首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed three-dimensional, high-resolution magnetic resonance imaging (MRI) of fixed mouse brains to determine whether MRI can detect amyloid plaques in transgenic mouse models of Alzheimer's disease. Plaque-like structures in the cortex and hippocampus could be clearly identified in T2-weighted images with an image resolution of 46 microm x 72 microm x 72 microm. The locations of plaques were confirmed in coregistration studies comparing MR images with Congo red-stained histological results. This technique is quantitative, less labor-intensive compared to histology, and is free from artifacts related to sectioning process (deformation and missing tissues). It enabled us to study the distribution of plaques in the entire brain in 3D. The results of this study suggest that this method may be useful for assessing treatment efficacy in mouse models of Alzheimer's disease (AD).  相似文献   

2.
Deposition of the β-amyloid peptide (Aβ) is an important pathological hallmark of Alzheimer's disease (AD). However, reliable quantification of amyloid plaques in both human and animal brains remains a challenge. We present here a novel automatic plaque segmentation algorithm based on the intrinsic MR signal characteristics of plaques. This algorithm identifies plaque candidates in MR data by using watershed transform, which extracts regions with low intensities completely surrounded by higher intensity neighbors. These candidates are classified as plaque or nonplaque by an unsupervised learning method using features derived from the MR data intensity. The algorithm performance is validated by comparison with histology. We also demonstrate the algorithm's ability to detect age-related changes in plaque load ex vivo in amyloid precursor protein (APP) transgenic mice that coexpress five familial AD mutations (5xFAD mice). To our knowledge, this study represents the first quantitative method for characterizing amyloid plaques in MRI data. The proposed method can be used to describe the spatiotemporal progression of amyloid deposition, which is necessary for understanding the evolution of plaque pathology in mouse models of Alzheimer's disease and to evaluate the efficacy of emergent amyloid-targeting therapies in preclinical trials.  相似文献   

3.
INTRODUCTION: Alzheimer's disease (AD) is the most prevalent neurological condition affecting industrialized nations and will rapidly become a healthcare crisis as the population ages. Currently, the post-mortem histological observation of amyloid plaques and neurofibrillary tangles is the only definitive diagnosis available for AD. A pre-mortem biological or physiological marker specific for AD used in conjunction with current neurological and memory testing could add a great deal of confidence to the diagnosis of AD and potentially allow therapeutic intervention much earlier in the disease process. DISCUSSION AND CONCLUSION: Our group has developed MRI techniques to detect individual amyloid plaques in AD transgenic mouse brain in vivo. We are also developing contrast-enhancing agents to increase the specificity of detection of amyloid plaques. Such in vivo imaging of amyloid plaques will also allow the evaluation of anti-amyloid therapies being developed by the pharmaceutical industry in pre-clinical trials of AD transgenic mice. This short review briefly discusses our progress in these areas.  相似文献   

4.
Impact of amyloid imaging on drug development in Alzheimer's disease   总被引:2,自引:0,他引:2  
Imaging agents capable of assessing amyloid-beta (Abeta) content in vivo in the brains of Alzheimer's disease (AD) subjects likely will be important as diagnostic agents to detect Abeta plaques in the brain as well as to help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of anti-amyloid therapeutics currently under development and in clinical trials. Positron emission tomography (PET) imaging studies of amyloid deposition in human subjects with several Abeta imaging agents are currently underway. We reported the first PET studies of the carbon 11-labeled thioflavin-T derivative Pittsburgh Compound B in 2004, and this work has subsequently been extended to include a variety of subject groups, including AD patients, mild cognitive impairment patients and healthy controls. The ability to quantify regional Abeta plaque load in the brains of living human subjects has provided a means to begin to apply this technology as a diagnostic agent to detect regional concentrations of Abeta plaques and as a surrogate marker of therapeutic efficacy in anti-amyloid drug trials.  相似文献   

5.
One of the cardinal pathologic features of Alzheimer's disease (AD) is the formation of senile, or amyloid, plaques. Transgenic mice have been developed that express one or more of the genes responsible for familial AD in humans. Doubly transgenic mice develop "human-like" plaques, providing a mechanism to study amyloid plaque biology in a controlled manner. Imaging of labeled plaques has been accomplished with other modalities, but only MRI has sufficient spatial and contrast resolution to visualize individual plaques noninvasively. Methods to optimize visualization of plaques in vivo in transgenic mice at 9.4 T using a spin echo sequence based on adiabatic pulses are described. Preliminary results indicate that a spin echo acquisition more accurately reflects plaque size, while a T2* weighted gradient echo sequence reflects plaque iron content, not plaque size. In vivo MRI-ex vivo MRI-in vitro histologic correlations are provided. Histologically verified plaques as small as 50 microm in diameter were visualized in living animals. To our knowledge this work represents the first demonstration of noninvasive in vivo visualization of individual AD plaques without the use of a contrast agent.  相似文献   

6.
"Vulnerable" plaques are atherosclerotic plaques that have a high likelihood to cause thrombotic complications, such as myocardial infarction or stroke. Plaques that tend to progress rapidly are also considered to be vulnerable. Besides luminal stenosis, plaque composition and morphology are key determinants of the likelihood that a plaque will cause cardiovascular events. Noninvasive magnetic resonance (MR) imaging has great potential to enable characterization of atherosclerotic plaque composition and morphology and thus to help assess plaque vulnerability. A classification for clinical, as well as pathologic, evaluation of vulnerable plaques was recently put forward in which five major and five minor criteria to define vulnerable plaques were proposed. The purpose of this review is to summarize the status of MR imaging with regard to depiction of the criteria that define vulnerable plaques by using existing MR techniques. The use of MR imaging in animal models and in human disease in various vascular beds, particularly the carotid arteries, is presented.  相似文献   

7.
Transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP[V717I]) in neurons develop amyloid plaques in the brain, thus demonstrating the most prominent neuropathological hallmark of Alzheimer's disease. In vivo 3D T2*-weighted MRI on these mice (24 months of age) revealed hypointense brain inclusions that affected the thalamus almost exclusively. Upon correlating these MRI observations with a panel of different histologic staining techniques, it appeared that only plaques that were positive for both thioflavin-S and iron were visible on the MR images. Numerous thioflavin-S-positive plaques in the cortex that did not display iron staining remained invisible to MRI. The in vivo detection of amyloid plaques in this mouse model, using the intrinsic MRI contrast arising from the iron associated with the plaques, creates an unexpected opportunity for the noninvasive investigation of the longitudinal development of the plaques in the same animal. Thus, this work provides further research opportunities for analyzing younger APP[V717I] mouse models with the knowledge of the final outcome at 24 months of age.  相似文献   

8.
The presence of amyloid-beta (Abeta) plaques in the brain is a hallmark pathological feature of Alzheimer's disease (AD). Transgenic mice overexpressing mutant amyloid precursor protein (APP), or both mutant APP and presenilin-1 (APP/PS1), develop Abeta plaques similar to those in AD patients, and have been proposed as animal models in which to test experimental therapeutic approaches for the clearance of Abeta. However, at present there is no in vivo whole-brain imaging method to detect Abeta plaques in mice or men. A novel method is presented to detect Abeta plaques in the brains of transgenic mice by magnetic resonance microimaging (muMRI). This method uses Abeta1-40 peptide, known for its high binding affinity to Abeta, magnetically labeled with either gadolinium (Gd) or monocrystalline iron oxide nanoparticles (MION). Intraarterial injection of magnetically labeled Abeta1-40, with mannitol to transiently open the blood-brain barrier (BBB), enabled the detection of many Abeta plaques. Furthermore, the numerical density of Abeta plaques detected by muMRI and by immunohistochemistry showed excellent correlation. This approach provides an in vivo method to detect Abeta in AD transgenic mice, and suggests that diagnostic MRI methods to detect Abeta in AD patients may ultimately be feasible.  相似文献   

9.
To study Alzheimer's disease (AD), a variety of mouse models has been generated through the overexpression of the amyloid precursor protein and/or the presenilins harboring one or several mutations found in familial AD. With aging, these mice develop several lesions similar to those of AD, including diffuse and neuritic amyloid deposits, cerebral amyloid angiopathy, dystrophic neurites and synapses, and amyloid-associated neuroinflammation. Other characteristics of AD, such as neurofibrillary tangles and nerve cell loss, are not satisfactorily reproduced in these models. Mouse models that recapitulate only specific aspects of AD pathogenesis are of great advantage when deciphering the complexity of the disease and can contribute substantially to diagnostic and therapeutic innovations. Incomplete mouse models have been key to the development of Abeta42-targeted therapies, as well as to the current understanding of the interrelationship between cerebral beta-amyloidosis and tau neurofibrillary lesions, and are currently being used to develop novel diagnostic agents for in vivo imaging.  相似文献   

10.
The purpose of this study is to develop potential I-123 labeled diagnostic imaging agents targeting amyloid plaques in Alzheimer's disease (AD). Formation and accumulation of aggregates of beta-amyloid (Abeta) peptides in the brain are critical factors in the development and progression of AD. Small molecule-based benzofuran derivatives were designed and synthesized. Both 5- and 6-iodobenzofuran derivatives displayed excellent competition for I-125 TZDM binding to Abeta40 aggregates with K(i) values in the subnanomolar range. The radioiodinated ligands, with a high specific activity, were successfully prepared through an iododestannylation reaction from the corresponding tributyltin derivatives using hydrogen peroxide as the oxidant in high yields (60-80%) and with high radiochemical purities (greater than 95%). After an iv injection, all four radioiodinated ligands displayed high brain uptakes ranging from 0.5 to 1.5% initial dose/organ in normal mice. The radioactivity washed out from the mouse brain slowly (less than 50% at 2 h post injection), suggesting high in vivo non-specific binding. In conclusion, the benzofuran ligands displayed excellent binding affinity for Abeta aggregates. The long retention of these ligands in the normal mouse brain suggests that there may be high binding for these probes in the brain not associated with Abeta plaques. Additional modifications are necessary to improve the in vivo imaging properties for plaque detection.  相似文献   

11.
The visualization of beta-amyloid plaque deposition in brain, a key feature of Alzheimer's disease (AD), is important for the evaluation of disease progression and the efficacy of therapeutic interventions. In this study, beta-amyloid plaques in the PS/APP transgenic mouse brain, a model of human AD pathology, were detected using MR microscopy without contrast reagents. beta-Amyloid plaques were clearly visible in the cortex, thalamus, and hippocampus of fixed brains of PS/APP mice. The distribution of plaques identified by MRI was in excellent agreement with those found in the immunohistological analysis of the same brain sections. It was also demonstrated that image contrast for beta-amyloid plaques was present in freshly excised nonfixed brains. Furthermore, the detection of beta-amyloid plaques was achieved with a scan time as short as 2 hr, approaching the scan time considered reasonable for in vivo imaging.  相似文献   

12.
Amyloid deposits are one of the hallmarks of Alzheimer's disease (AD), one of the most devastating neurodegenerative disorders. In transgenic mice modeling Alzheimer's pathology, the MR transverse relaxation time (T(2)) has been described to be modulated by amyloidosis. This modification has been attributed to the age-related iron deposition that occurs within the amyloid plaques of old animals. In the present study, young APP/PS1 transgenic mice without histochemically detectable iron in the brain were specifically studied. In vivo measurements of T(2) in the hippocampus, at the level of the subiculum, were shown to reflect the density of amyloid plaques. This suggests that T(2) variations can be induced solely by aggregated amyloid deposits in the absence of associated histologically-detectable iron. Thus T(2) from regions with high amyloid load, such as the subiculum, is particularly well suited for following plaque deposition in young animals, i.e., at the earliest stages of the pathological process.  相似文献   

13.
Pathogenesis of dementia of Alzheimer's type (DAT) is unknown. Progressive deposition of beta-amyloid plaques (beta-AlphaPs) is one of the major pathological features of DAT and precedes cognitive decline in these patients. Noninvasive detection of beta-AlphaPs could, therefore, may be a potential diagnostic test for the early detection of DAT patients. A series of derivatives that achieve high binding affinity for beta amyloid fibrils both for PET and SPET studies have been developed for imaging AlphaPs in the living human brain. Lesions at the very early but also at late stages of the disease can also be identified by nuclear medicine techniques.  相似文献   

14.
Alzheimer's disease (AD) is defined histologically by the presence of extracellular β-amyloid (Aβ) plaques and intraneuronal neurofibrillary tangles in the cerebral cortex. The diagnosis of dementia, along with the prediction of who will develop dementia, has been assisted by magnetic resonance imaging and positron emission tomography (PET) by using [(18)F]fluorodeoxyglucose (FDG). These techniques, however, are not specific for AD. Based on the chemistry of histologic staining dyes, several Aβ-specific positron-emitting radiotracers have been developed to image neuropathology of AD. Among these, [(11)C]PiB is the most studied Aβ-binding PET radiopharmaceutical in the world. The histologic and biochemical specificity of PiB binding across different regions of the AD brain was demonstrated by showing a direct correlation between Aβ-containing amyloid plaques and in vivo [(11)C]PiB retention measured by PET imaging. Because (11)C is not ideal for commercialization, several (18)F-labeled tracers have been developed. At this time, [(18)F]3'-F-PiB (Flutemetamol), (18)F-AV-45 (Florbetapir), and (18)F-AV-1 (Florbetaben) are undergoing extensive phase II and III clinical trials. This article provides a brief review of the amyloid biology and chemistry of Aβ-specific (11)C and (18)F-PET radiopharmaceuticals. Clinical trials have clearly documented that PET radiopharmaceuticals capable of assessing Aβ content in vivo in the brains of AD subjects and subjects with mild cognitive impairment will be important as diagnostic agents to detect in vivo amyloid brain pathology. In addition, PET amyloid imaging will also help test the amyloid cascade hypothesis of AD and as an aid to assess the efficacy of antiamyloid therapeutics currently under development in clinical trials.  相似文献   

15.
A series of stilbene derivatives as potential diagnostic imaging agents targeting amyloid plaques in Alzheimer's disease (AD) were synthesized and evaluated. The syntheses of the stilbenes were successfully achieved by a simple Wadsworth-Emmons reaction between diethyl (4-nitrobenzyl)phosphonate and 4-methoxybenzaldehyde. 4-N,N-dimethylamino-4'-methyoxy and the corresponding 4-N-monomethylamino-, 4'-hydroxy stilbenes showed good binding affinities towards Abeta aggregates in vitro (K(i) < 10 nM). The (11)C labeled 4-N-methylamino-4'-hydroxystilbene, [(11)C]4, was prepared by (11)C methylation of 4-amino-4'-hydroxystilbene. The [(11)C]4 displayed a moderate lipophilicity (log P = 2.36), and showed a very good brain penetration and washout from normal rat brain after an iv injection. In vitro autoradiography of transgenic AD mouse brain sections showed a high specific labeling of beta-amyloid plaques, whereas the control sections showed no binding. Taken together the data suggest that a relatively simple stilbene derivative, [(11)C]4, N-[(11)C]methylamino-4'-hydroxystilbene, may be useful as a positron emission tomography (PET) imaging agent for mapping Abeta plaques in the brain of patients with Alzheimer's disease.  相似文献   

16.
Different strategies to visualize amyloid plaques with MRI at 17.6 Tesla were investigated in a novel mouse model of Alzheimer's disease (AD). Large iron-containing plaques were observed in the thalamus, but cortical plaques did not show iron deposits. Plaques in the thalamus were visualized in vivo with the use of low-resolution, 3D gradient-echo (GRE) imaging in 82 s, and with 94-microm resolution in 34 min. The feasibility of obtaining bright contrast from plaques using the COSY revamped with asymmetric z-GRE detection (CRAZED) technique was investigated in experiments on fixed brains. The original CRAZED approach provided reduced signal near the plaques (similarly to GRE imaging) and additionally emphasized small structures in the brain. In CRAZED images acquired with mismatched gradients, elevated signal near the plaques was obtained, while background signal was suppressed almost to the noise level. Bright-contrast images were acquired in 2.6 min with the use of a 2D GRE sequence with slightly mismatched slice refocusing gradients. For future detection of plaques in patients, such bright-contrast visualization protocols may be of particular value when contrast agents that allow labeling of early plaques with iron oxide nanoparticles become available.  相似文献   

17.
There is currently no method for noninvasive imaging of amyloid beta (Abeta) deposition in Alzheimer's disease (AD). Because Abeta plaques are characteristic of AD and Abeta deposits contain abundant heparan sulfate proteoglycans that can bind basic fibroblast growth factor (bFGF) and serum amyloid P component (SAP), we investigated a novel route of ligand delivery to the brain to assess Abeta deposition in a transgenic (Tg) mouse model overexpressing Abeta-protein precursor. METHODS: The biodistribution of bFGF injected intranasally was studied using (125)I-bFGF in Tg and wild-type control mice and by unlabeled bFGF and SAP immunocytochemistry with light and electron microscopy. RESULTS: Three- to 5-fold higher amounts of (125)I-bFGF were found in the brain of Tg mice than that of wild-type mice (P < 0.05). bFGF or SAP given intranasally labeled cerebral Abeta plaques in the cortex and microvessels of Tg mice but not in wild-type mice. Weak bFGF staining and no SAP staining were detected in Tg mice without intranasal injection of the ligands. bFGF and SAP stained neurons around the rim of Abeta deposits and throughout the cortex in Tg mice. There was only weak staining of neurons in Tg mice without intranasal injection of bFGF and no staining of SAP in Tg mice without intranasal injection of SAP. No bFGF or SAP staining was evident in wild-type control mice. CONCLUSION: We report a novel noninvasive method for labeling Abeta plaques. This method may be modified for human studies using intranasal injection of radiolabeled ligands and imaging with SPECT or PET.  相似文献   

18.
Cognitive dysfunction in Alzheimer's disease may lead to accidental deaths in the elderly. Neuropathological diagnosis of the disease is, therefore, an important issue in forensic autopsy to determine the causal relation to accidents. To evaluate the suitability of the current histopathological diagnostic criteria for Alzheimer's disease by Khachaturian and Mirra et al. in elderly persons dying from accidents and coming for forensic autopsy, we studied the brains of nine demented and 12 non-demented persons by silver stain and immunohistochemistry. When the density of senile plaque was applied to the criteria, only four out of nine demented persons met the criteria for definite Alzheimer's disease. The demented persons had significantly higher density of diffuse plaque and higher frequencies of amyloid angiopathy, neurofibrillary tangle and neuropil thread than the non-demented persons. These results indicated that the current diagnostic criteria do not always diagnose Alzheimer's disease in forensic autopsy of elderly persons with fatal accident. The presence of abundant diffuse plaque, neurofibrillary tangle, amyloid angiopathy and neuropil thread may help to diagnose Alzheimer's disease in forensic autopsy.  相似文献   

19.
We measured proton magnetic longitudinal (R(1)) and transverse (R(2)) relaxation rates at 1.4T, iron concentrations, water contents, and amyloid plaque densities in postmortem brain tissue samples from three Alzheimer's disease (AD), two possible AD, and five control subjects. Iron concentrations and R(1) were significantly higher in the temporal cortex region of our AD group compared to the controls. Frequency analyses showed that the observed trends of higher iron, R(1), and R(2) in AD gray matter regions were statistically significant. Simple regression models indicated that for AD and control gray matter the iron concentrations and water contents have significant linear correlations with R(1) and R(2). Multiple regression models based on iron concentrations and water contents were highly significant for all groups and tissue types and suggested that the effects of iron become more important in determining R(1) and R(2) in the AD samples. At 1.4T R(1) and R(2) are strongly affected by water content and to a lesser extent by variations in iron concentrations. The AD plaque density did not correlate with iron concentrations, water contents, R(1), or R(2), suggesting that increases in AD brain iron are not strongly related to the accumulation of amyloid plaques.  相似文献   

20.
INTRODUCTION: Molecular imaging aims towards the non-invasive characterization of disease-specific molecular alterations in the living organism in vivo. In that, molecular imaging opens a new dimension in our understanding of disease pathogenesis, as it allows the non-invasive determination of the dynamics of changes on the molecular level. IMAGING OF AD CHARACTERISTIC CHANGES BY microPET: The imaging technology being employed includes magnetic resonance imaging (MRI) and nuclear imaging as well as optical-based imaging technologies. These imaging modalities are employed together or alone for disease phenotyping, development of imaging-guided therapeutic strategies and in basic and translational research. In this study, we review recent investigations employing positron emission tomography and MRI for phenotyping mouse models of Alzheimer's disease by imaging. We demonstrate that imaging has an important role in the characterization of mouse models of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号