共查询到14条相似文献,搜索用时 78 毫秒
1.
目的优化马钱子碱纳米结构脂质载体(B-NLC)处方与制备工艺。方法溶剂乳化超声法制备B-NLC,以单因素考察法结合星点设计-效应面法(CCD-RSM)优化处方与制备工艺。结果所制备的B-NLC为淡蓝色乳光的透明液体。最优条件为药物用量为1.28 mg,泊洛沙姆188质量浓度为1.08%,固态脂质与液态脂质的比例为1.45∶1,平均粒径为(136.89±4.23)nm,多分散指数(PDI)为0.289±0.005,Zeta电位为(-34.46±0.31)m V,包封率为(68.98±2.06)%,载药量为(1.90±0.06)%。结论溶剂乳化超声法制备的B-NLC包封率高,粒径小,分布均匀,该方法操作简单方便,可以用于B-NLC制备与处方的优化,为马钱子碱的进一步体内研究奠定了基础。 相似文献
2.
星点设计-效应面法优化斑蝥素纳米结构脂质载体处方工艺 总被引:1,自引:2,他引:1
目的将斑蝥毒性成分斑蝥素(CTD)整合在新型纳米载体(纳米结构脂质载体,NLC)中,并优化斑蝥素纳米结构脂质载体(CTD-NLC)处方工艺,从而降低斑蝥素的毒性并增强其靶向性。方法乳化超声分散法制备CTD-NLC,建立透析法测定其包封率,以平均粒径、粒径分布(多分散指数,PDI)、Zeta电位、包封率与载药量为考察指标,采用单因素考察与星点设计-效应面法(CCD-RSM)优化CTD-NLC的处方工艺,多元二次项拟合评价指标与因素间的模型方程,对拟合方程进行方差分析,效应面法预测最优处方。结果优化后的CTD-NLC处方工艺:脂质总量为453.66mg、固体脂质与液体脂质的比例为1∶2、总稳定剂质量浓度为16.9 mg/mL、Pluronic F68与蛋黄卵磷脂(Lipoid E PC S)的比例为3.88∶1、超声30 min(工作2 s、停2 s);所制得的CTD-NLC外观为澄清透明伴有淡蓝色乳光,平均粒径为(85.99±0.49)nm,PDI为0.280±0.002,Zeta电位为(-8.21±0.24)m V,包封率为(98.57±0.05)%,载药量为(0.65±0.01)%。结论 CCD-RSM建立的拟合模型精准可靠,优化后处方制备的CTD-NLC分布集中,包封率高,物理稳定性好,为CTD-NLC的后续体内外研究奠定了制剂基础。 相似文献
3.
星点设计-效应面法优化姜黄素正负离子纳米结构脂质载体处方 总被引:1,自引:6,他引:1
目的 采用星点设计-效应面法(CCD-RSM)筛选姜黄素(Cur)正负离子纳米结构脂质载体(Cur-CNLC)最佳处方。方法 采用薄膜分散-超声乳化法制备Cur-CNLC,分别以固体脂质质量(X1)、液体脂质质量(X2)、卵磷脂质量(X3)和混合表面活性剂用量(X4)为考察对象,以包封率(Y1)和脂质载药量(Y2)为考察指标,根据CCD原理和多元线性回归及二项式拟合建立指标与因素之间的数学关系,经RSM预测最优处方。结果 按最优处方制备的Cur-CNLC包封率为(94.38±2.67)%,与预测值的偏差为1.23%;脂质载药量为(6.93±0.39)%,与预测值的偏差为2.62%;平均粒径为(235.9±9.6)nm,多分散指数(PDI)为0.272±0.017,Zeta电位为(-28.40±0.35)m V。结论 采用CCD-RSM优化的Cur-CNLC,包封率高,稳定性好,方法可靠。 相似文献
4.
目的 Box-Behnken设计-效应面法优化岩黄连碱纳米结构脂质载体(dehydrocavidine nanostructured lipid carriers,DC-NLCs)处方,并进行体外药效研究。方法 采用溶剂蒸发法制备DC-NLCs。以包封率、载药量和ζ电位为考察指标,采用单因素考察和Box-Behnken设计-效应面法优化DC-NLCs的处方。对DC-NLCs进行表征,并考察体外药效作用。结果 最佳处方为投药量为10.0mg、固-液脂质比为1:8、卵磷脂用量为85.0mg、表面活性剂为1%聚山梨酯-80。DC-NLCs测得包封率为(85.29±0.01)%,载药量为(6.27±0.00)%,ζ电位为(-17.90±1.09)mV、粒径为(188.50±11.77)nm,体外释药具有明显的缓释特征。体外药效学实验表明,DC-NLCs体外抑制肝纤维化的效果显著。结论 Box-Behnken设计-效应面法所建立的模型能较好地用于DC-NLCs处方优化,准确度高,预测效果较好,且优化制备的DC-NLCs具有显著的抑制肝纤维化作用。 相似文献
5.
目的 Box-Behnken设计-效应面法优化鞣花酸(EA)纳米结构脂质载体(EA-NLC)处方,并进行药动学研究.方法 采用乳化超声法制备EA-NLC.以包封率、载药量和粒径为考察指标,采用单因素考察和Box-Behnken设计-效应面法优化EA-NLC的处方.对最佳处方进行表征,并比较体内药动学行为.结果 最佳处方... 相似文献
6.
目的制备五味子醇甲纳米结构脂质载体(SCH-NLC)并对其进行体外评价。方法采用熔融乳化-超声法制备SCH-NLC,基于单因素考察结果采用Box-Behnken效应面法优化制剂处方及制备工艺。采用高效液相色谱法,建立SCH-NLC中五味子醇甲的含量测定方法,并通过测定SCH-NLC的形态、粒径、包封率、载药量、X-射线衍射、体外释放度等对其进行体外评价。结果最佳处方工艺为:中链甘油三酸酯/单硬脂酸甘油酯比7.65∶2.35,泊洛沙姆-188用量3.8%,脂质浓度4.0%,制得的纳米粒平均粒径为(94.11±4.09)nm,包封率为(89.13±0.38)%,载药量为(2.34±0.07)%,X-射线衍射分析表明药物以无定形状态分散于纳米粒中。体外释放实验结果表明,SCH-NLC具有缓释特性。结论该处方可用于SCH-NLC的制备,工艺操作简便,合理可行。 相似文献
7.
8.
目的制备柚皮素(NRG)固体脂质纳米粒冻干粉,考察其理化性质及经大鼠肺部给药后的体内药动学行为。方法采用乳化蒸发-低温固化法,以包封率、粒径为考察指标,正交试验优化其处方并考察其粒径、形态、电位及体外释放。以外观、色泽、再分散性为考察指标筛选最佳冻干保护剂,采用差式扫描量热(DSC)分析药物在纳米粒中的存在状态。通过肺部给药考察NRG固体脂质纳米粒和NRG原料药溶液在大鼠体内的药动学行为。结果 NRG固体脂质纳米粒外观呈球形,分布均匀,平均粒径为(97.69±2.84)nm,多分散系数(PDI)为0.207±0.010,Zeta电位为(-26.20±0.45)m V,包封率为(81.09±1.37)%,载药量为(8.30±0.04)%(n=3),5%甘露醇为冻干保护剂最好,药物以无定形状态分散在脂质载体中,体外溶出实验表明NRG固体脂质纳米粒与原料药相比具有明显的缓释作用。NRG原料药和纳米粒的Cmax分别为(163.00±23.05)、(269.00±35.34)ng/m L,t1/2分别为(5.13±0.23)、(18.93±7.90)h,AUC0-t分别为(929.32±190.28)、(3 390.23±533.68)ng·h/m L,MRT分别为(7.19±0.44)、(23.29±9.27)h。结论乳化蒸发-低温固化法制得的NRG固体脂质纳米粒,粒径小,包封率高,稳定性好,工艺简单。NRG固体脂质纳米粒肺部给药后有明显的缓释作用,能提高药物的生物利用度。 相似文献
9.
制备大黄素纳米结构脂质载体(emodin nanostructured lipid carriers,ED-NLC),并对其进行质量评价。依据单因素试验结果,以大黄素投药量、肉豆蔻酸异丙酯用量和乳化剂泊洛沙姆188用量为考察因素,纳米粒粒径、包封率和载药量为考察指标,采用Box-Behnken响应面法优化处方,并对最优处方制备的纳米粒进行外观形态、粒径和体外释放的考察。最终确定ED-NLC的最优处方大黄素为3.27 mg,肉豆蔻酸异丙酯为148.68 mg,泊洛沙姆188为173.48 mg。乳化-超声分散法制备ED-NLC,透射电镜观察ED-NLC呈类球形,粒度分布均匀,粒径(97.02±1.55)nm,聚合物分散系数0.21±0.01,Zeta电位(-38.96±0.65)mV,包封率90.41%±0.56%,载药量1.55%±0.01%。差示扫描量热仪(differential scanning calorimeter,DSC)结果表明大黄素可能以分子或无定形状态被包裹进纳米结构脂质载体中。体外释药具有明显的缓释特征,体外释药模型符合一级释药方程。Box-Behnken响应面法拟合模型精准可靠,最优处方制备的ED-NLC粒径分布集中,包封率高,为后续ED-NLC体内研究奠定基础。 相似文献
10.
目的 优化聚乙二醇修饰高良姜素纳米结构脂质载体(pegylated gallerythrine nanostructured lipid carriers,PEG-GalNLCs)处方,并进行体外释药行为和体内药动学评价。方法 采用乳化法制备PEG-Gal-NLCs。Box-Behnken设计-效应面法(Box Behnken design-response surface methodology,BBD-RSM)筛选PEG-Gal-NLCs最优处方,测定包封率、载药量、粒径及ζ电位。将PEG-Gal-NLCs混悬液制备成冻干粉,X射线粉末衍射(X-ray powder diffraction,XRPD)法分析高良姜素在PEG-Gal-NLCs冻干粉中的存在形式。考察PEG-Gal-NLCs冻干粉在模拟胃肠液中的释药行为,并对释药模型进行拟合。SD大鼠按50 mg/kg剂量ig后采血,HPLC法测定血药浓度,计算主要药动学参数及相对生物利用度。结果 PEG-Gal-NLCs最佳处方为聚乙二醇-单硬脂酸酯(PEG2000-SA)占载体的质量分数为16%、载体与药物比... 相似文献
11.
12.
目的 制备新藤黄酸纳米结构脂质载体并表征其药剂学性质.方法 采用乳化蒸发-低温固化法制备新藤黄酸纳米脂质载体(GNA-NLC),正交试验设计优化最佳工艺处方,并对其包封率、平均粒径及Zeta电位等性质进行考察.结果 优化后处方制备的GNA-NLC多为圆整、实体的类球形,平均粒径为(144.07±1.44) nm,多分散系数为0.24±0.01,Zeta电位为(-28.03±0.29)mV,包封率为(84.65±0.98)%,载药量为(4.21±0.05)%;DSC显示GNA纳米粒确已形成,并且GNA以非晶态分布在基质中.结论 乳化蒸发-低温固化法能成功制备GNA-NLC,工艺简单,易于控制. 相似文献
13.
目的:研究芎归散超临界CO_2萃取物纳米结构脂质载体的制备.方法:采用微乳超声分散法制备芎归散超临界CO_2萃取物纳米结构脂质载体混悬液,以总苯酞的含量作为工艺研究中包封率的评价指标,以包封率为考察指标,采用正交试验筛选最佳处方,并考察其物理化学性质.结果:最佳处方为大豆卵磷脂-硬脂酸聚氢氧酯S-40-脂质载体(5:2:1),包封率为86.8%,所得纳米粒为类球形实体粒子,平均粒径92.6 nm,平均zeta电位-20.68 mV.结论:芎归散超临界CO_2萃取物纳米结构脂质载体的制备工艺基本可行. 相似文献
14.
目的制备隐丹参酮纳米结构脂质载体,并研究其药动学。方法高压均质法制备纳米结构脂质载体后,测定粒径、Zeta电位、包封率、载药量、体外释药。大鼠分别灌胃给予隐丹参酮及其纳米结构脂质载体混悬液(15 mg/kg),HPLC法测定隐丹参酮含有量,计算主要药动学参数,绘制血药浓度-时间曲线。结果所得隐丹参酮纳米结构脂质载体平均粒径为(175. 26±6. 07) nm,PDI为0. 068±0. 009,Zeta电位为(-34. 2±3. 4) m V,包封率为(87. 69±1. 97)%,载药量为(3. 75±0. 38)%,36 h内累积释放度为64. 13%。与隐丹参酮比较,其纳米结构脂质载体tmax、t1/2、Cmax、AUC0~t、AUC0~∞升高(P<0. 05,P<0. 01),相对生物利用度增加到226. 06%。结论隐丹参酮纳米结构脂质载体具有明显的缓释特征,口服吸收生物利用度有所改善。 相似文献