首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The naturally occurring neuron death of normal development has been shown to depend on trophic factors produced and released by target cells. It has also been shown that the afferent supply and local interactions play a role in the control of this degenerative phenomenon. We studied the effect of trophic factors produced by intrinsic retinal cells on the survival of retinal ganglion cells in vitro. Retinae of newborn hooded rats were retrogradely labelled with horseradish peroxidase injected into the superior colliculus to permit the identification of retinal ganglion cells in culture. We tested the effect of conditioned media either from aggregates or from explants of retinal cells from neonatal rats on the survival of ganglion cells in vitro. Our results showed that both conditioned media increased the survival of these cells. The trophic activity was dose-dependent, was maintained after dialysis against a 12 kDa membrane, was abolished by heating at 56°C for 30 min, and was not found in conditioned medium from cerebral cortical explants. Conditioned medium obtained without fetal calf serum presented the same trophic effect. These results suggest that the local control of developmental neuron death by intrinsic retinal cells may be mediated by neurotrophic factors.  相似文献   

2.
Consistent with numerous previous studies, we have found that in adult rats 29% of cells retrogradely prelabelled by injections into retino-recipient nuclei are lost 1 week after intraorbital section of the optic nerve. This figure increases to 76% 2 weeks after axotomy. Intraocular injections of 150 ng of 480 k d a chondroitin sulphate proteoglycan purified from the superior colliculi of neonatal rats were performed every third day after axotomy. This procedure resulted in the loss of only 3 and 28% of the axotomized retinal ganglion cells 7 and 14 days respectively after optic nerve section. Intraocular injections of chondroitin sulphate type C, one of the sugar types present on the collicular proteoglycan, also resulted in a significant saving of axotomized ganglion cells (with the loss of only 48% 14 days after optic nerve lesion). These findings suggest that the collicular proteoglycan, and to a lesser extent its sugar moieties, substantially slows down the degeneration of adult retinal ganglion cells following axotomy.  相似文献   

3.
目的:探讨影响视网膜节细胞轴突再生的细胞内信号传递途径。方法:采用金鲁视网膜节细胞培养及Western blot观察几种神经营养因子对视网膜节细胞轴突再生的影响。结果:AF-1、AF-2、CNTF能刺激视网膜节细胞轴突再生及GAP-43表达增强;6-硫鸟嘌呤(6-TG)能抑制AF-1、AF-2、CNTF对神经再生及GAP-43表达的促进;肌苷不仅能刺激视网膜节细胞轴突再生及GAP-43表达增强,而且能竞争性逆转6-TG对AF-1、AF-2、CNTF诱导神经再生的抑制。结论:上述几种神经营养因子通过一种嘌呤敏感途径的调节,能增强视网膜节细胞轴突再生及GAP0-43的表达。  相似文献   

4.
Nitric oxide (NO) synthesized by inducible nitric oxide synthase (iNOS) has been implicated in neuronal cytotoxicity following trauma to the central nervous system. The aim of the present study was to examine the role of NO in mediating axotomy-induced retinal ganglion cell (RGC) death. We observed increases in iNOS expression by microglia and Müller cells in the retina after optic nerve transection. This was paralleled by the induced expression of constitutive NOS (cNOS) in RGCs which do not normally express this enzyme. In order to determine if NO is cytotoxic to axotomized RGCs, the nonspecific NOS inhibitors Nomega-nitro-L-arginine (NOLA) or N-nitro-L-arginine methyl ester (L-NAME) were delivered to the vitreous chamber by intraocular injections. Both NOLA and L-NAME significantly enhanced RGC survival at 7, 10, and 14 days postaxotomy. The separate contributions of iNOS and cNOS to RGC degeneration were examined with intraocular injections of the specific iNOS inhibitor L-N(6)-(I-iminoethyl)lysine hydrochloride or the specific cNOS inhibitor L-thiocitrulline. Our results suggest that cNOS plays a greater role in RGC degeneration than iNOS. In addition to enhancing RGC survival, NOS inhibitors delayed the retrograde degeneration of RGC axons after axotomy. We conclude that NO synthesized by retinal iNOS and cNOS plays a major role in RGC death and retrograde axonal degeneration following axotomy.  相似文献   

5.
We have investigated the relationship between axon targeting and dendritic morphology in beta retinal ganglion cells in the postnatal ferret. Axonal projections were assessed by making separate injections of different fluorescent retrograde tracers into either the superior colliculus or lateral geniculate nucleus in viva The dendritic morphology of retrogradely labelled cells was revealed by the in vitro intracellular injection of Lucifer yellow in fixed retina. In this way, 405 retinal ganglion cells were triple- or double-labelled and characterized by their dendritic branching styles. Both the distinct dendritic morphology of beta cells and the characteristic restriction of their adult axonal terminals to the lateral geniculate nucleus emerge postnatally. Beta cell dendritic morphology is established between postnatal days 5 and 9. As in the cat (Ramoa et al, 1989), beta cells extend and then retract a projection to the superior colliculus as part of their normal development. Transient beta axonal collaterals to the superior colliculus persist beyond the period of cell death, but nearly all are withdrawn by postnatal day 15. No dendritically distinct beta cell projects to the superior colliculus alone, at any age. Heterochronic injections of different colours of retrograde tracer into the superior colliculus were used to study changes in the complement of the retinocollicular projection over time. A significant proportion of cells (58%) labelled at postnatal day O from the superior colliculus, which subsequently survived the period of cell death, were found to be beta cells that could no longer be demonstrated to have a retinocollicular axon. Neonatal decortication, which reduced the volume of the adult lateral geniculate nucleus by 36–86%, resulted in the limited stabilization of this normally transient beta cell projection to the superior colliculus. The fundamental dendritic branching style of beta ganglion cells is unchanged in decorticate ferrets, suggesting that it develops independently of their ultimate axonal target choice.  相似文献   

6.
The abilities of embryonic and adult rat sensory neurons to regenerate were compared when cultured on cryostat sections of normal and lesioned sciatic nerve tissues. Differences in neurite growth, visualized by GAP-43 immunolabelling, were most pronounced on substrata consisting of longitudinal sections of normal versus predegenerated sciatic nerve. Adult dorsal root ganglion (DRG) neurons grew only on the lesioned nerves. Neurites extended along these sections in a characteristically longitudinal orientation, and this growth was not dependent on nerve growth factor. Embryonic DRG neurons extended neurites on sections from both types of nerves. These results highlight important differences in the regenerative abilities of embryonic and adult DRG neurons when grown on physiologically appropriate substrata.  相似文献   

7.
In each of four cats gentle pressure was applied to one optic nerve by means of an inflatable cuff in order to disrupt the largest axons (Y fibres) and so produce a conduction block in them. It has previously been shown that this technique, as used by us, causes Wallerian degeneration in the fibres posterior to the site of application of the pressure (the crush site). The optic nerves and retinas in these cats were examined 2 - 2.8 years later. The optic nerves were prepared for electron microscopy and the retinas were flat-mounted. Here we report an average 90% loss of large axons (>5 microm diameter) in the nerve posterior to the crush site. However, in the part of the nerve anterior to the crush site there was only a 33% loss and in the retina only a 57.5% reduction in the number of neurons of soma diameter >25 microm (i.e. alpha cells, the cell bodies of the Y neurons). These last two sets of values were significantly different, suggesting that the retinal ganglion cells had shrunk relatively more than the axons. Thus, the crushing technique has effectively axotomized almost all the Y fibres but, in spite of this, about half of the alpha retinal ganglion cells have survived this particular form of axotomy, with their axons intact at least for some distance into the optic nerve. This long survival raises the possibility that these neurons may have regenerated axons which have found targets and thus ensured their survival.  相似文献   

8.
Developing sensory neurons interact with molecular signals in the local environment to generate stereotypic nerve pathways. Regenerating neurons seem to lose the ability to reinnervate their original sites in the targets, resulting in abnormal sensory input and consequent clinical pathophysiology. The specificity of reinnervation of peripheral targets by regenerating axons is thus crucial for normal recovery of function. In this study, we have examined evidence for selectivity of interactions between primary afferent neurons from identified levels of the spinal cord and different peripheral nerve environments by culturing these neurons on sections of nerves to muscle and viscera. We have compared the growth of a population of sensory afferents normally innervating somatic targets (dorsal root ganglion cells from L4 and L5) with populations containing many afferents innervating visceral targets (L6 and S1 dorsal root ganglia and nodose ganglion). These neurons, from newly born rats, were cultured on unfixed cryostat sections of normal and prelesioned gastrocnemius nerve, pelvic spinal nerve and vagus nerve from adult rats. Normal muscle nerve was seen to support the regeneration of a significantly greater proportion of somatic neurons, with longer neurites, than the visceral nerves. Similarly, much higher proportions of the‘visceral’population of afferent neurons were seen to extend neurites on the normal visceral nerve substrates, with longer neurites, than on the muscle nerve substrate. The selectivity displayed by the sensory neurons for their normal nerve substrates was abolished when they were cultured on prelesioned nerve substrates subjected to Wallerian degeneration, which was apparent from the equivalent and increased proportions of growing neurons having comparable neurite lengths, on all the nerve substrates. We conclude that sensory neurons recognize and respond to substrate-specific and substrate-bound molecules present in normal adult peripheral nerves, and that these differences are lost in prelesioned nerves following Wallerian degeneration.  相似文献   

9.
The capacity of CNS neurons for axonal regrowth after injury decreases as the age of the animal at time of injury increases. After spinal cord lesions at birth, there is extensive regenerative growth into and beyond a transplant of fetal spinal cord tissue placed at the injury site. After injury in the adult, however, although host corticospinal and brainstem-spinal axons project into the transplant, their distribution is restricted to within 200 μm of the host/transplant border. The aim of this study was to determine if the administration of neurotrophic factors could increase the capacity of mature CNS neurons for regrowth after injury. Spinal cord hemisection lesions were made at cervical or thoracic levels in adult rats. Transplants of E14 fetal spinal cord tissue were placed into the lesion site. The following neurotrophic factors were administered at the site of injury and transplantation: brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), ciliary-derived neurotrophic factor (CNTF), or vehicle alone. After 1–2 months survival, neuroanatomical tracing and immunocytochemical methods were used to examine the growth of host axons within the transplants. The neurotrophin administration led to increases in the extent of serotonergic, noradrenergic, and corticospinal axonal ingrowth within the transplants. The influence of the administration of the neurotrophins on the growth of injured CNS axons was not a generalized effect of growth factors per se, since the administration of CNTF had no effect on the growth of any of the descending CNS axons tested. These results indicate that in addition to influencing the survival of developing CNS and PNS neurons, neurotrophic factors are able to exert aneurotropicinfluence on injured mature CNS neurons by increasing their axonal growth within a transplant.  相似文献   

10.
11.
We have examined the effects of ciliary neurotrophic factor (CNTF) on the development of rat Purkinje cells in vitro. Cerebellar cells, derived from embryonic day 16 rat fetuses, were found to respond rapidly to CNTF treatment by induction of c-Fos protein, such that 40% of the cells were immunopositive after 60 min. Treatment with low doses of CNTF (10-100 pg/ml) for 8 days resulted in an ∼ 1.6-fold increase in the number of Purkinje cells, identified by immunohistochemical staining for calbindin. Immunohistochemical staining for other Purkinje cell markers-cyclic-GMP-dependent protein kinase and the low-affinity nerve growth factor receptor-verified increased Purkinje cell survival following CNTF treatment. In addition, CNTF increased specific high-affinity GABA uptake by 45%, and the number of GABAergic neurons by 70%. A maximal increase in the number of Purkinje cells and GABA-uptake was only achieved if CNTF was added within 48 h of plating the cells, further suggesting that CNTF enhances Purkinje cell survival in vitro. These results taken together strongly support a direct effect of CNTF in promoting the survival of Purkinje cells and possibly other GABAergic cerebellar neurons.  相似文献   

12.
The expression of neuropeptides and neurotrophic factors is altered in the hippocampus after seizure induction in rats. Because the increase in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) mRNAs precede changes in neuropeptide expression after seizure, it is possible that BDNF and NGF mediate subsequent alterations in peptide expression. To test this hypothesis directly, BDNF or NGF was infused into the hippocampus and cortex of adult rats. To ascertain the regional specificity of any observed effects of neurotrophin administration on neuropeptide expression, infusions into the striatum were also studied. To control for specificity, vehicle was also infused into the same sites. Peptide and mRNA alterations were assessed by Northern analysis, immunohistochemistry and radioimmunoassay. BDNF produced elevations of peptide and mRNA for neuropeptide Y and cholecystokinin in hippocampus and cortex, and somatostatin in cortex. BDNF increased mRNAs for neuropeptide Y, cholecystokinin, substance P and dynorphin in striatum. In contrast, BDNF decreased dynorphin peptide and mRNA in hippocampus. NGF's effects were limited to small mRNA increases, without corresponding changes in peptide levels, for neuropeptide Y in hippocampus and striatum, substance P in cortex and cholecystokinin in striatum. The distinct and limited effects of NGF infusion on neuropeptide expression demonstrate that BDNF's effects are not non-specific results of protein infusion into the brain. These findings indicate that BDNF may play a regionally specific role in modulating neuropeptide expression in the normal brain as well as in various pathophysiological states.  相似文献   

13.
14.
Northern blot analysis was used to demonstrate high levels of hippocampus-derived neurotrophic factor/neurotrophin-3 (HDNF/NT-3) mRNA in the embryonic day (E) 13 - 14 and 15 - 16 spinal cord. The level decreased at E18 - 19 and remained the same until postnatal day (P) 1, after which it decreased further to a level below the detection limit in the adult. In situ hybridization revealed that the NT-3 mRNA detected in the developing spinal cord was derived from motoneurons and the decrease seen at E18 - 19 was caused by a reduction in the number of motoneurons expressing NT-3 mRNA. The distribution of NT-3 mRNA-expressing cells in the E15 spinal cord was very similar to the distribution of cells expressing choline acetyltransferase or nerve growth factor receptor (NGFR) mRNA. Moreover, a striking similarity between the developmentally regulated expression of NT-3 and NGFR mRNA was noted in spinal cord motoneurons. A subpopulation of all neurons in the dorsal root ganglia expressed brain-derived neurotrophic factor (BDNF) mRNA from E13, the earliest time examined, to adulthood. These results are consistent with a trophic role of NT-3 for proprioceptive sensory neurons innervating the ventral horn, and imply a local action of BDNF for developing sensory neurons within the dorsal root ganglia.  相似文献   

15.
The bcl-2 gene codes for a protein that acts as a powerful inhibitor of active cell death. Since the transection of the optic nerve in adult mammalians starts a massive process of degeneration in retinal ganglion cells, we investigated whether the overexpression of bcl-2 in adult transgenic mice can protect the axotomited ganglion cells. We performed intracranial optic nerve transection on both wild type and transgenic adult mice, and we tested cell survival 2 or 3.5 months after axotomy. The percentage of surviving ganglion cells after optic nerve section was computed by combining the counts of the optic nerve fibres in intact nerves with the cell density measures of the ganglion cell layer of axotomized retinae. From these data we found that in transgenic mice˜65% of ganglion cells survived 3.5 months after axotomy. In contrast, 2 months after surgery, <10% of ganglion cells were left in wild type retinae. We have also examined the morphology and fine structure of the proximal stump of the sectioned optic nerves by light and electron microscopy. In the transgenic mice a very large number of axons survived after surgery and they still exhibited fairly normal morphology and ultrastructure. On the other hand the wild type transected nerves had only a few visible axons that displayed clear signs of degeneration. We conclude that the overexpression of Bcl-2 protein in central neurons is a very effective strategy to ensure long-term survival in axotomized cells.  相似文献   

16.
Glucagon-like peptide-1 (GLP-1) is expressed in retinal neurons, but its role in the retina is largely unknown. Here, we demonstrated that GLP-1 or the GLP-1 receptor (GLP-1R; a G protein-coupled receptor) agonist exendin-4 suppressed γ-aminobutyric acid receptor (GABAR)-mediated currents through GLP-1Rs in isolated rat retinal ganglion cells (GCs). Pre-incubation with the stimulatory G protein (Gs) inhibitor NF 449 abolished the exendin-4 effect. The exendin-4-induced suppression was mimicked by perfusion with 8-Br-cAMP (a cAMP analog), but was eliminated by the protein kinase A (PKA) inhibitor Rp-cAMP/KT-5720. The exendin-4 effect was accompanied by an increase in [Ca2+]i of GCs through the IP3-sensitive pathway and was blocked in Ca2+-free solution. Furthermore, when the activity of calmodulin (CaM) and CaM-dependent protein kinase II (CaMKII) was inhibited, the exendin-4 effect was eliminated. Consistent with this, exendin-4 suppressed GABAR-mediated light-evoked inhibitory postsynaptic currents in GCs in rat retinal slices. These results suggest that exendin-4-induced suppression may be mediated by a distinct Gs/cAMP-PKA/IP3/Ca2+/CaM/CaMKII signaling pathway, following the activation of GLP-1Rs.Supplementary InformationThe online version of this article (10.1007/s12264-022-00826-9) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
The content of calcitonin gene-related peptide (CGRP) and CGRP-mRNA were determined in axotomized rat facial motor nucleus and sensory fifth lumbar dorsal root ganglion (L5 DRG) using radioimmunoassay and Northern blot analysis. After facial nerve transection CGRP levels in the facial nucleus showed a biphasic, approximately five-fold increase. A first peak occurred at postoperative day 3 and, after a transient decrease to normal levels at day 9, another increase was observed reaching a peak around the time of reinnervation (postoperative day 21). CGRP-mRNA showed a similar, biphasic increase. The first peak in CGRP mRNA preceded the peptide peak by 2 days, the second peak was approximately day 21. In contrast, a decrease in CGRP levels is seen in L5 DRG after sciatic nerve section, reaching minimal levels of 45% of control during the second postoperative week. CGRP-mRNA in axotomized DRG also decreases preceding the decrease in peptide levels. No recovery to normal levels is seen for either peptide or mRNA levels in regenerating DRG up to 45 days after injury. Thus, axotomy leads to a differential regulation of both CGRP and CGRP-mRNA in regenerating facial motor nucleus and sensory L5 DRG. This difference may be due to different regulating factors present in both the respective target tissues and the CNS regions and could reflect different functions of CGRP in regenerating motor and sensory neurons.  相似文献   

19.
Objective: Primary culture is an effective experimental model to study molecular mechanisms that drive axonal regeneration after central nervous system injury. However, the culture of spinal cord (SC) cells remains poorly characterized. Here, we have analyzed the cell composition of a primary SC culture during its maturation.

Methods: Primary cell culture was prepared from mouse embryo spinal cords. After 2, 7, and 14 days of cultivation, the cells were fixed and stained with antibodies against β3-tubulin, nestin, crmp1, SMI-32, DCC or GFAP. We counted percentage of cells positive for the mentioned markers and measured the length of cell processes.

Results: We found that β3-tubulin and nestin were both expressed at day 2 of culture in vitro. Surprisingly (given the use of differentiation-supporting culture medium), the number of nestin+ cells has significantly increased during the first week of cultivation. The GFAP+ cells appeared only at the seventh day in vitro, and their fraction increased during the following cultivation. At 14 day in vitro, SC culture contained cells that expressed the markers typical of commissural and motor neurons. At this age, the neurons had the ability to repair injured neurites after mechanical damage.

Conclusion: Primary culture of SC cells is a dynamically developing cell population that contains all main types of SC cells and is capable of self-repair. Therefore, the culture of mouse embryonic SC cells represents an adequate experimental model for studying cellular and molecular processes taking place in SC neurons after axonal damage in the absence of external inhibitors.  相似文献   


20.
The dendrites of ganglion cells in the mammalian retina become extensively remodelled during synapse formation in the inner plexiform layer. In particular, after birth in the cat, many short spiny protrusions are lost from the dendrites of ganglion cells during the time when ribbon, presumably bipolar, synapses appear in the inner plexiform layer and when conventional, presumed amacrine, synapses increase significantly in number. It has therefore been postulated that these transient spines may be the initial or preferred substrates for competitive interactions between amacrine or bipolar cell terminals that subsequently result in the formation of appropriate synapses onto the ganglion cells. If so, the majority of synapses made onto developing ganglion cells should be found on these dendritic spines. To test this hypothesis, we determined the synaptic connectivity of identified ganglion cells in the postnatal cat retina during the period of peak spine loss and synapse formation. The dendritic trees of ganglion cells were intracellularly filled with Lucifer yellow that was subsequently photo-oxidized into an electron-dense product suitable for electron microscopy. In serial reconstructions of the dendrites of a postnatal day 11 (P11) alpha ganglion cell and a P14 beta ganglion cell, conventional and ribbon synapses were found predominantly on dendritic shafts. Only three out of a total of 341 dendritic spines from the two cells received direct presynaptic input, all of which were conventional synapses. Thus, our observations suggest that the transient dendritic spines are not the preferred postsynaptic sites as previously suspected. However, it is possible that these structures play a different role in synaptogenesis, such as mediating interactions between retinal neurons that may lead to cell-cell recognition, a necessary step prior to synapse formation at the appropriate target sites (Cooper and Smith, Soc. Neurosci. Abstr. , 14 , 893, 1988).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号