首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nociceptive stimulation causes neuroendocrine responses such as arginine vasopressin (AVP) release and activation of the hypothalamo-pituitary-adrenal (HPA) axis. We examined the effects of nociceptive stimulation on the expression levels of neuronal nitric oxide synthase (nNOS) mRNA, heteronuclear (hn)RNA for AVP and AVP mRNA in the rat paraventricular nucleus (PVN) and supraoptic nucleus (SON), using in situ hybridization histochemistry. For nociceptive stimulation, formalin (5%) or saline was injected subcutaneously (s.c.) into the bilateral hind paws of rats. The expression of the nNOS gene in the PVN was significantly increased 2 and 6 h after s.c. injection of formalin in comparison with that in untreated and saline injected rats. The expression of the nNOS gene in the SON did not change in the untreated, saline- and formalin-injected rats. The AVP hnRNA in the PVN and SON was also significantly increased 15, 30 min and 2 h after s.c. injection of formalin, though AVP mRNA did not change at any time points that we studied. Plasma concentration of AVP was significantly increased 15 min after s.c. injection of formalin. These results suggest that NO in the PVN may be involved in nociceptive stimulation-induced neuroendocrine responses.  相似文献   

2.
The purpose of this study was to determine whether immobilization stress can cause changes in the enzyme activity and gene expression of neuronal nitric oxide synthase (nNOS) in the hypothalamus, pituitary, and adrenal gland in rats. NOS enzyme activity was measured as the rate of [3H]arginine conversion to citrulline, and the level of nNOS mRNA signal was determined using in situ hybridization and image analysis. NOS-positive cells were also visualized using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) histochemistry and by immunohistochemistry using an anti-nNOS antibody. A significant increase of NOS enzyme activity in the anterior pituitary, adrenal cortex, and adrenal medulla (1.5-, 3.5-, and 2.5-fold) was observed in the stressed animals (immobilization of 6 h) as compared to non-stressed control rats. Up-regulation of nNOS mRNA expression in anterior pituitary and adrenal cortex was already detectable after stress for 2 h with 1.5- and 2-fold increase, respectively. The nNOS mRNA signals in hypothalamic paraventricular nucleus (PVN) significantly increased after the stress for 6 h. This increase in NOS enzyme activity was confirmed using NADPH-diaphorase staining and immunostaining in the PVN and adrenal cortex. An increase of NOS enzyme activity in adrenal medulla after immobilization for 6 h posited by far longer than in the adrenal cortex and anterior pituitary. The present findings suggest that psychological and/or physiological stress causes NO release in hypothalamic-pituitary-adrenal (HPA) axis and in sympatho-adrenal system. It is suggested that NO may modulate a stress-induced activation of the HPA axis and the sympatho-adrenal medullary system. The different duration of stress-induced NOS activity in HPA axis and the adrenal medulla may suggest NO synthesis is controlled by separate mechanism in the two HPA and the sympatho-adrenal systems.  相似文献   

3.
We have examined the effects of isotonic hypovolemia on the expression of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular (PVN) and supraoptic nuclei (SON) of the rat, using in situ hybridization histochemistry with a 35S-labelled oligodeoxynucleotide probe complementary to nNOS mRNA. Intraperitoneal (i.p.) administration of polyethylene glycol (PEG) (MW 4000, 20 ml/kg body weight) dissolved in 0.9% saline (20% w/v) induced isotonic hypovolemia. The expression of the nNOS gene in the PVN and SON 6 h after i.p. administration of PEG was increased significantly in comparison with controls. The dual staining for NADPH diaphorase activity and Fos-like immunoreactivity (Fos-LI) showed that at 3 and 6 h after i.p. administration of PEG, a subpopulation of NADPH diaphorase-positive cells in the PVN and SON exhibited nuclear Fos-LI. These results suggest that NO in the PVN and SON may be involved in the neuroendocrine and autonomic responses to non-osmotic hypovolemia.  相似文献   

4.
Fasting induced a reduction in neuronal nitric oxide synthase (nNOS) mRNA in the paraventricular nucleus (PVN) and supraoptic nucleus (SON) of rats. The effect of intracerebroventricular (i.c.v.) administration of leptin on the nNOS mRNA level in the PVN and SON of fasting rats was studied by in situ hybridization histochemistry. Leptin (10 microg/kg b.wt) or vehicle was administered i.c.v. at 1700 h on two successive days fasting for 2 days. Fasting for 2 days with i.c.v. administration of vehicle induced a significant reduction of nNOS mRNA in the PVN and SON. Central administration of leptin prevented the fasting-induced reduction of nNOS mRNA in the PVN and SON. Administration of leptin also prevented the fasting-induced reductions of thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) mRNAs in the parvocellular division of the PVN. These results suggest that leptin is associated with fasting-induced reduction of nNOS mRNA in the PVN and SON as well as TRH and CRH mRNAs in the PVN.  相似文献   

5.
We examined the effects of cyclophosphamide (CP)-induced cystitis on the expression of corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus (PVN) and the serum levels of adrenocorticotropic hormone (ACTH) using in situ hybridization histochemistry and radioimmunoassay. In addition, the expression of AVP heteronuclear (hn) RNA and neuronal nitric oxide synthase (nNOS) mRNA was also examined in the PVN of a CP-induced cystitis model. We found that the levels of CRH mRNA were significantly increased in the PVN at 2 h after intraperitoneal administration of CP compared to those in saline-treated rats. The CRH mRNA levels in the PVN peaked at 12 h after CP administration and the levels were still significantly higher than those in saline-treated group at 24 h after CP administration. The serum ACTH levels in CP-treated group were also significantly higher compared to those in saline-treated group at any of the time points examined. Unlike previous findings showing upregulation of nNOS mRNA and AVP hnRNA under somatic nociceptive states, the levels of nNOS mRNA and AVP hnRNA were unchanged in the PVN following CP-induced cystitis, visceral nociceptive stimulation. These results suggest that visceral nociceptive stimulation as well as somatic nociceptive stimulation may activate the hypothalamo-pituitary axis but the hypothalamic neuroendocrine responses produced by visceral nociceptive stimulation may be different from those produced by somatic nociceptive stimulation.  相似文献   

6.
Nitric oxide (NO) and noradrenaline (NA) are suggested to be implicated in the regulation of neuropeptide secretion in the supraoptic nuclei (SON) and the paraventricular nuclei (PVN) of the hypothalamus. Our study demonstrates short-term interactions between NA and the activity and expression of NO synthase (NOS) in magnocellular neurons, by using an ex vivo model of hypothalamic slices. In the SON as well as in the PVN, total NOS activity exhibited a time-dependant increase after an incubation with NA. In the SON, this increase of total NOS activity was in part the consequence of stimulation of the iNOS activity. Coimmunodetections showed that cells expressing the inducible form of NOS were not astrocytes but magnocellular neurons. Steady-state levels of iNOS and nNOS mRNA were dramatically enhanced by NA, particularly in the SON. Consequently, we provide new evidence that iNOS could play an important role in multiple physiological functions, including extracellular fluid balance, lactation, and parturition.  相似文献   

7.
Lesion-induced induction of neuronal nitric oxide synthase (nNOS) was examined in the rat cerebellum. The stab-lesioned cerebellar cortex was examined with NADPH-diaphorase (NADPH-d) histochemistry and in situ hybridization using nNOS cRNA probe at 1, 3, 7, 14, 35 days post-lesion. NADPH-d- and nNOS mRNA-positive Purkinje cells appeared adjacent to the lesion by 3 days after the lesion. The area of distribution expanded and the number of positive cells increased at 7 days after the lesion, and at 14 days post-lesion, shrunken NADPH-d-positive Purkinje cells with irregular surface appeared. NADPH-d activity and nNOS mRNA signal could not be detected in Purkinje cells after 35 days post-lesion. Combined NADPH-d histochemistory and in situ hybridization using glutamic acid decarboxylase (GAD) cRNA probe revealed that nNOS-expressing Purkinje cells showed fewer GAD mRNA signals than those in normal Purkinje cells. The atrophic contour and the lower expression of GAD mRNA signals in NADPH-d positive Purkinje cells suggest that nNOS is expressed under a degenerating process.  相似文献   

8.
Nitric oxide (NO) is produced by the enzyme NO synthase (NOS) and may be involved in the regulation of nutrient and endocrine homeostasis via actions on neurones of the hypothalamic supraoptic (SON) and paraventricular (PVN) nuclei. The effects of water deprivation or food deprivation for 4 days on the abundance of messenger RNA encoding NOS in these nuclei in rats were examined using in situ hybridization. Water deprivation markedly increased the abundance of NOS mRNA in both the SON and PVN (225±11% of control, P<0.05 and 261±34% of control, P<0.01 respectively). NOS mRNA abundance also appeared to be increased in magnocellular accessory nuclei. Food deprivation decreased NOS mRNA abundance in the SON and PVN (42±6% and 52±7% of control respectively, both P<0.05), while withdrawal of both food and water produced no significant net changes in the abundance of NOS mRNA. Treatment-induced alterations in NOS mRNA abundance were reflected by changes in NOS activity, as assessed by NADPH-diaphorase histochemistry, and NADPH-diaphorase staining was observed in neurones both positive and negative for oxytocin-like immunoreactivity. These findings suggest that NOS mRNA abundance, NOS enzymatic activity and presumably NO production are modulated in an activity-dependent manner in hypothalamic (magnocellular and parvocellular) neurones by alterations in fluid and nutrient homeostasis, and support data from other studies suggesting a role for NO in the central regulation of water and food intake in the rat.  相似文献   

9.
This study was conducted to define the molecular mechanism by which dehydration induces expression of neuronal nitric oxide synthase (nNOS) in the hypothalamic paraventricular nucleus (PVN). Rats were deprived from water for 48 hr and then sacrificed immediately or 1 hr after ad libitum access to water. Another group of rats had free access to food and water and was included as euhydrate control group. The PVN sections fixed with 4% paraformaldehyde were processed for nNOS immunohistochemistry and NADPH-diaphorase (NADPH-d)/pCREB or NADPH-d/c-Fos double staining. nNOS-ir neurons significantly increased with water deprivation and decreased with rehydration, both in the posterior magnocellular (pM)- and the medial parvocellular (mP)-PVN. Most NADPH-d histostained neurons in the PVN appeared to exhibit pCREB-ir as well. Water deprivation markedly increased, and rehydration decreased, NADPH-d/pCREB neurons both in the pM- and in the mP-PVN. Gel shift assay demonstrated that dehydration may promote CREB binding to nNOS promoter in the PVN neurons. Significant amounts of NADPH-d-stained neurons in the PVN of water-deprived rats (67-68% in both the mP and the pM) exhibited c-Fos-ir. NADPH-d/c-Fos neurons in the pM-PVN were increased by water deprivation but not changed by rehydration. NADPH-d/c-Fos double-stained neurons in the mP-PVN did not significantly change depending on different water conditions. These results suggest that pCREB may play a role in dehydration-induced nNOS gene expression in the PVN neurons, and c-Fos might not be implicated in the regulatory pathway.  相似文献   

10.
We injected nitric oxide (NO)-releasing compounds and NO synthase (NOS) inhibitors into the brains of conscious, freely moving rats and measured the effects on mean arterial blood pressure (MAP) and heart rate, as well as on the expression of c-fos mRNA, neuronal NOS (nNOS) mRNA and NADPH-diaphorase, an indicator of NOS activity. When administered i.c.v., the NO donor, NOC-18, caused a significant fall in MAP and heart rate, whereas the NOS inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), induced a significant rise in MAP. The same dose of NOC-18 or L-NAME when administered i.v. did not affect MAP and heart rate. Centrally administered NOC-18 induced c-fos mRNA expression in several regions of the brain involved in the baroreceptor response, including the nucleus of the solitary tract, the area postrema and the rostral ventrolateral medulla, as well as areas involved in the integration of autonomic, neuroendocrine and behavioural responses, including the medial preoptic area, the organum vasculosum lamina terminalis, the bed nucleus of stria terminalis, the paraventricular nucleus (PVN), the supraoptic nucleus (SON), the central nucleus of amygdala (CeA) and the locus coeruleus. Most of the areas that expressed c-fos also contained nNOS mRNA and/or NADPH-d-positive neurones and fibres. i.c.v. injection of L-NAME induced c-fos mRNA expression in PVN, SON, locus coeruleus and NTS, suggesting a tonic inhibition of neuronal activity by NO or stimulation of neuronal activity by endogenous NO. i.v. injection of NOC-18 or L-NAME did not induce any significant c-fos mRNA expression in rat brain. These results demonstrate that NO acts directly in the brain to reduce the systemic blood pressure, and that the endogenous NO pathway may play a role in cardiovascular and autonomic regulation by modulating neuronal activities in discrete regions of the brain.  相似文献   

11.
This study examined the effect of suckling on nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d, a histochemical marker for nitric oxide synthase, NOS) reactivity and neuronal NOS mRNA expression in the paraventricular (PVN) and supraoptic (SON) nuclei of lactating rats. Freely nursing (non-separated) dams and those separated from pups for 12 h and then reunited for 0, 15, 30, 60, 90, 120 and 180 min were used for the study. Dams separated from pups and sacrificed at time zero (without reunion) showed a significant decrease in NADPH-d staining and NADPH-d positive cells as well as in the NOS mRNA expression in the PVN and SON compared to that observed in non-separated dams. Reunion with pups and restoration of suckling significantly increased NADPH-d reactivity after 15, 30, 60 min, but not after 90, 120 and 180 min compared to non-reunited pups-deprived dams. A pattern of NADPH-d reactivity and neuronal NOS mRNA expression indistinguishable from that observed during free lactation was reinstated shortly (15 min) after the restoration of suckling stimulus, suggesting that the NADPH-d reactivity in lactation depends on the presence of the suckling stimulus. These results show that suckling stimulus may play a modulatory role in the regulation of NOS reactivity in the magnocellular neurones of the hypothalamic PVN and SON during lactation.  相似文献   

12.
The aim of the present study was to investigate the involvement of nitric oxide (NO) as a messenger molecule in neuron-microglia communication in the central nervous system (CNS) of the freshwater snail Planorbarius corneus. The presence of both neuronal (nNOS) and inducible nitric oxide synthase (iNOS) was studied using NADPH-diaphorase (NADPH-d) histochemistry and NOS immunocytochemistry. The experiments were performed on whole ganglia and cultured microglial cells after different activation modalities, such as treatment with lipopolysaccharide and adenosine triphosphate and/or maintaining ganglia in culture medium till 7 days. In sections, nNOS immunoreactivity was found only in neurons and nNOS-positive elements were less numerous than NADPH-d-positive ones, with which they partially overlapped. The iNOS immunoreactivity was observed only after activation, in both nerve and microglial cells. We also found that the number of iNOS-immunoreactive neurons and microglia varied, depending on the activation modalities. In microglial cell cultures, iNOS was expressed in the first generation of cells only after activation, whereas a second generation, proliferated after ganglia activation, expressed iNOS even in the unstimulated condition.  相似文献   

13.
14.
The plasma concentration of arginine vasopression (AVP) and the expression level of the neuronal nitric oxide synthase (nNOS) gene in the paraventricular nucleus (PVN) and the Supraoptic nucleus (SON) of Sprague-Dawley (SD). Dahl salt-sensitive (S) and Dahl salt-resistant (R) rats on a high salt diet were examined by radioimmunoassay for AVP and in situ hybridization histochemistry for nNOS. The high salt diet containing 8.0% NaCl was given for 4 weeks. The concentrations of AVP in hypertensive Dahl S rats were significantly increased in comparison with those in SD rats and Dahl R rats on a high salt diet. The levels of nNOS mRNA and NADPH-diaphorase activity in the PVN and SON of hypertensive Dahl S rats were greater than those in Dahl R rats on a high salt diet. The antihypertensive drugs, either nicardipine or captopril were administered to the Dahl S rats for 2 weeks beginning 2 weeks after the start of the high salt diet The nNOS mRNA in the PVN and SON of Dahl S rats given a high salt diet was not upregulated by treatment with nicardipine, while the nNOS mRNA in salt loaded Dahl S rats was greater upregulated by treatment with captopril to that greater than without the antihypertensive drug. Our results suggest that the increased NO production in the PVN and SON of hypertensive Dahl S rats may be ineffective in decreasing blood pressure or inhibiting AVP secretion.  相似文献   

15.
This study investigated whether pituicytes were able to produce and release nitric oxide (NO), and which type of nitric oxide synthase (NOS) would be responsible for this phenomenon. Lipopolysaccharide (LPS) 1 micro g/ml was used as inflammatory mediator. Because pituicytes are known to secrete interleukin (IL)-6 upon stimulation with LPS, this parameter was also investigated. Cultured pituicytes, from 4-week-old male mice, were stimulated with LPS for 6 h or 24 h. At 24 h, there was a significant increase in accumulated nitrite indicating NO formation. In contrast, IL-6 release was already significantly higher 6 h after stimulation and further increased at 24 h. The correlation between accumulated nitrite and secreted IL-6 was 0.84 after 24 h of incubation with LPS. The expression of inducible NOS (iNOS) mRNA in the pituicytes was significantly higher than the control level after 6 h and 24 h of exposure to LPS, with levels at 6 h being significantly higher than those at 24 h. There was no detected expression of endothelial NOS or neuronal NOS mRNA. Cultured pituicytes were also subjected to immunocytochemistry for iNOS protein at 6, 12, and 24 h after stimulation with LPS. Most cells were positive for iNOS, but there were no observable differences with the time points that we used. Collectively, these results show that pituicytes are able to produce NO, and that the inducible form of NOS is responsible for this production. Furthermore, there is a weak correlation between NO and IL-6 released from pituicytes after 24 h of stimulation with LPS.  相似文献   

16.
Excitotoxicity and oxidative stress are mechanisms involved in the neuronal cell death induced by the intrastriatal injection of quinolinic acid (QUIN) as a model of Huntington's disease. Production of nitric oxide by nitric oxide synthase (NOS) has been proposed to participate in QUIN-induced neurotoxicity; however, the precise role of NOS in QUIN-induced toxicity still remains controversial. In order to provide further information on the role of NOS isoforms in QUIN toxicity, we performed real time RT-PCR and immunohistochemistry of inducible NOS (iNOS), endothelial NOS (eNOS) and neuronal NOS (nNOS) and determined Ca(2+)-dependent and Ca(2+)-independent NOS activity in a temporal course (3-48h), after an intrastriatal injection of QUIN to rats. NOS isoforms exhibited a transitory expression of mRNA and protein after QUIN infusion: eNOS increased between 3 and 24h, iNOS between 12 and 24h, while nNOS at 35 and 48h. Ca(2+)-independent activity (iNOS) did not show any change, while Ca(2+)-dependent activity (constitutive NOS: eNOS/nNOS) exhibited increased levels at 3h. Our results support the participation of Ca(2+)-dependent NOS isoforms during the toxic events produced at early times after QUIN injection.  相似文献   

17.
To clarify whether the inducible nitric oxide synthase (iNOS) protein can be induced in in vivo brain, we examined the influence of direct intrahippocampal injection with interferon-γ (IFN-γ) plus lipopolysaccharide (LPS) in the rat. In the area surrounding the microinjection site, NOS activity (NO2 accumulation) was enhanced 24 h after injection with IFN-γ plus LPS. Although the level of 160-kDa nNOS protein was not changed, the 130-kDa iNOS protein was induced 12 h after the injection. On the other hand, iNOS mRNA could be detected at 6 and 12 h but not at 24 h. iNOS immunoreactivity was observed in CD11b-immunopositive microglia in close proximity to the injection site, but the immunoreactivity was not colocalized with glial fibrillary acidic protein-immunopositive astrocytes. Although CD11b-immunopositive microglia were of the ramified type even after injection with vehicle after 24 h, injection with IFN-γ plus LPS caused numerous microglia to change to the ameboid type and to express major histocompatibility complex (MHC) class II antigens. In some of these ameboidal microglia, iNOS immunoreactivity was observed. These results suggest that intrahippocampal injection with IFN-γ plus LPS induced iNOS mRNA after 6 h and iNOS protein after 12 h in some of the ameboidal microglia that expressed MHC class II antigens in in vivo rat brain. © 1996 Wiley-Liss, Inc.  相似文献   

18.
19.
The expression of cholecystokinin (CCK) mRNA in neuroendocrine corticotropin-releasing hormone (CRH) neurons of the hypothalamic paraventricular nucleus (PVN) of male rats was examined 8 h following an acute immune challenge by intraperitoneal lipopolysaccharide (LPS, 250 microg/kg). Both quantitative, macroautoradiographic, single-label radioactive in situ hybridization histochemistry (ISHH) and qualitative dual-label ISHH were performed. Compared to controls, LPS-injected rats displayed increased (185%) parvicellular CCK mRNA expression levels, occurring in a majority (70%) of CRH neurons as revealed by dual-label ISHH.  相似文献   

20.
目的探讨脑缺血后细胞凋亡发生的可能机制以及神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)、诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)、p38丝裂原活化蛋白激酶(mitogen activated proteinkinasep38,p38MAPK)和半光氨酸蛋白酶-3(caspase-3)在脑缺血后神经细胞凋亡中的共同作用机制。方法采用线栓法闭塞大鼠大脑中动脉(middle cerebral artery occlusion,MACO)建立脑缺血SD大鼠模型,应用透射电镜观察脑缺血对脑组织超微结构的影响,流式细胞仪方法(FCM)分别定量检测细胞凋亡率,半定量RT-PCR检测nNOS、iNOS,p38MAPK和Caspase-3mRNA表达水平。结果透视电镜下脑缺血6h出现核固缩,缺血12h出现细胞核分裂,缺血24h出现凋亡小体;FCM检测细胞凋亡百分率随着缺血时间延长而增加,缺血72h达到高峰,约70.37%;RT-PCR产物的琼脂糖凝胶电泳显示nNOS、iNOS、p38MAPK和Caspase-3mRNA的特异性片段大小分别为501、342、250和342bp,但mRNA表达量不一致,nNOS mRNA主要在缺血早期表达,iNOS、p38MAPK和Caspase-3mRNA在缺血中晚期表达,并在缺血3~5d,后三种基因的表达量达到高峰。结论脑缺血区域发生典型的神经细胞凋亡现象,nNOS来源的NOS在缺血早期发挥神经毒性作用,iNOS来源的NOS在缺血晚期发挥神经毒性作用;NOS,p38MAPK和Caspase-3三种基因的相互关系可能构成介导缺血神经细胞凋亡的通路之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号