首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All vascular cells, including endothelial cells and smooth muscle cells, express components of the leukocyte NADPH oxidase such as p22phox, p47phox, and Rac. Endothelial cells and fibroblasts also express the leukocyte NADPH oxidase subunit gp91phox/nox2, whereas in smooth muscle cells nox1 and nox4 are found. The different vascular NADPH oxidases represent important sources for the basal as well as the agonist-induced superoxide anion (O(2) .-) generation in the vasculature. In vascular smooth muscle cells, activation of the NADPH oxidases and the subsequent formation of O(2) .- has been demonstrated for various agents including angiotensin II, thrombin, lysophosphatidylcholine, and tumor necrosis factor alpha. By influencing the activity of p38 mitogen-activated protein kinase and AKT, NADPH oxidase-derived O(2) .- increases the expression of several pro-arteriosclerotic genes, such as monocyte chemoattractant protein-1, tissue factor, and vascular endothelial growth factor. Thus, the vascular NADPH oxidases play an important role in mediating the signal transduction cascade of pro-arteriosclerotic stimuli.  相似文献   

2.
Endothelial dysfunction in the setting of cardiovascular risk factors such as hypercholesterolemia, diabetes mellitus, chronic smoking, as well hypertension, is, at least in part, dependent of the production of reactive oxygen species (ROS) and the subsequent decrease in vascular bioavailability of nitric oxide (NO). ROS-producing enzymes involved in increased oxidative stress within vascular tissue include NADPH oxidase, xanthine oxidase, and mitochondrial superoxide producing enzymes. Superoxide produced by the NADPH oxidase may react with NO, thereby stimulating the production of the NO/superoxide reaction product peroxynitrite. Peroxynitrite in turn has been shown to uncouple eNOS, therefore switching an antiatherosclerotic NO producing enzyme to an enzyme that may accelerate the atherosclerotic process by producing superoxide. Increased oxidative stress in the vasculature, however, is not restricted to the endothelium and also occurs within the smooth muscle cell layer. Increased superoxide production has important consequences with respect to signaling by the soluble guanylate cyclase and the cGMP-dependent kinase I, which activity and expression is regulated in a redox-sensitive fashion. The present review will summarize current concepts concerning eNOS uncoupling, with special focus on the role of tetrahydrobiopterin in mediating eNOS uncoupling.  相似文献   

3.
The classical nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was originally detected in neutrophils as a multicomponent enzyme that catalyzes the generation of superoxide from oxygen and the reduced form of NADPH. This enzyme is composed of two membrane-bound subunits (p22phox and gp91phox), three cytosolic subunits (p67phox, p47phox, and p40phox) and a small G-protein Rac (Rac1 and Rac2). Recently, it has been demonstrated that there are several isoforms of nonphagocytic NADPH oxidase. Endothelial cells, vascular smooth muscle cells or adventitial fibroblasts possess multiple isoforms of this enzyme. The new homologs, along with gp91phox are now designated the Nox family of NADPH oxidases and are key sources of reactive oxygen species in the vasculature. Reactive oxygen species play a significant role in regulating endothelial function and vascular tone. However, besides the participation in the processes of physiological cell, these enzymes can also be the perpetrator of oxidative stress that causes endothelial dysfunction. This review summarizes the current state of knowledge of the structure and functions of NADPH oxidase and NADPH oxidase inhibitors in the treatment of disorders with endothelial damage.  相似文献   

4.
Phagocytes generate superoxide (O2*-) by an enzyme complex known as reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Its catalytic component, responsible for the NADPH-driven reduction of oxygen to O2*-, is flavocytochrome b559, located in the membrane and consisting of gp91phox and p22phox subunits. NADPH oxidase activation is initiated by the translocation to the membrane of the cytosolic components p47phox, p67phox, and the GTPase Rac. Cytochrome b559 is converted to an active form by the interaction of gp91phox with p67phox, leading to a conformational change in gp91phox and the induction of electron flow. We designed a new family of NADPH oxidase activators, represented by chimeras comprising various segments of p67phox and Rac1. The prototype chimera p67phox (1-212)-Rac1 (1-192) is a potent activator in a cell-free system, also containing membrane p47phox and an anionic amphiphile. Chimeras behave like bona fide GTPases and can be prenylated, and prenylated (p67phox -Rac1) chimeras activate the oxidase in the absence of p47phox and amphiphile. Experiments involving truncations, mutagenesis, and supplementation with Rac1 demonstrated that the presence of intrachimeric bonds between the p67phox and Rac1 moieties is an absolute requirement for the ability to activate the oxidase. The presence or absence of intrachimeric bonds has a major impact on the conformation of the chimeras, as demonstrated by fluorescence resonance energy transfer, small angle X-ray scattering, and gel filtration. Based on this, a "propagated wave" model of NADPH oxidase activation is proposed in which a conformational change initiated in Rac is propagated to p67phox and from p67phox to gp91phox.  相似文献   

5.
Nitric oxide (NO) is a multifunctional effector molecule that plays a central role in the regulation of vascular homeostasis. NO is synthesized from L-arginine by a family of enzymes called NO synthases. The principal source of NO in the vascular system of healthy mammals is the constitutively expressed NO synthase in endothelial cells. The basal endothelial formation of NO can be increased by receptor-dependent agonists (i.e., bradykinin) in a calcium-calmodulin-dependent manner, and also by physical forces (i.e., shear stress), predominantly without changes in the intracellular concentration of free calcium. Nitric oxide can diffuse toward the blood vessel wall where the major target is the smooth muscle cell. NO regulates vascular tone, and the free radical is also a potent inhibitor of smooth muscle cell proliferation, migration and synthesis of extracellular matrix proteins. NO can also diffuse toward the lumen of the blood vessel where it helps maintain blood fluidity. NO inhibits platelets' and leucocytes' adhesion to endothelial cells. In addition, NO inhibits platelet aggregation and facilitates the dissolution of small platelet aggregates. However, the regulatory action of NO on blood cells is most likely limited to the luminal surface of endothelial cells since NO is rapidly scavenged by hemoglobin in erythrocytes and inactivated by oxygen-derived radicals such as superoxide anions. NO can also affect the fibrinolytic activity by regulating the release of tissue-type plasminogen activator and plasminogen activator inhibitor-1. The crucial role of vascular NO in the control of blood fluidity has been demonstrated by the regulation of the bleeding time in humans.  相似文献   

6.
Nitric oxide (NO), superoxide (O(2)(-)), and peroxynitrite (ONOO(-)) interactions in pathophysiologic conditions such as cardiovascular disease, hypertension, and diabetes have been studied extensively in vivo and in vitro. A reduction in bioavailability of NO is a common event that is known as the endothelial dysfunction in these conditions. Despite intense investigation of NO biotransport and O(2)(-) and ONOO(-) biochemical interactions in vasculature, we have very little quantitative knowledge of distributions and concentrations of NO, O(2)(-), and ONOO(-) under normal physiologic and pathophysiologic conditions. Based on fundamental principles of mass balance, vessel geometry, and reaction kinetics, we developed a mathematical model of these free radicals transport in and around an arteriole during oxidative stress. We investigated the role of O(2)(-) and ONOO(-) in inactivating vasoactive NO. The model predictions include (a) NO interactions with oxygen, O(2)(-), and ONOO(-) have relatively little effect on the NO level in the vascular smooth muscle under physiologic conditions; (b) superoxide diffuses only a few microns from its source, whereas peroxynitrite diffuses over a larger distance; and (c) reduced superoxide dismutase levels significantly increase O(2)(-) and peroxynitrite concentrations and decrease NO concentration. Model results indicate that the reduced NO bioavailability and enhanced peroxynitrite formation may vary depending on the location of oxidative stress in the microcirculation, which occurs at diverse vascular cell locations in diabetes, aging, and cardiovascular diseases. The results will have significant implications for our understanding of these free radical interactions in physiologic and pathophysiologic conditions resulting from endothelial dysfunction.  相似文献   

7.
Redox regulation of the afferent arteriole and tubuloglomerular feedback   总被引:3,自引:0,他引:3  
Oxidative stress implies an increased production of reactive oxygen species (ROS) or a decreased capacity to metabolize them. Superoxide anion (O) can bioinactivate nitric oxide (NO). Therefore, many effects of ROS are manifest as NO deficiency. The afferent arteriole and macula densa cell both contain a full complement of components of nicotine adenine dinucleotide phosphate (NADPH) oxidase that generates O. Nitric oxide synthase (NOS) type 1 or neuronal NOS (nNOS) is expressed in the macula densa and NOS type II or endothelial NOS (eNOS) in the afferent arteriole. Whole animal studies in models of hypertension and oxidative stress demonstrate that metabolism of O by a superoxide dismutase (SOD) mimetic can reduce renal vascular resistance. In vivo studies of single nephron function and in vitro studies with the double-perfused juxtaglomerular apparatus preparation have shown extensive interaction between O and NO in macula densa to regulate afferent arteriolar tone mediated by the tubuloglomerular feedback response. In vitro studies of rabbits isolated, perfused afferent arterioles have shown a similar interaction in this vessel. These data indicate important roles for O in the macula densa and afferent arterioles to enhance preglomerular resistance in animal models of oxidative stress. As an increase in afferent arteriolar resistance can precede hypertension, oxidative stress could be important in determining the long-term blood pressure and thereby contribute to hypertension.  相似文献   

8.
Extracellular superoxide dismutase (ecSOD) is the major extracellular scavenger of superoxide (O(2)(.-)) and a main regulator of nitric oxide (NO) bioactivity in the blood vessel wall, heart, lungs, kidney, and placenta. Involvement of O(2)(.-) has been implicated in many pathological processes, and removal of extracellular O(2)(.-) by ecSOD gene transfer has emerged as a promising experimental technique to treat vascular disorders associated with increased oxidant stress. In addition, recent studies have clarified mechanisms that regulate ecSOD expression, tissue binding, and activity, and they have provided new insight into how ecSOD interacts with other factors that regulate vascular function. Finally, studies of a common gene variant in humans associated with disruption of ecSOD tissue binding suggest that displacement of the enzyme from the blood vessel wall may contribute to vascular diseases. The purpose of this review is to summarize recent research findings related to ecSOD function and gene transfer and to stimulate other investigations into the role of this unique antioxidant enzyme in vascular pathophysiology and therapeutics.  相似文献   

9.
Obstructive sleep apnea, characterized by intermittent periods of hypoxemia, is an independent risk factor for the development of pulmonary hypertension. However, the exact mechanisms of this disorder remain to be defined. Enhanced NADPH oxidase expression and superoxide (O2(-).) generation in the pulmonary vasculature play a critical role in hypoxia-induced pulmonary hypertension. Therefore, the current study explores the hypothesis that chronic intermittent hypoxia (CIH) causes pulmonary hypertension, in part, by increasing NADPH oxidase-derived reactive oxygen species (ROS) that contribute to pulmonary vascular remodeling and hypertension. To test this hypothesis, male C57Bl/6 mice and gp91phox knockout mice were exposed to CIH for 8 hours per day, 5 days per week for 8 weeks. CIH mice were placed in a chamber where the oxygen concentration was cycled between 21% and 10% O2 45 times per hour. Exposure to CIH for 8 weeks increased right ventricular systolic pressure (RVSP), right ventricle (RV):left ventricle (LV) + septum (S) weight ratio, an index of RV hypertrophy, and thickness of the right ventricular anterior wall as measured by echocardiography. CIH exposure also caused pulmonary vascular remodeling as demonstrated by increased muscularization of the distal pulmonary vasculature. CIH-induced pulmonary hypertension was associated with increased lung levels of the NADPH oxidase subunits, Nox4 and p22phox, as well as increased activity of platelet-derived growth factor receptor beta and its associated downstream effector, Akt kinase. These CIH-induced derangements were attenuated in similarly treated gp91phox knockout mice. These findings demonstrate that NADPH oxidase-derived ROS contribute to the development of pulmonary vascular remodeling and hypertension caused by CIH.  相似文献   

10.
Neutrophils play an essential role in host defense against microbial pathogens and in the inflammatory reaction. Upon activation, neutrophils produce superoxide anion (O*2), which generates other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radical (OH*) and hypochlorous acid (HOCl), together with microbicidal peptides and proteases. The enzyme responsible for O2* production is called the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase or respiratory burst oxidase. This multicomponent enzyme system is composed of two trans-membrane proteins (p22phox and gp91phox/NOX2, which form the cytochrome b558), three cytosolic proteins (p47phox, p67phox, p40phox) and a GTPase (Rac1 or Rac2), which assemble at membrane sites upon cell activation. NADPH oxidase activation in phagocytes can be induced by a large number of soluble and particulate factors. Three major events accompany NAPDH oxidase activation: (1) protein phosphorylation, (2) GTPase activation, and (3) translocation of cytosolic components to the plasma membrane to form the active enzyme. Actually, the neutrophil NADPH oxidase exists in different states: resting, primed, activated, or inactivated. The resting state is found in circulating blood neutrophils. The primed state can be induced by neutrophil adhesion, pro-inflammatory cytokines, lipopolysaccharide, and other agents and has been characterized as a "ready to go" state, which results in a faster and higher response upon exposure to a second stimulus. The active state is found at the inflammatory or infection site. Activation is induced by the pathogen itself or by pathogen-derived formylated peptides and other agents. Finally, inactivation of NADPH oxidase is induced by anti-inflammatory agents to limit inflammation. Priming is a "double-edged sword" process as it contributes to a rapid and efficient elimination of the pathogens but can also induce the generation of large quantities of toxic ROS by hyperactivation of the NADPH oxidase, which can damage surrounding tissues and participate to inflammation. In order to avoid extensive damage to host tissues, NADPH oxidase priming and activation must be tightly regulated. In this review, we will discuss some of the mechanisms of NADPH oxidase priming in neutrophils and the relevance of this process to physiology and pathology.  相似文献   

11.
Reactive oxygen species generated from NADPH oxidase(s) in airway smooth muscle cells and pulmonary artery smooth muscle cells are important signaling intermediates. Nox4 appears to be the predominant gp91 homologue in these cells. However, expression of NADPH oxidase components is dependent on phenotype, and different homologues may be expressed during different functional states of the cell. NADPH oxidase(s) appear to be important not only for mitogenesis by these cells, but also for O(2) sensing. The regulation of NADPH oxidase(s) in airway and pulmonary artery smooth muscle cells has important implications for the pathobiochemistry of asthma and pulmonary vascular diseases.  相似文献   

12.
Nitric oxide in the pathogenesis of vascular disease   总被引:31,自引:0,他引:31  
Nitric oxide (NO) is synthesized by at least three distinct isoforms of NO synthase (NOS). Their substrate and cofactor requirements are very similar. All three isoforms have some implications, physiological or pathophysiological, in the cardiovascular system. The endothelial NOS III is physiologically important for vascular homeostasis, keeping the vasculature dilated, protecting the intima from platelet aggregates and leukocyte adhesion, and preventing smooth muscle proliferation. Central and peripheral neuronal NOS I may also contribute to blood pressure regulation. Vascular disease associated with hypercholesterolaemia, diabetes, and hypertension is characterized by endothelial dysfunction and reduced endothelium-mediated vasodilation. Oxidative stress and the inactivation of NO by superoxide anions play an important role in these disease states. Supplementation of the NOS substrate L-arginine can improve endothelial dysfunction in animals and man. Also, the addition of the NOS cofactor (6R)-5,6,7, 8-tetrahydrobiopterin improves endothelium-mediated vasodilation in certain disease states. In cerebrovascular stroke, neuronal NOS I and cytokine-inducible NOS II play a key role in neurodegeneration, whereas endothelial NOS III is important for maintaining cerebral blood flow and preventing neuronal injury. In sepsis, NOS II is induced in the vascular wall by bacterial endotoxin and/or cytokines. NOS II produces large amounts of NO, which is an important mediator of endotoxin-induced arteriolar vasodilatation, hypotension, and shock.  相似文献   

13.
Oxidative stress plays an important role in the pathophysiology of vascular diseases. Reactive oxygen species, especially superoxide anion and hydrogen peroxide, are important signalling molecules in cardiovascular cells. Enhanced superoxide production increases nitric oxide inactivation and leads to an accumulation of peroxynitrites and hydrogen peroxide. Reactive oxygen species participate in growth, apoptosis and migration of vascular smooth muscle cells, in the modulation of endothelial function, including endothelium-dependent relaxation and expression of proinflammatory phenotype, and in the modification of the extracellular matrix. All these events play important roles in vascular diseases such as hypertension, suggesting that the sources of reactive oxygen species and the signalling pathways that they modify may represent important therapeutic targets. Potential sources of vascular superoxide production include NADPH-dependent oxidases, xanthine oxidases, lipoxygenases, mitochondrial oxidases and nitric oxide synthases. Studies performed during the last decade have shown that NADPH oxidase is the most important source of superoxide anion in phagocytic and vascular cells. Evidence from experimental animal and human studies suggests a significant role of NADPH oxidase activation in the vascular remodelling and endothelial dysfunction found in cardiovascular diseases.  相似文献   

14.
15.
16.
Aging impairs blood vessel function and leads to cardiovascular disease. The mechanisms underlying the age-related endothelial, smooth muscle and extracellular matrix vascular dysfunction are discussed. Vascular dysfunction is caused by: (1) Oxidative stress enhancement. (2) Reduction of nitric oxide (NO) bioavailability, by diminished NO synthesis and/or augmented NO scavenging. (3) Production of vasoconstrictor/vasodilator factor imbalances. (4) Low-grade pro-inflammatory environment. (5) Impaired angiogenesis. (6) Endothelial cell senescence. The aging process in vascular smooth muscle is characterized by: (1) Altered replicating potential. (2) Change in cellular phenotype. (3) Changes in responsiveness to contracting and relaxing mediators. (4) Changes in intracellular signaling functions.Systemic arterial hypertension is an age-dependent disorder, and almost half of the elderly human population is hypertensive. The influence of hypertension on the aging cardiovascular system has been studied in models of hypertensive rats. Treatment for hypertension is recommended in the elderly. Lifestyle modifications, natural compounds and hormone therapies are useful for initial stages and as supporting treatment with medication but evidence from clinical trials in this population is needed. Since all antihypertensive agents can lower blood pressure in the elderly, therapy should be based on its potential side effects and drug interactions.  相似文献   

17.
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.  相似文献   

18.
Hydrogen peroxide (H2O2) is produced by inflammatory and vascular cells and induces oxidative stress, which may contribute to vascular disease and endothelial cell dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are not well understood, although O2 may play a role. Recent studies have documented increased O2 in endothelial cells exposed to H2O2 via uncoupled nitric oxide synthase (NOS) and NADPH oxidase under static conditions. To assess responses to H2O2 in porcine aortic endothelial cells (PAEC) under shearing conditions, a constant flow rate of 24. 4 ml/min was applied to produce physiologically relevant shear stress (8. 2 dynes/cm). Here we demonstrate that treatment with 100 muM H2O2 increases intracellular O2 levels in PAEC. In addition, we demonstrate that l-NAME, an inhibitor of NOS, and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2 under physiologic shear suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Co-inhibition of NOS and NADPH oxidase also reduced intracellular O2 levels under shear. We conclude that H2O2-induced oxidative stress in endothelial cells exhibits increased intracellular O2 levels through NOS and NADPH oxidase under shear. The inhibition of NOS and NADPH with H2O2 exposure is nonlinear, suggesting some interdependent or compensating system within endothelial cells. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction in cardiovascular diseases.  相似文献   

19.
One of the well-known consequences of established hypertension is an increase in connective tissue proteins in the walls of the large arterial blood vessels. Using renal clip and Dahl salt-sensitive rat models of systemic hypertension, we investigated the effect of developing hypertension on elastin production and accumulation in rat aorta. In both models of hypertension, increased accumulation of arterial elastin appeared coincidentally with, and was proportional to, elevation of blood pressure. In spite of large increases in absolute amounts of elastin, the proportion of elastin present in the vessel wall remained essentially constant from the earliest stage of the response. These changes in elastin synthesis and accumulation took place in the absence of evidence of cell proliferation. Treatment of Dahl rats with colchicine during development of hypertension affected blood pressure rise only marginally but abolished the vascular hypertrophic response. Our results suggest that the response of elastin production to increased blood pressure is rapid and sensitive, and that the stimulus for increased synthesis is an increase in wall stress. The striking effect of colchicine may indicate a role of elements of the cytoskeleton in the perception of stress by the vascular smooth muscle cells or in the transduction of that stress into increased production of connective tissue proteins.  相似文献   

20.
The endothelium of blood vessels plays a crucial role in the regulation of blood flow by controlling mechanical functions of underlying vascular smooth muscle. The regulation by the endothelium of vascular smooth muscle relaxation and contraction is mainly achieved via the release of vasoactive substances upon stimulation with neurohumoural substances and physical stimuli. Nitric oxide (NO) and prostaglandin I2 (prostacyclin, PGI2) are representative endothelium-derived chemicals that exhibit powerful blood vessel relaxation. NO action involves activation of soluble guanylyl cyclase and PGI2 action is initiated by the stimulation of a cell-surface receptor (IP receptor, IPR) that is coupled with Gs-protein-adenylyl cyclase cascade. Many studies on the mechanisms by which NO and PGI2 elicit blood vessel relaxation have highlighted a role of the large conductance, Ca2+-activated K+ (MaxiK, BKCa) channel in smooth muscle as their common downstream effector. Furthermore, their molecular mechanisms have been unravelled to include new routes different from the conventionally approved intracellular pathways. MaxiK channel might also serve as a target for endothelium-derived hyperpolarizing factor (EDHF), the non-NO, non-PGI2 endothelium-derived relaxing factor in some blood vessels. In this brief article, we review how MaxiK channel serves as an endothelium-vascular smooth muscle transducer to communicate the chemical signals generated in the endothelium to control blood vessel mechanical functions and discuss their molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号