optimum dose schedules of long-acting beta(2)-agonists in chronic obstructive pulmonary disease (COPD) are not clear. OBJECTIVE: In this study, we aimed to compare the onset and the duration of action of a single inhalation of formoterol and salmeterol in COPD patients having partially reversible airway obstruction. METHODS: In a double-blind, randomized, crossover and placebo-controlled study design, the respiratory functions of 22 patients (mean age 57.3+/-5.4 years) having mild to severe COPD (5 mild, 8 moderate and 9 severe) and partially reversible airway obstruction [mean baseline reversibility of forced expiratory volume in 1 s (FEV(1)) 19.3+/-3.1%] were evaluated after inhalation of 12 microg formoterol and 50 microg salmeterol. RESULTS: Regarding the onset of bronchodilator action, the mean absolute increase of 0.20 liters in FEV(1) 10 min after inhalation of formoterol was significantly higher than baseline and that of placebo (0.04 liters), whereas that of salmeterol (0.11 liters) did not reach statistical significance. At 20 min, both formoterol (0.25 liters) and salmeterol (0.20 liters) produced a significant increase in FEV(1) compared with baseline and with that of placebo (0.04 liters). The peak bronchodilator effects occurring at 60 and 120 min following formoterol (0.39 liters) and salmeterol (0.40 liters) inhalation, respectively, were significantly higher than the corresponding levels of placebo (0.02 and -0.12 liters, respectively). Concerning the duration of action, the 12-hour values of both formoterol (0.25 liters) and salmeterol (0.22 liters) were significantly higher than that of placebo (-0.12 liters). The area under the curve values of FEV(1) of formoterol (3.5+/-1.3 l.h) and salmeterol (3.2+/-1.2 l x h) averaged over 12 h were comparable and higher than placebo values (1.2+/-0.5 l x h). After formoterol inhalation 2 patients experienced tremor and 1 had palpitation; 1 tremor and 1 headache attack were noted after salmeterol. For the pharmacologically predictable side effects, there was no difference between the drugs. CONCLUSIONS: In conclusion, this study revealed that a single dose of 12 microg formoterol and 50 microg salmeterol provided comparable bronchodilation within 12 h and had tolerable side effects in patients with mild to severe COPD having partially reversible airway obstruction.  相似文献   

15.
Dry powder devices are rarely used in the emergency room (ER) treatment of acute and severe bronchoconstriction due to hesitations with respect to clinical efficacy. This study investigated the effects of two inhalers with formoterol in patients visiting the ER Department for acute and severe dyspnoea, mainly exacerbations of chronic obstructive pulmonary disease. Two doses of 12mug formoterol were given at enrolment, either via Turbuhaler or via pressurised metered dose inhaler, connected to a spacer device (pMDI+S) in a double-blind way and parallel design. Another two doses of 12 microg formoterol were given after 30 min. Forced expiratory volume in the 1s (FEV(1)) and Borg dyspnoea score were assessed until 60 min. The study was designed to test non-inferiority in effects on FEV(1). Seventy-seven patients were enrolled with a mean age of 66 years and a FEV(1) of 1.03 L (39% of predicted). The effects of the two treatments were almost identical. The mean improvement in FEV(1) at 60 min after formoterol Turbuhaler was 94% of the improvement after formoterol pMDI+S. A statistically significant non-inferiority was shown (p=0.037) at 60 min (primary endpoint) as well as at 5 and 30 min (secondary endpoints, p=0.0043 and 0.013, respectively). Improvements in the Borg dyspnoea score and other lung-function parameters did not differ significantly between the two devices. In conclusion, formoterol Turbuhaler was equally effective as formoterol pMDI+S in the treatment of acute bronchoconstriction within the ER.  相似文献   

16.
STUDY OBJECTIVE: To compare the acute bronchodilatory effect of the long-acting beta2-agonist formoterol against the short-acting beta2-agonist (SABA) terbutaline during exercise-induced bronchoconstriction (EIB) in children with asthma. DESIGN: A randomized, double-blind, placebo-controlled, crossover study of the immediate effect of formoterol, 9 microg, vs terbutaline, 0.5 mg, and placebo administered as dry powder at different study days. Exercise challenge test was used as a model of acute bronchoconstriction. PATIENTS: Twenty-four 7- to 15-year-old children with persistent asthma. INTERVENTIONS: The children performed standardized treadmill exercise tests, breathing dry air, with a submaximal workload. Study medication was administered 5 min after exercise if FEV1 dropped > or = 15% within 5 min after exercise. FEV1 and forced expiratory flows were measured repeatedly until 60 min after dose. RESULTS: Formoterol and terbutaline offered a significant acute bronchodilatory effect from 3 min after dose compared with placebo (p < 0.001). There was no difference between formoterol and terbutaline in FEV1 5 min after dose (p = 0.15), with a mean increase from each predrug baseline of 62% of the maximum increase for both. Median times to recovery within 5% of baseline FEV1 were 5.0 min and 7.4 min for formoterol and terbutaline, respectively (p = 0.33). CONCLUSION: Single-dose formoterol, 9 microg, via dry powder inhaler provided an acute bronchodilatory effect similar to terbutaline during EIB in schoolchildren with persistent asthma. Formoterol is at least as effective as SABA and may be considered an alternative in the treatment of acute bronchoconstriction in school children.  相似文献   

17.
This 12-month dose-titration study assessed the effectiveness of budesonide/formoterol for maintenance plus relief with a control group using salmeterol/fluticasone for maintenance plus salbutamol for relief. Adolescents and adults (n = 2,143; mean forced expiratory volume in one second (FEV1) 73% predicted; mean inhaled corticosteroid (ICS) 884 microg.day(-1)) were randomised to budesonide/formoterol 160/4.5 microg two inhalations b.i.d. plus additional inhalations as needed, or salmeterol/fluticasone 50/250 microg b.i.d. plus salbutamol as needed. Treatment was prescribed open label; after 4 weeks, physicians could titrate maintenance doses in accordance with normal clinical practice. Maintenance plus as-needed budesonide/formoterol prolonged the time to first severe exacerbation versus salmeterol/fluticasone (25% risk reduction). The total number of severe exacerbations was significantly reduced in the budesonide/formoterol group (255 versus 329). Both regimens provided sustained improvements in symptoms, as-needed use, quality of life and FEV1, with differences in favour of the budesonide/formoterol group for as-needed use (0.58 versus 0.93 inhalations.day(-1)) and FEV1 (post-beta2-agonist values). Mean ICS dose during treatment was similar in both groups (653 microg budesonide.day(-1) (maintenance plus as-needed) versus 583 microg fluticasone.day(-1)). The simplified strategy using budesonide/formoterol for maintenance and reliever therapy is feasible, safe and at least as effective as salmeterol/fluticasone plus salbutamol.  相似文献   

18.
We aimed to compare the protective effect of single doses of 4.5 and 9 microg of formoterol fumarate (F), 0.5 mg terbutaline sulphate (T) and placebo (P), all via Turbuhaler, against exercise-induced bronchoconstriction (EIB) in children. Twenty-seven asthmatic children, showing a fall of > or =20% in FEV1 after a standardized exercise challenge test (ECT) combined with cold air (-10 degrees C) inhalation, were randomized in this cross-over, double-blind study. They had a mean age of 12.6 years (range 8-17 years), mean baseline FEV1 90% (73.9-105.6%) of predicted normal value. Seventeen children used inhaled glucocorticosteroids (120-750 microg day(-1)). ECTs were performed 15 min and 4, 8, and 12 h after drug administration. F significantly reduced the fall in FEV1 after ECT to 5.4% (15 min), 5.2% (4 h), 8.2% (8 h) and 9.3% (12 h) after 4.5 microg, and 2.5%, 3.0%, 5.0% and 5.4% after 9 microg, compared with a fall of 18.4%, 15.7%, 15.6% and 16.5% in FEV1 after P. The fall after T was 3.3%, 11.6%, 14.4% and 19.1% after 15 min, 4, 8 and 12 h respectively. The difference between F and T was statistically significant from 4 h and onward (P-value for all comparisons < 0.05). Children using a single dose of either formoterol Turbuhaler 4.5 or 9 microg had significantly better bronchoprotection against repeated exercise challenge up to 12 h compared with placebo and from 4 h onward compared with terbutaline Turbuhaler 0.5 mg.  相似文献   

19.
STUDY OBJECTIVE: To determine the protective effect of salbutamol, 100 microg, inhaled by different devices (pressurized metered-dose inhaler [pMDI; Ventolin; GlaxoWellcome; Greenford, UK], pMDI + spacer [Volumatic; GlaxoWellcome], or breath-activated pMDI [Autohaler; 3M Pharmaceuticals; St. Paul, MN]) on bronchoconstriction induced by methacholine. DESIGN: Randomized, double-blind, cross-over, placebo-controlled study. PATIENTS: Eighteen subjects with stable, moderate asthma, asymptomatic, receiving regular treatment with salmeterol, 50 microg bid, and inhaled beclomethasone dipropionate, 250 microg bid, in the last 6 months, with high hyperreactivity to methacholine (baseline provocative dose of methacholine causing a 20% fall in FEV(1) [PD(20)] geometric mean [GM], 0.071 mg). Subjects were classified into two groups: subjects with incorrect (n = 5) pMDI inhalation technique, and subjects with correct (n = 13) inhalation technique. METHODS AND MEASUREMENTS: After cessation of therapy for 3 days, all subjects underwent four methacholine challenge tests, each test 1 week apart, each time 15 min after inhalation of salbutamol, 100 microg (via pMDI, pMDI + spacer, or Autohaler), or placebo. The protective effect on methacholine challenge test was evaluated as the change in the PD(20), and expressed in terms of doubling doses of methacholine in comparison with placebo treatment. RESULTS: The PD(20) was significantly higher after salbutamol inhalation than after placebo inhalation, but no significant difference was observed among the three different inhalation techniques. Only when salbutamol was inhaled via pMDI + spacer, PD(20) was slightly but not significantly higher (pMDI GM, 0.454 mg; pMDI + spacer GM, 0.559 mg; and Autohaler GM, 0.372 mg; not significant [NS]) than other inhalation techniques. Similar results (mean +/-SEM) were obtained with doubling doses of methacholine (pMDI, 2 +/- 0.47; pMDI + spacer, 3 +/- 0.35; and Autohaler, 2.4 +/- 0.40; NS). No significant difference was found among techniques when subjects with correct or incorrect inhalation technique were separately considered. CONCLUSIONS: Our data show that the protective effect of salbutamol, 100 microg, on methacholine-induced bronchoconstriction is not affected by the different inhalation techniques, although inhalation via pMDI + spacer tends to improve the bronchoprotective ability of salbutamol. These data confirm the clinical efficacy of salbutamol, whatever the device, and the patient's inhalation technique.  相似文献   

20.
Ten subjects with various degrees of asthma severity underwent a three-day trial, with the aim of evaluating the bronchodilating effect of inhaled formoterol (12 micro g), in comparison with salbutamol (200 micro g) and salmeterol (50 micro g). The bronchodilation afforded by formoterol paralleled that of salbutamol in rapidity (mean percentage increases in functional measurements (FEV(1)) vs. baseline recorded 5 min after drug administration: 7.7%, 9.3%, and 0.3% for salbutamol, formoterol and salmeterol, respectively) and that of salmeterol in duration (mean percentage increases in FEV(1) vs. baseline recorded 12h after drug administration: 16.8% and 15.9% for formoterol and salmeterol, respectively). Moreover, the maximal effect of formoterol resulted to be slightly higher in comparison with salbutamol (P<0.001) and salmeterol (P<0.05); in this regard, the mean percentage increases in FEV(1) vs. baseline recorded 2h after salbutamol and formoterol, and 4h after salmeterol were 22.3%, 29.5%, and 24.6%, respectively. Therefore, these results suggest that formoterol can be used, in addition to its utilization as long-acting bronchodilator, also as an effective rescue medication for the immediate relief of asthma symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号