首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initial tibial fixation strength is the weak link after anterior cruciate ligament reconstruction with a quadrupled hamstring tendon graft fixed with bioabsorbable interference screws. The purpose of this study was to determine the biomechanical differences between 28-mm and tapered 35-mm interference screws for tibial fixation of a soft tissue graft in 16 young cadaveric tibias. Failure mode, displacement before failure, and ultimate failure load were tested with a testing machine aligned with the tibial tunnel to simulate a worst-case scenario. The mode of failure was graft slippage past the screw in all but one of the specimens. The mean maximum load at failure of the 28-mm screw was 594.9 +/- 141.0 N, with mean displacement at failure of 10.97 +/- 2.20 mm. The mean maximum load at failure of the 35-mm screw was 824.9 +/- 124.3 N, with a mean displacement to failure of 14.38 +/- 2.15 mm. The 38% difference in mean maximal load at failure was significant. Important variables in hamstring tendon graft fixation within a bone tunnel include bone mineral density, dilatation, gap size, screw placement, and screw width and length. Attention to these variables will help to provide secure graft fixation during biologic incorporation throughout the rehabilitation period.  相似文献   

2.
BACKGROUND: Tibial fixation of hamstring tendon grafts has been the weak link in anterior cruciate ligament reconstruction. HYPOTHESIS: Use of a central four-quadrant sleeve and screw provides superior fixation when compared with standard interference screw fixation. STUDY DESIGN: Controlled laboratory study. METHODS: In eight pairs of cadaveric knees each anterior cruciate ligament was reconstructed using either an interference screw or a central sleeve and screw on the tibial side. The specimens were then subjected to cyclic loading followed by a load-to-failure test. RESULTS: The load required to cause 1 and 2 mm of graft laxity, defined as the separation of the femur and the tibia at the points of graft fixation, was significantly greater with the sleeve and screw than with the interference screw (at 2 mm: sleeve and screw, 216.1 +/- 30.1 N; interference screw, 167.0 +/- 33.2 N). The force at initial slippage for each of the graft strands was significantly higher with use of the central sleeve and screw. CONCLUSIONS: The four-quadrant sleeve and screw device may provide greater surface area for healing of hamstring tendon grafts and allow equal tensioning of graft strands before fixation. These factors are associated with increased strength of fixation and reduced laxity of the graft after cyclic loading. Clinical Relevance: Use of the central four-quadrant sleeve and screw system offers increased strength of fixation in anterior cruciate ligament reconstruction with hamstring tendon graft.  相似文献   

3.
BACKGROUND: Interference screw fixation of the graft in anterior cruciate ligament reconstruction is considered the gold standard, but limited clinical experience suggests that transcondylar fixation is equally effective. PURPOSE: To compare transcondylar and interference screw fixation. STUDY DESIGN: Ex vivo biomechanical study. METHODS: Twenty pairs of unembalmed knees underwent anterior cruciate ligament reconstruction with patellar tendon autografts. In 1 knee of each pair, the bone plug was stabilized in the femoral tunnel with standard interference screws; in the other knee, transcondylar screws were used. Testing to failure occurred immediately or after 1000 cycles of sinusoidal loading (30 to 150 N) (20 paired reconstructions each). Fixation stiffness, strength, graft creep, displacement amplitude, and change in amplitude were measured and compared (repeated measures anaylsis of variance with Tukey test; P <.05). RESULTS: There was no significant difference in acute strength, maximum load within 3 mm, or stiffness between transcondylar fixation (410 +/- 164 N, 183 +/- 93 N, and 49.6 +/- 28 N/mm, respectively) and interference fixation (497 +/- 216 N, 206 +/- 115 N, and 61 +/- 37.8 N/mm, respectively). Similarly, there was no significant difference in cyclic strength, maximum load within 3 mm, or stiffness between transcondylar fixation (496 +/- 214 N, 357 +/- 82.9 N, and 110 +/- 27.4 N/mm, respectively) and interference fixation (552 +/- 233 N, 357 +/- 76.2 N, and 112 +/- 26.8 N/mm, respectively). Predominant modes of failure were bone plug pullout (transcondylar fixation) and tendon failure or bone plug fracture (interference fixation). CONCLUSIONS: Transcondylar screw fixation of the patellar tendon autograft into the femoral tunnel performed mechanically as well as interference screw fixation. CLINICAL RELEVANCE: The results suggest that transcondylar and interference screws provide similar fixation for anterior cruciate ligament reconstruction.  相似文献   

4.
BACKGROUND: Biomechanical testing of the Intrafix device has not been performed using human tibiae. HYPOTHESIS: The Intrafix device would provide comparable or superior tibial fixation of a quadrupled hamstring tendon graft to a 35-mm-long bioabsorbable interference screw. STUDY DESIGN: In vitro, biomechanical study. METHODS: Eight paired human tibiae and 16 quadrupled hamstring tendon grafts were divided into 2 groups. Each quadrupled hamstring tendon graft was fixed in a tunnel sized to 0.5 mm graft diameter with either an Intrafix device or a screw. RESULTS: Displacement at failure was greater in the Intrafix group (17.3 +/- 4.6 mm versus 10.9 +/- 4.4 mm, P =.002). Load at failure (796 +/- 193 N versus 647 +/- 269 N), stiffness (49.2 +/- 21.9 N/mm versus 64.5 +/- 22 N/mm), and bone mineral density (0.74 +/- 0.15 gm/cm(3) versus 0.74 +/- 0.14 gm/cm(3)) did not display significant differences for the Intrafix device and the screw, respectively (P >.05). CONCLUSIONS: Displacement at failure was greater for the Intrafix device. CLINICAL RELEVANCE: Increased displacement at failure for the Intrafix group suggests slippage from sheath channel deployment. Concentric fixation may not occur when less than optimal tibial bone mineral density increases the difficulty of attaining precise sheath deployment and quadrupled hamstring tendon graft strand alignment.  相似文献   

5.
BACKGROUND: Female patients undergoing arthroscopic anterior cruciate ligament reconstruction with a hamstring tendon graft developed increased postoperative laxity compared to male and female patients who had reconstruction using a patellar tendon graft. This difference may be due to graft slippage in less dense female tibial bone. HYPOTHESIS: Reinforcement of tibial fixation of the hamstring tendon graft in women by supplementary methods may reduce laxity. STUDY DESIGN: Randomized controlled clinical trial; Level of evidence, 2. METHODS: Fifty-six female patients divided into 2 groups (standard tibial fixation with 7 x 25-mm metal interference screw versus metal interference screw with supplementary staple fixation) were followed for 2 years. RESULTS: After 2 years, the mean side-to-side difference using KT-1000 arthrometer manual maximum measurements was 1.8 mm (standard group) and 1.1 mm (staple group) (P=.05). The percentage of patients with a side-to-side difference of <3 mm did not differ significantly between the 2 groups (P=.66): 88.8% of the standard group versus 90.5% of the staple group. A grade 0 Lachman test result was present in 63% of the standard group and 86% of the staple group (P=.04). Kneeling pain was experienced by 7% of the standard group and 29% of the staple group (P=.05). CONCLUSIONS: Supplementary tibial fixation in female patients undergoing anterior cruciate ligament reconstruction with hamstring tendon graft in addition to a single-size screw significantly improves laxity measurements and clinical stability assessment 2 years after surgery. However, this improvement is at the cost of increased kneeling pain.  相似文献   

6.
The effect of dilation of the tibial tunnel on the strength of hamstring graft fixation using interference screws was evaluated. In all, 28 RCI screws were tested in male human tibia-hamstring constructs with tibial tunnels reamed or dilated to the respective size of the graft diameter. Dilation of the tibial tunnel failed to significantly enhance hamstring fixation. Grafts secured in dilated tunnels displayed an 11% greater resistance to the initiation of graft slippage (174+/-112 N) compared to their undilated controls (156+/-77 N, P=0.63). Dilation of the tibial tunnel increased the failure load by an average of 4%, independent of screw diameter (dilated specimens: 360+/-120 N, controls: 345+/-88 N, P=0.74). Biomechanical research on the effect of tibial tunnel dilation in hamstring fixation has not provided satisfactory evidence as to the benefits of this additional surgical step during anterior cruciate ligament (ACL) reconstruction.  相似文献   

7.
Graft-tunnel mismatch during arthroscopically assisted anterior cruciate ligament reconstruction using the central-third patellar tendon results in less than 20 mm of bone plug remaining in the tibial tunnel. We decided to evaluate the strength of bone plug fixation using interference fit screws that were less than 20 mm in length. Biomechanical testing was performed on 48 porcine hindquarters using 9-mm diameter interference fit screws that measured 12.5, 15, and 20 mm in length. No significant difference was noted between the different-length screws for insertion torque, divergence, stiffness, displacement, or load to failure. We believe, therefore, that comparable graft fixation can be achieved in the tibial tunnel using 9-mm diameter interference fit screws that are less than 20 mm long, and that these shorter screws may be useful in cases of graft-tunnel mismatch.  相似文献   

8.
The endoscopic single incision technique for anterior cruciate ligament (ACL) reconstruction with a femoral half-tunnel may lead to a graft/tunnel mismatch and subsequent protrusion of the block from the tibial tunnel. The typical tibial fixation with an interference screw is not possible in these cases. Fixation with staples in a bony groove inferior to the tunnel outlet can be used as an alternative technique. Current literature does not provide biomechanical data of either fixation technique in a human model. This study was performed to evaluate the primary biomechanical parameters of this technique compared with a standard interference screw fixation of the block. Fifty-five fresh-frozen relatively young (mean age 44 years) human cadaver knee joints were used. Grafts were harvested from the patellar tendon midportion with bone blocks of 25 mm length and 9 mm width. A 10-mm tibial tunnel was drilled from the anteromedial cortex to the center of the tibial insertion of the ACL. Three different sizes of interference screws (7 × 30, 9 × 20, 9 × 30 mm) were chosen as a standard control procedure (n = 40). For tibial bone-block fixation the graft was placed through the tunnel, and the screw was then inserted on the cancellous or the cortical surface, respectively. Fifteen knees were treated by staple fixation. A groove was created inferior to the tunnel outlet with a chisel. The bone block was fixed in this groove with two barbed stainless steel staples. Tensile testing in both groups was carried out under an axial load parallel to the tibial tunnel in a Zwick testing machine with a velocity of 1 mm/s. Dislocation of the graft and stiffness were calculated at 175 N load. Maximum load to failure using interference screws varied between 506 and 758 N. Load to failure using staples was 588 N. Dislocation of the graft ranged between 3.8 and 4.7 mm for interference screw fixation and was 4.7 mm for staples. Stiffness calculated at 175 N load was significantly higher in staple fixation. With either fixation technique, the recorded failure loads were sufficient to withstand the graft loads which are to be expected during the rehabilitation period. Staple fixation of the bone block outside of the tunnel resulted in a fixation strength comparable to interference screw fixation. Received: 2 September 1996 Accepted: 30 January 1997  相似文献   

9.
Blunt-threaded interference screws used for fixation of hamstring tendons in anterior cruciate ligament reconstructions provide aperture fixation and may provide a biomechanically more stable graft than a graft fixed further from the articular surface. It is unknown if soft tissue fixation strength using interference screws is affected by screw length. We compared the cyclic and time-zero pull-out forces of 7 x 25 mm and 7 x 40 mm blunt-threaded metal interference screws for hamstring graft tibial fixation in eight paired human cadaveric specimens. A four-stranded autologous hamstring tendon graft was secured by a blunt-threaded interference screw into a proximal tibial tunnel with a diameter corresponding to the graft width. Eight grafts were secured with a 25-mm length screw while the other eight paired grafts were secured with a 40-mm length screw. During cyclic testing, slippage of the graft occurred as the force of pull became greater with each cycle until the graft-screw complex ultimately failed. All grafts failed at the fixation site, with the tendon being pulled past the screw. There were no measurable differences in the mean cyclic failure strength, pull-out strength, or stiffness between the two sizes of screws. Although use of the longer screw would make removal technically easier should revision surgery be necessary, it did not provide stronger fixation strength than the shorter, standard screw as had been postulated.  相似文献   

10.

Purpose

In anterior cruciate ligament reconstruction with looped soft-tissue grafts, an interference screw is frequently used for tibial fixation. This study compared three alternatives thought to improve the initial mechanical properties of direct bioabsorbable interference screw fixation: suturing the graft to close the loop, adding a supplementary staple, or increasing the oversize of the screw diameter relative to the bone tunnel from 1 to 2 mm.

Methods

Twenty-eight porcine tibiae and porcine flexor digitorum profundus tendons were randomized into four testing groups: a base fixation using 10-mm-diameter screw with open-looped graft, base fixation supplemented by an extracortical staple, base fixation but closing the looped graft by suturing its ends, and base fixation but using an 11-mm screw. Graft and bone tunnel diameters were 9 mm in all specimens. Constructs were subjected to cyclic tensile load and finally pulled to failure to determine their structural properties.

Results

The main mode of failure in all groups was pull-out of tendon strands after slippage past the screw. The sutured graft group displayed significantly lower residual displacement (mean value reduction: 47–67 %) and higher yield load (mean value increase: 38–54 %) than any alternative tested. No other statistical differences were found.

Conclusions

Suturing a soft-tissue graft to form a closed loop enhanced the initial mechanical properties of tibial fixation with a bioabsorbable interference screw in anterior cruciate ligament reconstructions using a porcine model, and thus, this may be an efficient means to help in reducing post-operative laxity and early clinical failure. No mechanical improvement was observed for an open-looped tendon graft by adding an extracortical staple to supplement the screw fixation or by increasing the oversize of the screw to tunnel diameter from 1 to 2 mm.  相似文献   

11.
BACKGROUND: Reliable fixation of the soft hamstring grafts in ACL reconstruction has been reported as problematic. HYPOTHESIS: The biomechanical properties of patellar tendon (PT) grafts fixed with biodegradable screws (PTBS) are superior compared to quadrupled hamstring grafts fixed with BioScrew (HBS) or Suture-Disc fixation (HSD). STUDY DESIGN: Controlled laboratory study with roentgen stereometric analysis (RSA). METHODS: Ten porcine specimens were prepared for each group. In the PT group, the bone plugs were fixed with a 7 x 25 mm BioScrew. In the hamstring group, four-stranded tendon grafts were anchored within a tibial tunnel of 8 mm diameter either with a 7 x 25 mm BioScrew or eight polyester sutures knotted over a Suture-Disc. The grafts were loaded stepwise, and micromotion of the graft inside the tibial tunnel was measured with RSA. RESULTS: Hamstring grafts failed at lower loads (HBS: 536 N, HSD 445 N) than the PTBS grafts (658 N). Stiffness in the PTBS group was much greater compared to the hamstring groups (3500 N/mm versus HBS = 517 N/mm and HSD = 111 N/mm). Irreversible graft motion after graft loading with 200 N was measured at 0.03 mm (PTBS), 0.38mm (HBS), and 1.85mm (HSD). Elasticity for the HSD fixation was measured at 0.67 mm at 100 N and 1.32 mm at 200 N load. CONCLUSION: Hamstring graft fixation with BioScrew and Suture-Disc displayed less stiffness and early graft motion compared to PTBS fixation. Screw fixation of tendon grafts is superior to Suture-Disc fixation with linkage material since it offers greater stiffness and less graft motion inside the tibial tunnel. Clinical Relevance: Our results revealed graft motion for hamstring fixation with screw or linkage material at loads that occur during rehabilitation. This, in turn, may lead to graft laxity.  相似文献   

12.
Two femoral fixation techniques for quadruple hamstring tendon grafts were compared under cyclic loading with the patellar tendon: the rectangular inserted pin (TransFix) and biodegradable interference screw fixation of the quadruple tendon and titanium interference screw fixation of the middle third of the patellar tendon. Porcine specimens were mounted onto a tension load machine, and the tendon-fixation-femur-complex was tested for stiffness, displacement during 800 cycles of loading between 50 and 250 N and ultimate tension load. TransFix fixation showed the greatest stiffness at 183.6 N/mm ( P<0.05). The least displacement under cyclic loading was observed for the titanium interference screw followed by the TransFix and biodegradable interference screw ( P<0.01). The ultimate tension load was greatest for the TransFix fixation at 1303+/-282 N, followed by patellar tendon fixation with 763+/-103 N and the biodegradable interference screw fixation with 480+/-133 N ( P<0.001). To reduce initial elongation of the graft and displacement at the fixation site, preconditioning of both the tendon and tendon-fixation complex is especially important when using quadruple tendons. TransFix fixation provides better stability and greater stiffness and pull-out strength than the other techniques. This finding is of clinical relevance to surgeons of the anterior cruciate ligament.  相似文献   

13.
BACKGROUND: Preconditioning of tendon grafts is believed to eliminate natural viscoelasticity of the tendons and prevent knee laxity after anterior cruciate ligament (ACL) reconstruction. HYPOTHESIS: Preconditioned ACL grafts maintain their initially set tension. STUDY DESIGN: Randomized experimental study. METHODS: Forty-two human anterior tibialis (AT) tendon grafts were subjected to either no preconditioning (group 1), cyclic preconditioning (group 2), or isometric preconditioning (group 3). The residual graft tension was then recorded immediately after the application of an initial graft tension of 80 N and fixation into tibia with an interference screw, as well as 10 minutes later. In another experiment, the residual graft tension was recorded 1, 10, and 60 minutes after 10 AT and quadrupled hamstring tendon (HT) grafts alone (no fixation) had been subjected to isometric preconditioning (80 N). RESULTS: Immediately after screw insertion, the residual (AT) graft tensions were 79 +/- 19 N, 100 +/- 17 N, and 102 +/- 15 N in groups 1 through 3, respectively. Ten minutes later, the corresponding values were 49 +/- 16 N, 60 +/- 11 N, and 64 +/- 12 N. For the AT and HT grafts alone, the residual graft tensions were 67 +/- 2 N and 67 +/- 2 N, 45 +/- 2 N and 46 +/- 4 N, and 29 +/- 3 N and 34 +/- 5 N at 1, 10, and 60 minutes, respectively. CONCLUSIONS: A steady decrease (-60% within 60 minutes after initial tensioning) occurs in the initially set tension of the soft tissue ACL grafts. Clinical Relevance: Clinically applicable preconditioning protocols cannot eliminate the intrinsic viscoelasticity from ACL soft tissue grafts, and thus, the reasonableness of preconditioning per se is questioned in ACL reconstruction.  相似文献   

14.

Purpose

Interference screw fixation of hamstring tendon grafts in bone has to overcome the challenges that tendons have a slippery surface and viscoelastically adapt under pressure. As the typical failure mode of the graft is to slip past the interference screw, it was hypothesized that the position and configuration of the graft end may be of influence on the fixation strength.

Methods

Different configurations of the graft ending and its effect to primary fixation with interference screws after viscoelastic adaptation were tested in six groups: I: graft and the screw inserted at the same depth, II/III: the graft overlaps the tip of the screw (interference screw of 28 and 19 mm in length, respectively), IV: strengthening of the graft ending with additional suture knots, V: Endopearl, respectively, and VI: effect of partial retraction of the screw after excessive insertion. In vitro tests were performed with fresh calf tendon grafts and interference screws in bone tunnels (fresh porcine distal femur) all of 8 mm in diameter.

Results

The relative position of the graft ending to the tip of the interference screw thereby was recognized as a significant factor on pullout forces. Further strengthening at the graft endings with additional suture knots or an Endopearl device could improve primary hold as well.

Conclusions

Better fixation strength is achieved if the tip of interference screw does not extend past the end of a tendon graft. Enforcement of the tendon end with sutures or an implant can further improve fixation.  相似文献   

15.
Current fixation techniques in medial knee reconstructions predominantly utilize interference screws alone for soft tissue graft fixation. The use of concurrent fixation techniques as part of a hybrid fixation technique has also been suggested to strengthen soft tissue fixation, although these hybrid fixation techniques have not been biomechanically validated. The purpose was to biomechanically evaluate two distal tibial superficial MCL graft fixation techniques that consisted of an interference screw alone and in combination with a cortical button. Furthermore, the aim was to compare interference screws of different constructs. Twenty-four porcine tibias (average bone mineral density of 1.3 ± 0.2 g/cm2; range, 1.0–1.6 g/cm2, measured by DEXA scan) were divided into 4 groups of six specimens each. Group Ia consisted of a 7 × 23-mm poly-l-lactide (PLLA) interference screw. Group Ib utilized a PLLA interference screw in combination with a cortical button. Group IIa consisted of a 7 × 23-mm composite 70% poly(l-lactide-co-D, l-lactide) and 30% biphasic calcium phosphate (BCP) interference screw. Group IIb also utilized a composite interference screw in combination with a cortical button. The specimens were biomechanically tested with cyclic (500 cycles, 50–250 N, 1 Hz) and load-to-failure (20 mm/min) parameters. During cyclic loading, a significant increase in stiffness was seen for the PLLA hybrid 29.6 (±6.9) N/mm fixation compared to the PLLA screw-only 21.2 (±3.8) N/mm group (P < 0.05). Failure loads were 407.8 (±77.9) N for the composite screw, 445 (±72.2) N for the PLLA screw-only, 473.9 (±69.6) N for the composite hybrid fixation, and 511.0 (±78.5) N for the PLLA hybrid fixation. The PLLA screw alone was found to provide adequate fixation for a superficial MCL reconstruction, and the use of a cortical suture button combined with the PLLA screw resulted in a stiffer fixation during cyclic loading. The current reconstruction superficial MCL graft fixation technique utilizing a PLLA interference screw alone serves as an adequate recreation of the native tibial superficial MCL strength. In addition, a hybrid fixation with a cortical button which lends additional cyclic stiffness to its fixation would be advisable for use in suboptimal fixation cases.  相似文献   

16.
Different surgical methods of graft fixation in ACL reconstruction were examined to determine the effects on mechanical properties of the reconstructed ACL. Ten human cadavers were used in this study. Six different types of grafts were studied. The tendon grafts were removed from each cadaver and fixed to femurs and tibias as ACL substitutes with different surgical fixation methods, leaving femur-reconstructed graft-tibia preparations. The surgical techniques used were staple fixation, tying sutures over buttons, and screw fixation. In the latter, the screws were introduced through femoral and tibial drill holes from the outside in order to achieve interference fit as described by Lambert. Tensile testing demonstrated that the original ACL is significantly stronger than the graft used for reconstruction in linear load, stiffness, and maximum tensile strength. All of the failures of the reconstructed ACL grafts occurred at the fixation site, indicating that the mechanically weak link of the reconstructed graft is located at the fixation site. Among the different methods of fixation, one-third of the patellar tendon secured with a cancellous screw, especially with a custom designed large diameter screw, showed significantly higher values. Although many other factors affect the success of ACL reconstruction, our study indicates that the method of surgical fixation is the major factor influencing the graft's mechanical properties in the immediate postoperative period.  相似文献   

17.
The purpose of this study is to evaluate the mechanical properties of a graft fixation using a small diameter soft tissue interference screw and analyze the factors affecting the fixation strength. Forty porcine knees were used. A bone tunnel, either 4.5 mm (n=40) or 5.0 mm (n=40) in diameter, was created in the bone block obtained from the proximal tibia or the distal femur. A patella–patellar tendon specimen with varied width was harvested, and the distal end of the patellar tendon was fixed within the bone tunnel using a small diameter soft tissue interference screw (4×15 mm). Then, the patella–patellar tendon-bone block complex was loaded until failure occurred and the maximum load was measured. As potential influential factors on the fixation strength, the insertion torque, bone mineral density of the bone block, and graft/tunnel cross-sectional area ratio (GTR) of each specimen were calculated. A significant correlation between the maximum failure load and the insertion torque was demonstrated. The quadratic regression analysis showed a statistically significant correlation between the failure load and the GTR. Optimal GTR for achieving high fixation strength was approximately 80%. When used in appropriate conditions, the mean failure load was 177 N for the 4.5 mm screw and 180 N for the 5 mm screw. The use of a small diameter interference screw for the fixation of a tendon graft to a bone is clinically feasible. Our research showed that the selection of appropriate fitting conditions is an important factor for optimizing the properties of the fixation.  相似文献   

18.
BACKGROUND: The weakest points in hamstrings anterior cruciate ligament reconstruction are its points of fixation, especially on the tibial side. Methods for graft fixation to bone should be strong enough to avoid failure, stiff enough to restore load-displacement response, and secure enough to resist slippage under cyclic loading. HYPOTHESIS: Biomechanical properties of the interference screw can be improved by reinforcing the walls of the tunnel with a metal spiral (Evolgate fixation). STUDY DESIGN: Controlled laboratory study. METHODS: Three paired tests were performed using common digital extensor bovine tendons fixed to porcine tibias with interference screw, Intrafix, and Evolgate; critical graft fixation conditions were simulated by applying subsequent cycles to the graft before loading the graft until failure. RESULTS: The strength, stiffness, and resistance to slippage of the Evolgate were significantly higher than those of the interference screw; the ultimate failure load of the Evolgate was significantly higher than that of the Intrafix (1058+/-130 N and 832+/-156 N, respectively; P=.02). No statistically significant differences were found between Evolgate and Intrafix regarding the stiffness and slippage under cyclic load. CONCLUSION: Evolgate fixation seems to be stronger, stiffer, and more resistant to slippage than is interference screw fixation of similar length, and it is stronger but not stiffer than Intrafix. CLINICAL RELEVANCE: The Evolgate provides structural properties that seem to be appropriate for an intensive rehabilitation after anterior cruciate ligament reconstruction using a doubled semitendinosus and gracilis graft.  相似文献   

19.
PURPOSE: To evaluate femoral soft tissue fixation for anterior cruciate ligament reconstruction. HYPOTHESIS: Femoral fixation devices have different ultimate strengths and slippage under cyclic loading. STUDY DESIGN: Controlled laboratory study. METHODS: Thirty-three porcine femora were used to study interference screw (9), Endobutton (8), Rigidfix cross-pin (8), and Bio-Transfix cross-pin (8) fixation methods. Fixation slippage was evaluated under cyclical load from 50 N to 250 N using a materials testing machine. Ultimate load was determined with a single load to failure. RESULTS: Total graft slippage was greater (P <.001) for the Rigidfix (6.02 +/- 2.12 mm) and the interference screw (5.44 +/- 3.25 mm) compared to the Endobutton (1.75 +/- 0.97 mm) and the Bio-Transfix (1.14 +/- 0.53 mm). All techniques showed the greatest slippage during the first 100 cycles (Rigidfix 84%, Endobutton 70%, interference screw 56%, and Bio-Transfix 55%). The failure load for the interference screw technique (539 +/- 114 N) was lower (P =.0008) than for the other 3 techniques (737 +/- 140 N for Rigidfix, 746 +/- 119 N for Bio-Transfix, and 864 +/- 164 N for Endobutton). CONCLUSIONS: The interference screw and the Rigidfix fixation demonstrated inferior fixation biomechanics compared to the Bio-Transfix and the Endobutton techniques.  相似文献   

20.
Tibial fixation remains the weak link of ACL reconstruction over the first 8–12 weeks postoperatively. This study compared the biomechanical properties of tibial fixation for a bone-patellar tendon-bone (BPTB) graft and a novel semitendinosus-bone composite (SBC) allograft with mixed cortical-cancellous bone dowels at each end. Seven paired, fresh frozen cadaveric knees (20–45 years) were stripped of all soft tissue attachments and randomly assigned to receive either the BPTB graft or SBC allograft. Grafts were placed into tibial tunnels via a standard protocol and secured with either a 10 mm×28 mm bioabsorbable (SBC) or titanium (BPTB) screw. Grafts were cycled ten times in a servo hydraulic device from 10–50 N prior to pull to failure testing at a rate of 20 mm/min with the force vector aligned with the tibial tunnel ("worst case scenario"). Wilcoxon Signed Rank Tests were used to evaluate biomechanical differences between graft types (p<0.05). Tibial bone mineral density and interference screw insertion torque were statistically equivalent between graft types. The mode of failure for all constructs was direct screw and graft construct pullout from the tibial tunnel. Significant differences were not observed between graft types for maximum load at failure strength (BPTB=620.8±209 N vs. SBC=601.2±140 N, p=0.74) or stiffness (BPTB=69.8 N/mm±29 N/mm vs SBC=47.1±31.6 N/mm, p=0.24). The SBC allograft yielded significantly more displacement prior to failure than the BPTB graft (15.1±4.9 mm vs 9.2±1.3 mm, p=0.04). Increased construct displacement appeared to be due to fixation failure, with some evidence of graft tissue tearing around the sutures: Bioabsorbable screw (10×28 mm) fixation of the SBC allograft produced unacceptable displacement levels during testing. Further study is recommended using a titanium interference screw or a longer bioabsorbable screw for SBC graft fixation under cyclic loading conditions.Arthrex Inc., Naples, FL, USA sponsored this study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号