首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This is the first report of infection caused by "Mycobacterium lacticola," a rapidly growing, scotochromogenic mycobacterium that was isolated from the blood of an immunosuppressed child. The organism was identified by sequence analysis of >1,400 bp of the 16S rRNA gene. The clinical relevance of this isolate, coupled with its unique 16S rRNA gene sequence, should prompt further investigation to establish this organism as a valid mycobacterial species.  相似文献   

2.
A nonphotochromogenic, rapidly growing Mycobacterium strain was isolated in pure culture from the sputum and the bronchoalveolar fluid of a patient with hemoptoic pneumonia by using axenic media and an amoebal coculture system. Both isolates grew in less than 7 days at 24 to 37 degrees C with an optimal growth temperature of 30 degrees C. The isolates exhibited biochemical and antimicrobial susceptibility profiles overlapping those of Mycobacterium abscessus, Mycobacterium chelonae, and Mycobacterium immunogenum, indicating that they belonged to M. chelonae-M. abscessus group. They differed from M. abscessus in beta-galactosidase, beta-N-acetyl-beta-glucosaminidase, and beta-glucuronidase activities and by the lack of nitrate reductase and indole production activities, as well as in their in vitro susceptibilities to minocycline and doxycycline. These isolates and M. abscessus differed from M. chelonae and M. immunogenum by exhibiting gelatinase and tryptophane desaminase activities. Their 16S rRNA genes had complete sequence identity with that of M. abscessus and >99.6% similarity with those of M. chelonae and M. immunogenum. Further molecular investigations showed that partial hsp65 and sodA gene sequences differed from that of M. abscessus by five and three positions over 441 bp, respectively. Partial rpoB and recA gene sequence analyses showed 96 and 98% similarities with M. abscessus, respectively. Similarly, 16S-23S rRNA internal transcribed spacer sequence of the isolates differed from that of M. abscessus by a A-->G substitution at position 60 and a C insertion at position 102. Phenotypic and genotypic features of these two isolates indicated that they were representative of a new mycobacterial species within the M. chelonae-M. abscessus group. Phylogenetic analysis suggested that these isolates were perhaps recently derived from M. abscessus. We propose the name of "Mycobacterium massiliense" for this new species. The type strain has been deposited in the Collection Institut Pasteur as CIP 108297(T) and in Culture Collection of the University of Goteborg, Goteborg, Sweden, as CCUG 48898(T).  相似文献   

3.
A nonpigmented rapidly growing mycobacterium was isolated from wound liquid outflow, bone tissue biopsy, and excised skin tissue from a 31-year-old woman who suffered an accidental open right tibia fracture and prolonged stay in a river. The three isolates grew in 3 days at 24 to 37 degrees C. 16S rRNA sequence analyses over 1,483 bp showed that they were identical and shared 99.7% (4-bp difference) sequence similarity with that of Mycobacterium porcinum, the most closely related species. Partial rpoB (723 bp) sequence analyses showed that the isolates shared 97.0% sequence similarity with that of M. porcinum. Further polyphasic approaches, including biochemical tests, antimicrobial susceptibility analyses, and hsp65, sodA, and recA gene sequence analysis, as well as % G+C determination and cell wall fatty acid composition analysis supported the evidence that these isolates were representative of a new species. Phylogenetic analyses showed the close relationship with M. porcinum in the Mycobacterium fortuitum group. The isolates were susceptible to most antibiotics and exhibited evidence for penicillinase activity, in contrast to M. porcinum. We propose the name Mycobacterium conceptionense sp. nov. for this new species associated with posttraumatic osteitis. The type strain is D16(T) (equivalent to CIP 108544(T) and CCUG 50187(T)).  相似文献   

4.
Nonpigmented and late-pigmenting rapidly growing mycobacteria (RGM) are increasingly isolated in clinical microbiology laboratories. Their accurate identification remains problematic because classification is labor intensive work and because new taxa are not often incorporated into classification databases. Also, 16S rRNA gene sequence analysis underestimates RGM diversity and does not distinguish between all taxa. We determined the complete nucleotide sequence of the rpoB gene, which encodes the bacterial beta subunit of the RNA polymerase, for 20 RGM type strains. After using in-house software which analyzes and graphically represents variability stretches of 60 bp along the nucleotide sequence, our analysis focused on a 723-bp variable region exhibiting 83.9 to 97% interspecies similarity and 0 to 1.7% intraspecific divergence. Primer pair Myco-F-Myco-R was designed as a tool for both PCR amplification and sequencing of this region for molecular identification of RGM. This tool was used for identification of 63 RGM clinical isolates previously identified at the species level on the basis of phenotypic characteristics and by 16S rRNA gene sequence analysis. Of 63 clinical isolates, 59 (94%) exhibited <2% partial rpoB gene sequence divergence from 1 of 20 species under study and were regarded as correctly identified at the species level. Mycobacterium abscessus and Mycobacterium mucogenicum isolates were clearly distinguished from Mycobacterium chelonae; Mycobacterium mageritense isolates were clearly distinguished from "Mycobacterium houstonense." Four isolates were not identified at the species level because they exhibited >3% partial rpoB gene sequence divergence from the corresponding type strain; they belonged to three taxa related to M. mucogenicum, Mycobacterium smegmatis, and Mycobacterium porcinum. For M. abscessus and M. mucogenicum, this partial sequence yielded a high genetic heterogeneity within the clinical isolates. We conclude that molecular identification by analysis of the 723-bp rpoB sequence is a rapid and accurate tool for identification of RGM.  相似文献   

5.
For the differentiation and identification of mycobacterial species, the rpoB gene, encoding the beta subunit of RNA polymerase, was investigated. rpoB DNAs (342 bp) were amplified from 44 reference strains of mycobacteria and clinical isolates (107 strains) by PCR. The nucleotide sequences were directly determined (306 bp) and aligned by using the multiple alignment algorithm in the MegAlign package (DNASTAR) and the MEGA program. A phylogenetic tree was constructed by the neighbor-joining method. Comparative sequence analysis of rpoB DNAs provided the basis for species differentiation within the genus Mycobacterium. Slowly and rapidly growing groups of mycobacteria were clearly separated, and each mycobacterial species was differentiated as a distinct entity in the phylogenetic tree. Pathogenic Mycobacterium kansasii was easily differentiated from nonpathogenic M. gastri; this differentiation cannot be achieved by using 16S rRNA gene (rDNA) sequences. By being grouped into species-specific clusters with low-level sequence divergence among strains of the same species, all of the clinical isolates could be easily identified. These results suggest that comparative sequence analysis of amplified rpoB DNAs can be used efficiently to identify clinical isolates of mycobacteria in parallel with traditional culture methods and as a supplement to 16S rDNA gene analysis. Furthermore, in the case of M. tuberculosis, rifampin resistance can be simultaneously determined.  相似文献   

6.
Reference isolates of Mycobacterium neoaurum, Mycobacterium aurum, and the nonvalidated species "Mycobacterium lacticola" were the focus of two recent molecular taxonomic studies. On the basis of this grouping, we identified 46 clinical pigmented, rapidly growing mycobacterial isolates. By 16S rRNA gene sequencing, only two major taxa were identified: M. neoaurum and a previously uncharacterized "M. neoaurum-like" group. The M. neoaurum-like group exhibited only 99.7% identity to M. neoaurum by 16S rRNA gene sequencing and 96.5% identity to M. neoaurum by rpoB sequencing and was named M. bacteremicum. No clinical isolates of M. aurum or M. lacticola were identified. Of isolates with known sources, 4/8 (50%) of M. bacteremicum isolates and 22/34 (65%) of M. neoaurum isolates were recovered from blood, and 35% of these were known to be from patients with catheter-related sepsis. MIC and clinical data on these 46 isolates of M. neoaurum and M. bacteremicum along with a review of 16 previously reported cases of infection with the M. neoaurum-M. lacticola group demonstrated that the isolates were highly susceptible to all drugs tested except clarithromycin, and most clinical cases were successfully treated. The clarithromycin resistance suggested the presence of an inducible erm gene reported in other species of rapidly growing mycobacteria. Sequencing studies are currently required to identify these two species. Strain ATCC 25791 (originally submitted as an example of Mycobacterium aurum) is proposed to be the type strain of M. bacteremicum.  相似文献   

7.
Eleven strains of a rapidly growing mycobacterium were isolated from patient specimens originating from various regions of the province of Ontario, Canada, over a 2-year period. Unique high-performance liquid chromatography (HPLC) and PCR-restriction enzyme pattern analysis (PRA) profiles initially suggested a new Mycobacterium species, while sequencing of the 16S rRNA gene revealed a sequence match with Mycobacterium sp. strain MCRO 17 (GenBank accession no. X93028), an isolate determined to be unique which is to date uncharacterized, and also a close similarity to M. elephantis (GenBank accession no. AJ010747), with six base pair variations. A complete biochemical profile of these isolates revealed a species of mycobacteria with phenotypic characteristics similar to those of M. flavescens. HPLC, PRA, and 16S rRNA sequencing of strain M. elephantis DSM 44368(T) and result comparisons with the clinical isolates revealed that these strains were in fact M. elephantis, a newly described species isolated from an elephant. All strains were isolated from human samples, 10 from sputum and 1 from an axillary lymph node.  相似文献   

8.
Three identical isolates of new rapidly growing mycobacteria (RGM) were recovered from the bronchial aspirate and sputum from a 49-year-old woman presenting with lung lesions. The case met the American Thoracic Society criteria for the diagnosis of nontuberculous mycobacterial infection. The three isolates grew in 3 days at 24 to 42 degrees C. The 16S rRNA gene sequence analysis indicated that the sequences of the isolates were identical and shared 99.7% and 98.1% similarities with those of Mycobacterium moriokaense and Mycobacterium gadium, respectively. Partial 723-bp rpoB sequence analyses indicated that the sequences of the isolates shared 95.8% and 92.3% similarities with those of M. moriokaense and M. gadium, respectively. Polyphasic identification (including biochemical tests; antimicrobial susceptibility profiling; and hsp65, recA, and sodA gene sequence analyses, as well as G+C content determination and cell wall fatty acid composition analysis) supported the evidence that these isolates were representative of a new species. Phylogenetic analyses confirmed the close relationships of the isolates with M. moriokaense and the defined M. moriokaense group. These isolates were susceptible to the antimicrobials currently recommended for the treatment of RGM infections. These isolates differed from M. moriokaense by their susceptibility to vancomycin. We propose the name Mycobacterium barrassiae sp. nov. for this new species. The type strain is N7T (CIP 108545T and CCUG 50398T).  相似文献   

9.
Although accurate in the identification of Mycobacterium species, partial 16S rRNA gene sequencing does not distinguish Mycobacterium chelonae from M. abscessus. Thus, we designed a SmartCycler PCR assay targeting the 16S-to-23S internal transcribed spacer (ITS) region with use of MGB Eclipse probes to distinguish each species. Comparison with PCR-restriction enzyme analysis of a 441-bp fragment of the hsp65 gene resulted in 100% correlation with 25 isolates of M. chelonae and 25 isolates of M. abscessus. ITS PCR performed on 90 consecutive isolates identified by partial 16S rRNA gene sequencing (26 isolates of the M. chelonae-M. abscessus complex and 64 remaining isolates, including Mycobacterium species, Nocardia species, and other aerobic actinomycetes) showed 100% specificity and sensitivity. The ITS PCR assay is accurate and specific, easy to perform, and a good supplemental test when using partial 16S rRNA gene sequencing to identify M. chelonae and M. abscessus.  相似文献   

10.
A rapidly growing mycobacterium was isolated in pure culture from the sputum of a 78-year-old woman suffering from hemoptoic pneumonia. The isolate exhibited an antimicrobial susceptibility pattern and a biochemical profile similar to that of Mycobacterium septicum ATCC 700731(T) and shared 100% 16S rRNA gene sequence similarity with this type strain over 1480 bp. Its partial rpoB sequence shared 98.2% similarity with the latter species, suggesting the isolate was representative of a sequevar of M. septicum. Contrary to the type strain, this isolate was resistant to azithromycin, erythromycin, vancomycin and tobramycin. This case illustrates the first isolation from sputum of M. septicum, a member of the Mycobacterium fortuitum group previously isolated once from bacteremia. Strain D13 has been deposited in the Collection de l'Institut Pasteur as CIP 108512.  相似文献   

11.
Six clinical isolates of the nonpigmented, rapidly growing species Mycobacterium mageritense were recovered from sputum, bronchial wash, blood, sinus drainage, and two surgical wound infections from separate patients in Texas, New York, Louisiana, and Florida. The isolates matched the ATCC type strain by PCR restriction enzyme analysis of the 65-kDa hsp gene sequence of Telenti, high-performance liquid chromatography, biochemical reactions, and partial 16S rRNA gene sequencing. These are the first isolates of this species to be described in the United States and the first isolates to be associated with clinical disease. Susceptibility testing of all known isolates of the species revealed all isolates to be susceptible or intermediate to amikacin, cefoxitin, imipenem, and the fluoroquinolones and sulfonamides but resistant to clarithromycin. Because of their phenotypic and clinical similarity to isolates of the Mycobacterium fortuitum third biovariant complex (sorbitol positive), isolates of M. mageritense are likely to go undetected unless selected carbohydrate utilization or molecular identification methods are used.  相似文献   

12.
Mycobacterium massiliense is a rapidly growing mycobacterium that is indistinguishable from Mycobacterium chelonae/M. abscessus by partial 16S rRNA gene sequencing. We sequenced rpoB, sodA, and hsp65 genes from isolates previously identified as being M. chelonae/M. abscessus and identified M. massiliense from isolates from two patients with invasive disease representing the first reported cases in the United States.  相似文献   

13.
Three cases of feline atypical mycobacteriosis from different geographical regions in North America were characterized by large clusters of filamentous bacteria visible on hematoxylin-and-eosin-stained tissue sections. PCR amplification demonstrated the presence of Mycobacterium-specific nucleic acid in samples of skin lesions from these cases. PCR-assisted cloning and DNA sequence analysis of a 541-bp length of the Mycobacterium 16S rRNA gene generated DNA sequences which were >95% identical, suggesting that the three isolates were closely related. Two of the sequences were 99% identical and may represent the same species. Alignment with comparable 16S rRNA gene sequences from 66 Mycobacterium species and partially characterized isolates highlighted similarities (>94%) with Mycobacterium bohemicum, Mycobacterium haemophilum, Mycobacterium ulcerans, Mycobacterium avium subsp. avium, and isolate IWGMT 90242. Parsimony analysis of sequence data suggested relatedness to M. leprae. Significant molecular genetic and pathobiological differences between these three similar isolates and other known species of mycobacteria suggested that the organisms may not have been described previously and that these cases may represent a new form of mycobacterial disease in cats. We suggest the term "Mycobacterium visibilis" to describe the organism from which the two nearly identical sequences were obtained.  相似文献   

14.
Recent molecular studies have shown Mycobacterium porcinum, recovered from cases of lymphadenitis in swine, to have complete 16S rDNA sequence identity and >70% DNA-DNA homology with human isolates within the M. fortuitum third biovariant complex. We identified 67 clinical and two environmental isolates of the M. fortuitum third biovariant sorbitol-negative group, of which 48 (70%) had the same PCR restriction enzyme analysis (PRA) profile as the hsp65 gene of M. porcinum (ATCC 33776(T)) and were studied in more detail. Most U.S. patient isolates were from Texas (44%), Florida (19%), or other southern coastal states (15%). Clinical infections included wound infections (62%), central catheter infections and/or bacteremia (16%), and possible pneumonitis (18%). Sequencing of the 16S rRNA gene (1,463 bp) showed 100% identity with M. porcinum ATCC 33776(T). Sequencing of 441 bp of the hsp65 gene showed four sequevars that differed by 2 to 3 bp from the porcine strains. Clinical isolates were positive for arylsulfatase activity at 3 days, nitrate, iron uptake, D-mannitol, i-myo-inositol, and catalase at 68 degrees C. They were negative for L-rhamnose and D-glucitol (sorbitol). Clinical isolates were susceptible to ciprofloxacin, sulfamethoxazole, and linezolid and susceptible or intermediate to cefoxitin, clarithromycin, imipenem, and amikacin. M. porcinum ATCC 33776(T) gave similar results except for being nitrate negative. These studies showed almost complete phenotypic and molecular identity between clinical isolates of the M. fortuitum third biovariant D-sorbitol-negative group and porcine strains of M. porcinum and confirmed that they belong to the same species. Identification of M. porcinum presently requires hsp65 gene PRA or 16S rRNA or hsp65 gene sequencing.  相似文献   

15.
A previously undescribed, slowly growing Mycobacterium species was isolated from pulmonary specimens of two patients, one from Denmark and one from Italy. The isolates showed unique 16S rRNA internal transcribed spacers and hsp65 sequences: the 16S rRNA was most closely related to Mycobacterium szulgai and Mycobacterium malmoense.  相似文献   

16.
We describe here the characterization of five isolates of Mycobacterium simiae-like organisms representing a novel group based on whole-cell fatty acid analysis and genotypic evaluation. Two of the five isolates in this study, W55 and W58, were previously considered to belong to M. simiae serotype 2. Analysis of cellular fatty acids by gas-liquid chromatography indicated a close clustering of this group, which was well differentiated from the other M. simiae-like species. Molecular characterization was performed by nucleic acid sequencing of the small subunit rRNA gene and the gene encoding the 65-kDa heat shock protein and genomic DNA hybridization. Sequence analysis of the entire 16S rRNA gene showed a unique sequence most closely related to those of M. triplex and M. simiae. The hsp65 partial gene sequence was identical for the five isolates, with 97% identity to the M. simiae type strain. However, qualitative whole genomic DNA hybridization analysis confirmed that this group is genetically distinct from M. simiae and M. triplex. Antimicrobial susceptibilities for this group resemble those of M. simiae and M. lentiflavum. We conclude that this group represents a unique Mycobacterium species for which we propose the name Mycobacterium sherrisii sp. nov.  相似文献   

17.
Mycobacterium peregrinum consists of two taxa: types I and II. We evaluated 43 clinical type II strains from throughout the United States. They were responsible for soft-tissue and bone infections, catheter-related infections, and possible pneumonitis. By carbohydrate utilization, they were indistinguishable from type I strains, being D-mannitol and trehalose positive. However, they had a distinct susceptibility pattern that included intermediate ciprofloxacin MICs but low clarithromycin and doxycycline MICs of < or =1 microg/ml. These features were also shared by reference isolates of Mycobacterium senegalense from African bovine cases of "farcy." By 16S rRNA gene sequencing, the type II isolates shared 100% sequence identity with M. senegalense. Partial sequencing of the type II hsp65 gene (441 bp) revealed four sequevars showing > or =98.4% identity with each other and > or =98.6% identity with the sequence of five bovine strains of M. senegalense. There was < or =97.1% identity with M. peregrinum type I isolates and other Mycobacterium fortuitum group species. Sequencing of additional gene targets including the 16S-23S rDNA internal transcribed spacer region and the rpoB gene (partial sequence) revealed a similar phylogenetic grouping. DNA-DNA hybridization showed 76 to 99% relatedness between the bovine and human strains. These studies demonstrate that type II isolates are not isolates of M. peregrinum but represent human strains of M. senegalense. This study is the first to demonstrate this species as a human pathogen. Representative human M. senegalense strains include ATCC 35755 and newly submitted strains ATCC BAA-849, ATCC BAA-850, and ATCC BAA-851.  相似文献   

18.
Due to the inadequate automation in the amplification and sequencing procedures, the use of 16S rRNA gene sequence-based methods in clinical microbiology laboratories is largely limited to identification of strains that are difficult to identify by phenotypic methods. In this study, using conventional full-sequence 16S rRNA gene sequencing as the "gold standard," we evaluated the usefulness of the MicroSeq 500 16S ribosomal DNA (rDNA)-based bacterial identification system, which involves amplification and sequencing of the first 527-bp fragment of the 16S rRNA genes of bacterial strains and analysis of the sequences using the database of the system, for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. Among 37 clinically significant bacterial strains that showed ambiguous biochemical profiles, representing 37 nonduplicating aerobic gram-positive and gram-negative, anaerobic, and Mycobacterium species, the MicroSeq 500 16S rDNA-based bacterial identification system was successful in identifying 30 (81.1%) of them. Five (13.5%) isolates were misidentified at the genus level (Granulicatella adiacens was misidentified as Abiotrophia defectiva, Helcococcus kunzii was misidentified as Clostridium hastiforme, Olsenella uli was misidentified as Atopobium rimae, Leptotrichia buccalis was misidentified as Fusobacterium mortiferum, and Bergeyella zoohelcum was misidentified as Rimerella anatipestifer), and two (5.4%) were misidentified at the species level (Actinomyces odontolyticus was misidentified as Actinomyces meyeri and Arcobacter cryaerophilus was misidentified as Arcobacter butzleri). When the same 527-bp DNA sequences of these seven isolates were compared to the known 16S rRNA gene sequences in the GenBank, five yielded the correct identity, with good discrimination between the best and second best match sequences, meaning that the reason for misidentification in these five isolates was due to a lack of the 16S rRNA gene sequences of these bacteria in the database of the MicroSeq 500 16S rDNA-based bacterial identification system. In conclusion, the MicroSeq 500 16S rDNA-based bacterial identification system is useful for identification of most clinically important bacterial strains with ambiguous biochemical profiles, but the database of the MicroSeq 500 16S rDNA-based bacterial identification system has to be expanded in order to encompass the rarely encountered bacterial species and achieve better accuracy in bacterial identification.  相似文献   

19.
Seven body polishers working in the same "hot spa" presented with multiple red nodules and papules on their hands and forearms. A causative agent was successfully isolated from two of the subjects and from a swab sample collected from the underside of a bed cover in the body-polishing facility. The two cutaneous isolates and the environmental isolate were rapidly growing mycobacteria that formed nonphotochromogenic smooth or smooth/rough colonies on Ogawa egg slants. They were identified as Mycobacterium massiliense by multigenotypic analysis using the 16S rRNA, hsp65, and rpoB genes and the 16S-23S rRNA internal transcribed spacer (ITS) region. However, the use of the 16S rRNA gene sequence and/or DNA-DNA hybridization (DDH Mycobacteria Kit) alone would not distinguish M. massiliense from mycobacteria in the M. chelonae-M. abscessus group. The three isolates were significantly more susceptible to clarithromycin, doxycycline, and minocycline than the M. abscessus and M. bolletii reference strains. One cutaneous isolate and the environmental isolate were in a related cluster by randomly amplified polymorphic DNA PCR (RAPD-PCR). Of the several mycobacterial species found in the day spa, only M. massiliense was isolated from biopsy specimens of the skin lesions, suggesting that this bacterium is a human skin pathogen. This is the first known report of cutaneous M. massiliense infections that could not be attributed to a prior invasive procedure. This is also the first report of M. massiliense infection in Japan.  相似文献   

20.
Burkholderia pseudomallei and B. mallei, the causative agents of melioidosis and glanders, respectively, are designated category B biothreat agents. Current methods for identifying these organisms rely on their phenotypic characteristics and an extensive set of biochemical reactions. We evaluated the use of 16S rRNA gene sequencing to rapidly identify these two species and differentiate them from each other as well as from closely related species and genera such as Pandoraea spp., Ralstonia spp., Burkholderia gladioli, Burkholderia cepacia, Burkholderia thailandensis, and Pseudomonas aeruginosa. We sequenced the 1.5-kb 16S rRNA gene of 56 B. pseudomallei and 23 B. mallei isolates selected to represent a wide range of temporal, geographic, and origin diversity. Among all 79 isolates, a total of 11 16S types were found based on eight positions of difference. Nine 16S types were identified in B. pseudomallei isolates based on six positions of difference, with differences ranging from 0.5 to 1.5 bp. Twenty-two of 23 B. mallei isolates showed 16S rRNA gene sequence identity and were designated 16S type 10, whereas the remaining isolate was designated type 11. This report provides a basis for rapidly identifying and differentiating B. pseudomallei and B. mallei by molecular methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号