首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background and purpose:

Chronic proliferative responses of different vascular cell types have been involved in the pathogenesis of atherosclerosis. However, their functional role remains to be established. Sirolimus reduces neointimal proliferation after balloon angioplasty and chronic graft vessel disease. These studies were undertaken to investigate the effects of this anti-proliferative drug on atherogenesis.

Experimental approach:

Low-density lipoprotein receptor-deficient (LDL r-KO) mice on a cholesterol-rich diet were randomized to receive placebo or sirolimus (0.1; 0.3; or 1 mg·kg−1) in their diet for 8 or 16 weeks.

Results:

In both studies, plasma levels of the drug increased in a dose-dependent fashion, animals gained weight normally and, among groups, plasma lipids levels did not differ significantly. Compared with placebo, plasma levels of interleukin-6, monocyte chemoattractant protein-1, interferon γ, tumour necrosis factor α and CD40, and their mRNA levels in aortic tissue were significantly reduced in sirolimus-treated mice. This effect resulted in a significant and dose-dependent reduction in atherosclerotic lesions, in both the root and aortic tree. Also these lesions contained less monocyte/macrophages and smooth muscle cells, but more collagen.

Conclusions and implications:

The present results demonstrated that at low doses, sirolimus was an effective and safe anti-atherogenic agent in the LDL r-KO mice. It attenuated the progression of atherosclerosis and modulated the plaque phenotype by reducing the pro-inflammatory vascular responses typical of the disease.British Journal of Pharmacology (2009) doi:10.1111/j.1476-5381.2008.00080.x  相似文献   

2.

BACKGROUND AND PURPOSE

Vascular smooth muscle cell (SMC) migration within the arterial wall is a crucial event in atherogenesis and restenosis. Monocyte chemotactic protein-1/CC-chemokine receptor 2 (MCP-1/CCR2) signalling is involved in SMC migration processes but the molecular mechanisms have not been well characterized. We investigated the role of PI3Kγ in SMC migration induced by MCP-1.

EXPERIMENTAL APPROACHES

A pharmacological PI3Kγ inhibitor, adenovirus encoding inactive forms of PI3Kγ and genetic deletion of PI3Kγ were used to investigate PI3Kγ functions in the MCP-1 and platelet-derived growth factor (PDGF) signalling pathway and migration process in primary aortic SMC.

KEY RESULTS

The γ isoform of PI3K was shown to be the major signalling molecule mediating PKB phosphorylation in MCP-1-stimulated SMC. Using a PI3Kγ inhibitor and an adenovirus encoding a dominant negative form of PI3Kγ, we demonstrated that PI3Kγ is essential for SMC migration triggered by MCP-1. PDGF receptor stimulation induced MCP-1 mRNA and protein accumulation in SMCs. Blockade of the MCP-1/CCR2 pathway or pharmacological inhibition of PI3Kγ reduced PDGF-stimulated aortic SMC migration by 50%. Thus PDGF promotes an autocrine loop involving MCP-1/CCR2 signalling which is required for PDGF-mediated SMC migration. Furthermore, SMCs isolated from PI3Kγ-deficient mice (PI3Kγ−/−), or mice expressing an inactive PI3Kγ (PI3KγKD/KD), migrated less than control cells in response to MCP-1 and PDGF.

CONCLUSIONS AND IMPLICATIONS

PI3Kγ is essential for MCP-1-stimulated aortic SMC migration and amplifies cell migration induced by PDGF by an autocrine/paracrine loop involving MCP-1 secretion and CCR2 activation. PI3Kγ is a promising target for the treatment of aortic fibroproliferative pathologies.  相似文献   

3.

Background:

Obesity and overweight affect more than half of the US population and are associated with a number of diseases. Rimonabant, a cannabinoid receptor 1 blocker in the endocannabinoid (EC) system, was indicated in Europe for the treatment of obesity and overweight patients with associated risk factors but withdrawn on Jan, 2009 because of side effects. Many studies have reported the effects of rimonabant on gastrointestinal (GI) motility and food intake.

The aims of this review are:

  1. to review the relationship of EC system with GI motility and food intake;
  2. to review the studies of rimonabant on GI motility, food intake and obesity;
  3. and to report the tolerance and side effects of rimonabant.

Methods:

the literature (Pubmed database) was searched using keywords: rimonabant, obesity and GI motility.

Results:

GI motility is related with appetite, food intake and nutrients absorption. The EC system inhibits GI motility, reduces emesis and increases food intake; Rimonabant accelerates gastric emptying and intestinal transition but decreases energy metabolism and food intake. There is rapid onset of tolerance to the prokinetic effect of rimonabant. The main side effects of rimonabant are depression and GI symptoms.

Conclusions:

Rimonabant has significant effects on energy metabolism and food intake, probably mediated via its effects on GI motility.  相似文献   

4.

BACKGROUND AND PURPOSE

There is growing evidence that the cannabinoid CB1 receptor antagonist, rimonabant (SR141716) exerts potential anti-proliferative and anti-inflammatory actions. Here, we have assessed the effects of rimonabant in vitro in murine immortalized keratinocytes and in vivo by assaying the topical anti-inflammatory activity.

EXPERIMENTAL APPROACH

Cell viability and death in a keratinocyte cell line (C5N cells) were measured by Trypan blue exclusion assay and cytotoxicity by sulphorhodamine B test. Cell cycle progression was assessed by flow cytometry and the expression of apoptotic and anti-apoptotic markers, cyclins, pathways of signal transduction and CB1 receptor levels were evaluated by Western blot. The topical anti-inflammatory properties of rimonabant were analysed by inhibition of croton oil-induced ear dermatitis in mice.

KEY RESULTS

Rimonabant reduced cell viability and induced apoptosis as shown by the enhanced number of cells in the subG0 phase of the cell cycle, the expression of Bax and reduced levels of Bcl-2 and X-inhibitor of apoptosis protein. In addition, reduced levels of phosphorylated serine/threonine protein kinase Akt and nuclear factor-kappa B were detected associated with regulation of total nuclear factor-kappa B and inhibitor of kappa B-α, phosphorylated inhibitor of kappa B-α, cyclins D1, E and A. In croton oil-induced ear dermatitis, rimonabant significantly reduced oedema and leukocyte infiltrate.

CONCLUSIONS AND IMPLICATIONS

Rimonabant reduced cell viability, inducing cell death in keratinocytes and decreased croton oil-induced ear dermatitis. Our findings suggest a potential application of rimonabant as a topical anti-inflammatory drug. We did not assess the involvement of CB1 receptors in these effects of rimonabant.  相似文献   

5.

Aim:

High mobility group box protein 1 (HMGB1) and receptor for the advanced glycation end product (RAGE) play pivotal roles in vascular inflammation and atherosclerosis. The aim of this study was to determine whether the HMGB1-RAGE axis was involved in the actions of simvastatin on vascular inflammation and atherosclerosis in ApoE−/− mice.

Methods:

Five-week old ApoE−/− mice and wild-type C57BL/6 mice were fed a Western diet. At 8 weeks of age, ApoE−/− mice were administered simvastatin (50 mg·kg−1·d−1) or vehicle by gavage, and the wild-type mice were treated with vehicle. The mice were sacrificed at 11 weeks of age, and the atherosclerotic lesions in aortic sinus were assessed with Oil Red O staining. Macrophage migration was determined with scanning EM and immunohistochemistry. Human umbilical vein endothelial cells (HUVECs) were used for in vitro study. Western blots were used to quantify the protein expression of HMGB1, RAGE, vascular cell adhesion molecule-1 (VCAM-1) and monocyte chemoattractant protein-1 (MCP-1).

Results:

Vehicle-treated ApoE−/− mice exhibited significant increases in aortic inflammation and atherosclerosis as well as enhanced expression of HMGB1, RAGE, VCAM-1, and MCP-1 in aortic tissues as compared to the wild-type mice. Furthermore, serum total cholesterol, triglyceride and LDL levels were markedly increased, while serum HDL level was decreased in vehicle-treated ApoE−/− mice. Administration with simvastatin in ApoE−/− mice markedly attenuated the vascular inflammation and atherosclerotic lesion area, and decreased the aortic expression of HMGB1, RAGE, VCAM-1, and MCP-1. However, simvastatin did not affect the abnormal levels of serum total cholesterol, triglyceride, LDL and HDL in ApoE−/− mice. Exposure of HUVECs to HMGB1 (100 ng/mL) markedly increased the expression of HMGB1, RAGE and VCAM-1, whereas pretreatment of the cells with simvastatin (10 μmol/L) blocked the HMGB1-caused changes.

Conclusion:

Simvastatin inhibits vascular inflammation and atherosclerosis in ApoE−/− mice, which may be mediated through downregulation of the HMGB1-RAGE axis.  相似文献   

6.

Aim:

To investigate whether rimonabant, a cannabinoid receptor antagonist, had inhibitory effects on inflammatory reactions in human umbilical vein endothelial cells (HUVEC).

Methods:

TNF-α-induced IL-6 production was measured by ELISA and effects on related signaling pathways were investigated by immunoblot analysis. Cellular cAMP level was measured using kinase-coupled luciferase reaction.

Results:

Rimonabant at 1 and 10 μmol/L significantly inhibited TNF-α-induced IL-6 production when added 15, 30 and 60 minutes before TNF-α treatment. Rimonabant also inhibited TNF-α-induced phosphorylation of IκB kinase (IKK) α/β and IκB-α degradation. ACEA, a cannabinoid receptor subtype 1 (CB1) agonist, added before rimonabant abolished the former effects of rimonabant. H-89, an inhibitor of cAMP-dependent protein kinase (PKA), abolished the inhibitory effects of rimonabant on TNF-α induced IL-6 production. Rimonabant also increased the phosphorylation of PKA regulatory subunit II (PKA-RII), implying the essential role of PKA activation in the inhibitory effects of rimonabant. Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin did not abolish the inhibitory effects of rimonabant on TNF-α induced IL-6 production.

Conclusion:

Rimonabant had anti-inflammatory effects on endothelial cells and inhibited TNF-α-induced IKKα/β phosphorylation, IκB-α degradation and IL-6 production in HUVEC. This effect was related to CB1 antagonism and PKA activation.  相似文献   

7.

Background and purpose:

Monocytes/macrophages are an important population of immune inflammatory cells that have diverse effector functions in which their mobility and adhesion play a very relevant role. Epigallocatechin gallate (EGCG), a major component of green tea, has been reported to have anti-allergic and anti-inflammatory activities, but its effects on monocytes remain to be determined. Here we investigated the effects of EGCG on the migration and adhesion of monocytes.

Experimental approach:

We used a human monocyte cell line (THP-1) to analyse the effects of treatment with EGCG under non-cytotoxic conditions on the expression levels of the monocyte chemotactic protein-1 (MCP-1) and of the MCP-1 receptor (CCR2) and on the activation of β1 integrin. A functional validation was carried out by evaluating the inhibitory effect of EGCG on monocyte adhesiveness and migration in vitro.

Key results:

Treatment of THP-1 cells with EGCG decreased MCP-1 and CCR2 gene expression, together with MCP-1 secretion and CCR2 expression at the cell surface. EGCG also inhibited β1 integrin activation. The effects on these molecular targets were in agreement with the EGCG-induced inhibition of THP-1 migration in response to MCP-1 and adhesion to fibronectin.

Conclusions and implications:

Under our experimental conditions, EGCG treatment inhibited the migration and adhesion of monocytes. These inhibitory effects of EGCG on monocyte function should be considered as a promising new anti-inflammatory response with a potential therapeutic role in the treatment of inflammation-dependent diseases.  相似文献   

8.
9.
10.

Background:

Disturbances in the regulation of reward and aversion in the brain may underlie disorders such as obesity and eating disorders. We previously showed that the cannabis receptor subtype (CB1) inverse agonist rimonabant, an antiobesity drug withdrawn due to depressogenic side effects, diminished neural reward responses yet increased aversive responses (Horder et al., 2010). Unlike rimonabant, tetrahydrocannabivarin is a neutral CB1 receptor antagonist (Pertwee, 2005) and may therefore produce different modulations of the neural reward system. We hypothesized that tetrahydrocannabivarin would, unlike rimonabant, leave intact neural reward responses but augment aversive responses.

Methods:

We used a within-subject, double-blind design. Twenty healthy volunteers received a single dose of tetrahydrocannabivarin (10mg) and placebo in randomized order on 2 separate occasions. We measured the neural response to rewarding (sight and/or flavor of chocolate) and aversive stimuli (picture of moldy strawberries and/or a less pleasant strawberry taste) using functional magnetic resonance imaging. Volunteers rated pleasantness, intensity, and wanting for each stimulus.

Results:

There were no significant differences between groups in subjective ratings. However, tetrahydrocannabivarin increased responses to chocolate stimuli in the midbrain, anterior cingulate cortex, caudate, and putamen. Tetrahydrocannabivarin also increased responses to aversive stimuli in the amygdala, insula, mid orbitofrontal cortex, caudate, and putamen.

Conclusions:

Our findings are the first to show that treatment with the CB1 neutral antagonist tetrahydrocannabivarin increases neural responding to rewarding and aversive stimuli. This effect profile suggests therapeutic activity in obesity, perhaps with a lowered risk of depressive side effects.  相似文献   

11.

Introduction:

Obesity and overweight affect over 1 billion people worldwide and are leading causes of morbidity and mortality. Clinical features of obesity converge with those of the metabolic syndrome and type 2 diabetes, greatly increasing the risk of long-term adverse outcomes.

Aims:

To review the evidence on rimonabant, a novel CB1 receptor antagonist, for the treatment of obese and overweight patients.

Evidence review:

There is clear evidence that rimonabant 20 mg/day in conjunction with a hypocaloric diet causes a mean weight loss of 4.6 kg in obese and overweight patients after 1 year’s treatment, with approximately 50% of patients achieving a weight loss of ≥5%. One study demonstrated that weight loss is maintained for up to 2 years. The drug also improves lipid and glycemic cardiovascular risk factors, including high-density lipoprotein cholesterol and insulin resistance, and reduces waist circumference, thus reducing the prevalence of metabolic syndrome. Treatment of obese and overweight diabetic patients with rimonabant decreases glycosylated hemoglobin (HbA1c), including patients previously untreated for diabetes. The effect of rimonabant appears to be partly independent of weight loss.Rimonabant 20 mg/day is generally well tolerated, with mild to moderate transient adverse effects including nausea, diarrhea, dizziness, and anxiety. Approximately 14% of patients receiving rimonabant 20 mg/day discontinued due to adverse effects, primarily depressed mood, although overall rates of depression did not differ significantly compared with placebo.

Place in therapy:

The evidence supports the use of rimonabant 20 mg/day along with dietary modification to reduce cardiovascular risk factors in obese and overweight patients, including those with diabetes. The drug is contraindicated in patients receiving antidepressants. Long-term data on cardiovascular outcomes, morbidity, and mortality are eagerly awaited.  相似文献   

12.

Aim:

To investigate whether high glucose stimulates the expression of inflammatory cytokines and the possible mechanisms involved.

Methods:

ELISA and real-time PCR were used to determine the expression of the inflammatory factors, and a chemiluminescence assay was used to measure the production of reactive oxygen species (ROS).

Results:

Compared to low glucose (10 mmol/L), treatment with high glucose (35 mmol/L) increased the secretion of tumor necrosis factor (TNF)α and monocyte chemotactic protein-1 (MCP-1), but not interleukin (IL)-1β and IL-6, in a time-dependent manner in primary cultured rat microglia. The mRNA expression of TNFα and MCP-1 also increased in response to high glucose. This upregulation was specific to high glucose because it was not observed in the osmotic control. High-glucose treatment stimulated the formation of ROS. Furthermore, treatment with the ROS scavenger NAC significantly reduced the high glucose-induced TNFα and MCP-1 secretion. In addition, the nuclear factor kappa B (NF-κB) inhibitors MG132 and PDTC completely blocked the high glucose-induced TNFα and MCP-1 secretion.

Conclusion:

We found that high glucose induces TNFα and MCP-1 secretion as well as mRNA expression in rat microglia in vitro, and this effect is mediated by the ROS and NF-κB pathways.  相似文献   

13.

BACKGROUND AND PURPOSE

The effects of metformin, an antidiabetic agent that improves insulin sensitivity, on endothelial function have not been fully elucidated. This study was designed to assess the effect of metformin on impaired endothelial function, oxidative stress, inflammation and advanced glycation end products formation in type 2 diabetes mellitus.

EXPERIMENTAL APPROACH

Goto-Kakizaki (GK) rats, an animal model of nonobese type 2 diabetes, fed with normal and high-fat diet during 4 months were treated with metformin for 4 weeks before evaluation. Systemic oxidative stress, endothelial function, insulin resistance, nitric oxide (NO) bioavailability, glycation and vascular oxidative stress were determined in the aortic rings of the different groups. A pro-inflammatory biomarker the chemokine CCL2 (monocyte chemoattractant protein-1) was also evaluated.

KEY RESULTS

High-fat fed GK rats with hyperlipidaemia showed increased vascular and systemic oxidative stress and impaired endothelial-dependent vasodilatation. Metformin treatment significantly improved glycation, oxidative stress, CCL2 levels, NO bioavailability and insulin resistance and normalized endothelial function in aorta.

CONCLUSION AND IMPLICATIONS

Metformin restores endothelial function and significantly improves NO bioavailability, glycation and oxidative stress in normal and high-fat fed GK rats. This supports the concept of the central role of metformin as a first-line therapeutic to treat diabetic patients in order to protect against endothelial dysfunction associated with type 2 diabetes mellitus.  相似文献   

14.

Background

Previous studies suggest that chemical constituents present in Pinus eldarica Medw (P. eldarica) nut possess antioxidant properties that may positively influence lipid profile.The present study was conducted to evaluate the efficacy of P. eldarica nut on the experimental atherosclerosis development in hypercholesterolemic rabbits.

Methods

Forty male 6 months old white New Zealand rabbits (1.8–2 kg) were randomly assigned into five equal groups. One group was kept as control (normal) group, fed on standard rabbit diet and other 4 groups were fed on high cholesterol diet (HCD). Out of four HCD groups one group was kept as control (HCD) and other three groups were treated with different doses (50, 100 and 200 mg/kg/day) of P. eldarica nut for 8 weeks. Percentage of aortic wall area changes as indication of atherosclerosis development and fasting blood cholesterol, LDL, HDL and triglyceride levels were determined in all groups.

Results

The results indicate that fasting blood cholesterol and aortic atherosclerotic involvements in 200 mg/kg/day and 100 mg/kg/day P. eldarica nut extract treated groups significantly decreased as compared to the high cholesterol-diet control group.

Conclusion

P. eldarica nut lowers blood cholesterol level and aortic atherosclerotic involvement in hypercholesterolemic rabbits.  相似文献   

15.

Background and Purpose

Endogenous glucocorticoids are pro-resolving mediators, an example of which is the endogenous glucocorticoid-regulated protein annexin A1 (ANXA1). Because silicosis is an occupational lung disease characterized by unabated inflammation and fibrosis, in this study we tested the therapeutic properties of the N-terminal ANXA1-derived peptide annexin 1-(2-26) (Ac2-26) on experimental silicosis.

Experimental Approach

Swiss-Webster mice were administered silica particles intranasally and were subsequently treated with intranasal peptide Ac2-26 (200 μg per mouse) or dexamethasone (25 μg per mouse) for 7 days, starting 6 h post-challenge. Ac2-26 abolished the leukocyte infiltration, collagen deposition, granuloma formation and generation of pro-inflammatory cytokines evoked by silica; these variables were only partially inhibited by dexamethasone.

Key Results

A clear exacerbation of the silica-induced pathological changes was observed in ANXA1 knockout mice as compared with their wild-type (WT) littermate controls. Incubation of lung fibroblasts from WT mice with Ac2-26 in vitro reduced IL-13 or TGF-β-induced production of CCL2 (MCP-1) and collagen, but this peptide did not affect the production of CCL2 (MCP-1) by stimulated fibroblasts from formyl peptide receptor type 1 (FPR1) knockout mice. Ac2-26 also inhibited the production of CCL2 (MCP-1) from fibroblasts of FPR2 knockout mice.

Conclusions and Implications

Collectively, our findings reveal novel protective properties of the ANXA1 derived peptide Ac2-26 on the inflammatory and fibrotic responses induced by silica, and suggest that ANXA1 mimetic agents might be a promising strategy as innovative anti-fibrotic approaches for the treatment of silicosis.  相似文献   

16.

Aim:

To investigate whether the combination of fluvastatin and losartan synergistically relieve atherosclerosis and plaque inflammation induced by a high-cholesterol diet in rabbits.

Methods:

Atherosclerosis was induced with a high-cholesterol diet for 3 months in 36 New Zealand white rabbits. The animals were randomly divided into model group, fluvastatin (10 mg·kg-1·d-1) group, losartan (25 mg·kg-1·d-1) group, and fluvastatin plus losartan group. After the 16-week treatments, the blood samples the animals were collected, and the thoracic aortas were examined immunohistochemically. The mRNA and protein expression levels of monocyte chemotactic protein-1 (MCP-1) were measured using RT-PCR and Western blot.

Results:

Compared to the treatment with losartan or fluvastatin alone, the combined treatment did not produce higher efficacy in reduction of blood cholesterol level. However, the combination did synergistically decrease the intimal and media thickness of thoracic aortas with significantly reduced macrophage infiltration and MCP-1 expression in the plaques.

Conclusion:

The combined treatment with losartan and fluvastatin significantly inhibited atherosclerotic progress and reduced inflammation associated with atherosclerotic plaques.  相似文献   

17.

AIM

To determine whether the SNP rs4149056 in SLCO1B1 alters the pharmacodynamics of pravastatin.

METHODS

rs4149056 was genotyped in 626 pravastatin-treated participants in the WOSCOPS trial and the response after 1 year of treatment was compared between the different genotypes.

RESULTS

Pravastatin reduced serum LDL cholesterol by 22.2% in TT homozygotes, by 22.2% in TC heterozygotes and by 17.7% in CC homozygotes (TT + TC vs. CC P value 0.33). There were no significant differences in the response of total cholesterol, LDL, HDL, triglycerides or CRP to pravastatin between the genotypes.

CONCLUSION

The rs4149056 SNP did not significantly affect the pharmacodynamics of pravastatin.  相似文献   

18.

Background and Purpose

Treatment with selective oestrogen receptor modulators (SERMs) reduces low-density lipoprotein (LDL) cholesterol levels. We assessed the effect of tamoxifen, raloxifene and toremifene and their combinations with lovastatin on LDL receptor activity in lymphocytes from normolipidaemic and familial hypercholesterolaemic (FH) subjects, and human HepG2 hepatocytes and MOLT-4 lymphoblasts.

Experimental Approach

Lymphocytes were isolated from peripheral blood, treated with different compounds, and 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI)-labelled LDL uptake was analysed by flow cytometry.

Key Results

Tamoxifen, toremifene and raloxifene, in this order, stimulated DiI-LDL uptake by lymphocytes by inhibiting LDL-derived cholesterol trafficking and subsequent down-regulation of LDL receptor expression. Differently to what occurred in HepG2 and MOLT-4 cells, only tamoxifen consistently displayed a potentiating effect with lovastatin in primary lymphocytes. The SERM-mediated increase in LDL receptor activity was not altered by the anti-oestrogen ICI 182 780 nor was it reproduced by 17β-oestradiol. However, the tamoxifen-active metabolite endoxifen was equally effective as tamoxifen. The SERMs produced similar effects on LDL receptor activity in heterozygous FH lymphocytes as in normal lymphocytes, although none of them had a potentiating effect with lovastatin in heterozygous FH lymphocytes. The SERMs had no effect in homozygous FH lymphocytes.

Conclusions and Implications

Clinically used SERMs up-regulate LDL receptors in primary human lymphocytes. There is a mild enhancement between SERMs and lovastatin of lymphocyte LDLR activity, the potentiation being greater in HepG2 and MOLT-4 cells. The effect of SERMs is independent of oestrogen receptors but is preserved in the tamoxifen-active metabolite endoxifen. This mechanism may contribute to the cholesterol-lowering action of SERMs.  相似文献   

19.

Aim:

Metabolic syndrome (MS) and aging are low-grade systemic inflammatory conditions, and inflammation is a key component of endothelial dysfunction. The aim of this study was to investigate the effects of non-steroidal anti-inflammatory drugs (NSAIDs) upon the vascular reactivity in aging MS rats.

Methods:

MS was induced in young male rats by adding 30% sucrose in drinking water over 6, 12, and 18 months. When the treatment was finished, the blood samples were collected, and aortas were dissected out. The expression of COX isoenzymes and PLA2 in the aortas was analyzed using Western blot analysis. The contractile responses of aortic rings to norepinephrine (1 μmol/L) were measured in the presence or absence of different NSAIDs (10 μmol/L for each).

Results:

Serum levels of pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in control rats were remained stable during the aging process, whereas serum IL-6 in MS rats were significantly increased at 12 and 18 months. The levels of COX isoenzyme and PLA2 in aortas from control rats increased with the aging, whereas those in aortas from MS rats were irregularly increased with the highest levels at 6 months. Pretreatment with acetylsalicylic acid (a COX-1 preferential inhibitor), indomethacin (a non-selective COX inhibitor) or meloxicam (a COX-2 preferential inhibitor) decreased NE-induced contractions of aortic rings from MS rats at all the ages, with meloxicam being the most potent. Acetylsalicylic acid also significantly reduced the maximum responses of ACh-induced vasorelaxation of aortic rings from MS rats, but indomethacin and meloxicam had no effect.

Conclusion:

NSAIDs can directly affect vascular responses in aging MS rats. Understanding the effects of NSAIDs on blood vessels may improve the treatment of cardiovascular diseases and MS in the elders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号