首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditionally immortalized brain and retinal capillary endothelial and choroid plexus epithelial cell lines were established from a transgenic rat (Tg rat) and mouse (Tg mouse) harboring the temperature-sensitive simian virus 40 (ts SV 40) large T-antigen. These cell lines exhibit temperature-sensitive cell growth due to the expression of ts SV 40 large T-antigen. Mouse brain (TM-BBB) and rat brain (TR-BBB) and rat retinal (TR-iBRB) capillary endothelial cell lines appear to have a spindle-fiber shaped morphology and exhibit the typical endothelial markers, such as von Willebrand factor and acetylated low-density lipoprotein uptake. These cell lines express in vivo influx and efflux transporters, such as P-glycoprotein (P-gp) and GLUT1, which is capable of 3-O-methyl-D-glucose transport. TM-BBB cells are able to undergo efflux transport of cyclosporin A, which is a substrate for P-gp transport activity. They may also express oatp2 and exhibit dehydroepiandrosterone sulfate and digoxin uptake activity. TR-BBB cells express the mRNA of multidrug resistance associated protein 1 (MRP1) and a large neutral amino acid transporter, which consists of LAT1 and 4F2hc. TR-iBRB cells exhibit pH-dependent L-lactic acid transport activity and express the mRNA of monocarboxylate transporter (MCT) 1 and 2. The choroid plexus epithelial cell line (TR-CSFB) has polygonal cell morphology, expresses the typical choroid plexus epithelial cell marker, transthyretin, and has Na+, K+-ATPase located on the apical side. TR-CSFB cells also exhibit amino acid transport activity which has been observed in vivo. These barrier cell lines established from the Tg rat and Tg mouse have in vivo transport functions and are good in vitro models for drug transport to the brain and retina and as a screen for drugs which might be capable of delivery to the brain and retina.  相似文献   

2.
Brain capillary endothelial cell lines (TR-BBB) were established from a recently developed transgenic rat harboring temperature-sensitive simian virus 40 (ts SV 40) large T-antigen gene (Tg rat) and used to characterize the endothelial marker, transport activity, and mRNA expression of transporters and tight-junction strand proteins at the blood-brain barrier (BBB). These cell lines expressed active large T-antigen and grew well at 33 degrees C with a doubling-time of about 22-31 hr, but did not grow at 39 degrees C. TR-BBBs expressed the typical endothelial marker, von Willebrand factor, and exhibited acetylated low-density lipoprotein uptake activity. Although the gamma-glutamyltranspeptidase activity in TR-BBBs was approximately 13% of that of the brain capillary fraction of a normal rat, it was localized in the apical side, suggesting that it reflects the functional polarity of the in vivo BBB. The mRNA of tight-junction strand proteins such as claudine-5, occludin, and junctional adhesion molecule are expressed in TR-BBB13. Drug efflux transporter, P-glycoprotein, with a molecular weight of 170 kDa was expressed in all TR-BBBs and mdr 1a, mdr 1b, and mdr 2 mRNA were detected in TR-BBBs using RT-PCR. Moreover, mrp1 mRNA was expressed in all TR-BBBs. Influx transporter, GLUT-1, expressed at 55 kDa was revealed by Western blot analysis. It had 3-O-methyl-D-glucose (3-OMG) uptake activity which was concentration-dependent with a Michaelis-Menten constant of 9.86 +/- 1.20 mM. The mRNA of large neutral amino acid transporter, which consists of LAT-1 and 4F2hc was expressed in TR-BBBs. In conclusion, the conditionally immortalized rat brain capillary endothelial cell lines (TR-BBB) had endothelial makers, expressed mRNA for tight-junction strand proteins and the influx and efflux transporters and produced GLUT-1, which is capable of 3-OMG transport activity.  相似文献   

3.
Efflux transporters of the ATP-binding cassette superfamily including breast cancer resistance protein (Bcrp/Abcg2), P-glycoprotein (P-gp/Abcb1) and multidrug resistance-associated proteins (Mrp’s/Abcc’s) are expressed in the blood–brain barrier (BBB). The aim of this study was to investigate if a bovine endothelial/rat astrocyte in vitro BBB co-culture model displayed polarized transport of known efflux transporter substrates. The co-culture model displayed low mannitol permeabilities of 0.95 ± 0.1 · 10−6 cm·s−1 and high transendothelial electrical resistances of 1,177 ± 101 Ω·cm2. Bidirectional transport studies with 3H-digoxin, 3H-estrone-3-sulphate and 3H-etoposide revealed polarized transport favouring the brain-to-blood direction for all substrates. Steady state efflux ratios of 2.5 ± 0.2 for digoxin, 4.4 ± 0.5 for estrone-3-sulphate and 2.4 ± 0.1 for etoposide were observed. These were reduced to 1.1 ± 0.08, 1.4 ± 0.2 and 1.5 ± 0.1, by addition of verapamil (digoxin), Ko143 (estrone-3-sulphate) or zosuquidar + reversan (etoposide), respectively. Brain-to-blood permeability of all substrates was investigated in the presence of the efflux transporter inhibitors verapamil, Ko143, zosuquidar, reversan and MK 571 alone or in combinations. Digoxin was mainly transported via P-gp, estrone-3-sulphate via Bcrp and Mrp’s and etoposide via P-gp and Mrp’s. The expression of P-gp, Bcrp and Mrp-1 was confirmed using immunocytochemistry. The findings indicate that P-gp, Bcrp and at least one isoform of Mrp are functionally expressed in our bovine/rat co-culture model and that the model is suitable for investigations of small molecule transport.KEY WORDS: blood–brain barrier, breast cancer resistance protein, multidrug resistance-associated protein, p-glycoprotein, polarized small molecule transport  相似文献   

4.
Elucidating the details of the blood-brain barrier (BBB) transport mechanism is a very important step towards successful drug targeting to the brain and understanding what happens in the brain. Although several brain uptake methods have been developed to characterize transport at the BBB, these are mainly useful for investigating influx transport across the BBB. In 1992, P-glycoprotein was found to act as an efflux pump for anti-cancer drugs at the BBB using primary cultured bovine brain endothelial cells. In order to determine the direct efflux transport from the brain to the circulating blood of exogenous compounds in vivo, the Brain Efflux Index method was developed to characterize several BBB efflux transport systems. Recently, we have established conditionally immortalized rat (TR-BBB) and mouse (TM-BBB) brain capillary endothelial cell lines from transgenic rats and mice harboring temperature-sensitive simian virus 40 large T-antigen gene to characterize the transport mechanisms at the BBB in vitro. TR-BBB and TM-BBB cells possess certain in vivo transport functions and express mRNAs for the BBB. Using a combination of newly developed in vivo and in vitro methods, we have elucidated the efflux transport mechanism at the BBB for neurosteroids, excitatory neurotransmitters, suppressive neurotransmitters, amino acids, and other organic anions to understand the physiological role played by the BBB as a detoxifying organ for the brain.  相似文献   

5.

AIMS

To investigate the effect of P-gp inhibition on the maternal to foetal transfer of indinavir.

METHODS

Term human placentae (n = 12) were from non-HIV infected women. Maternal to foetal transfer of indinavir was examined in the absence and presence of P-gp inhibitors PSC833 (n = 7) or ritonavir (n = 5), in the perfused human placenta. Antipyrine and [3H]-vinblastine were included as markers of passive diffusion and P-gp transport, respectively. These markers and indinavir were added to maternal perfusate at 0 min; PSC833 or ritonavir was added at 25 min. Steady-state maternal to foetal transfer clearance was calculated during control and inhibitor phases. Indinavir and vinblastine clearances were normalized to antipyrine clearance (clearance index).

RESULTS

Indinavir clearance index increased between the control (0.25 ± 0.03) and PSC833 phases (0.37 ± 0.14) (95% CI of the difference −0.23, −0.002). Vinblastine clearance index increased from (0.25 ± 0.08) to (0.34 ± 0.06) in the control and PSC833 phases, respectively (95% CI of difference −0.14, −0.05). Indinavir clearance index was unchanged between control (0.34 ± 0.14) and ritonavir phases (0.39 ± 0.13) (95% CI of the difference −0.19, 0.08). Vinblastine clearance index increased from (0.24 ± 0.12) to (0.32 ± 0.12) in the control and ritonavir phases, respectively (95% CI of the difference −0.15, −0.009).

CONCLUSIONS

Maternal to foetal transfer clearance of indinavir and vinblastine increased following P-gp inhibition. The potential role for co-administration of P-gp inhibitors with PIs to reduce perinatal HIV transmission warrants further investigation.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

  • We have shown previously using the dually perfused isolated human placenta model that the maternal to foetal transfer of the antiviral protease inhibitor drug indinavir is substantially lower than the transfer in the opposite direction.
  • This finding is not consistent with passive diffusion and indicates that a carrier-mediated mechanism is involved in retarding the movement in the maternal to foetal direction.
  • The efflux transporter P-gp located in the apical membrane domain of the placental trophoblast cells has been implicated as the likely cause of the differential bi-directional transport.

WHAT THIS STUDY ADDS

  • The present study also utilizes the human perfused human isolated placenta to investigate the possible inhibitory effects of the P-gp inhibitor PSC833 and the P-gp substrate/inhibitor ritonavir on the maternal to foetal transfer clearance of indinavir.
  • The studies, which were conducted such that each placenta served as its own control, demonstrated a statistically significant increase in the maternal to foetal transfer of indinavir in the presence of PSC833 but not in the presence of ritonavir, a protease inhibitor that is often used in combination with other protease inhibitors in dual therapy.
  • The lack of effect of ritonavir is most likely related to the relatively low inhibitory activity at the clinically relevant concentration used in this study.
  相似文献   

6.
7.

Objective:

To study the effects of N-acetylcysteine (NAC) and atorvastatin on endothelial dysfunction in patients with systemic lupus erythematosus (SLE).

Materials and Methods:

Thirty-two SLE patients and age, sex-matched 10 healthy control subjects were studied. The patients were between 17 and 65 years of age and positive for diagnostic tests, such as antinuclear antibodies (ANA). Photoplethysmogram (PPG) detects the changes in the amount of light absorbed by hemoglobin, which reflects changes in the blood volume. Pulse wave analysis was performed at rest, 30 s, 90 s after shear stress, and 10 min after 300 μm of salbutamol inhalation.

Results:

Stiffness index (SI) of patients before the treatment was 8.46±2.78 cm/s and of controls was 6.07±1.4 cm/s (P = 0.002) and that of reflection index (RI) was 73±13 for patients and 65±7 for controls (P = 0.001). The percentage change in RI after salbutamol inhalation for controls and patients were -16±6 and -7±4 (P = 0.001), respectively, indicating the presence of endothelial dysfunction. The percentage decrease in RI after salbutamol inhalation was from -2.36±0.76 to ?7.92±1.46 in patients treated with N-acetylcysteine (NAC, P = 0.007). The percentage decrease in RI after salbutamol inhalation was from ?6.36΁1.21 to -9.92±1.21 in patients treated with atorvastatin (P = 0.05). This indicated the improvement in endothelial function. There was decrease in C-reactive protein (CRP) from 1.03±0.72 mg/dL to 0.52±0.22 mg/dL and that of malondialdehyde (MDA) from 11.20±4.07 nmol/mL to 8.81±2.79 nmol/mL with N-acetylcysteine treatment (P < 0.05). The CRP was decreased from 1.11±0.92 mg/dL to 0.440.16 mg/dL (P = 0.05) and that of MDA was decreased from 9.37±3.29 nmol/mL to 8.51±3.27 nmol/mL after treatment with atorvastatin. It showed improvement in oxidative stress with these treatments.

Conclusion:

The presence of arterial stiffness indicated endothelial dysfunction. There was reduction in RI and SI with treatment of N-acetylcysteine and atorvastatin suggesting improvement in endothelial dysfunction. There was decrease in CRP (a marker of inflammation) and MDA after treatment with N-acetylcysteine suggesting improvement in endothelial dysfunction. There was reduction in CRP after treatment with atorvastatin, suggesting improvement in endothelial function. Improvement in endothelial dysfunction is associated with decreased incidence of cardiovascular and cerebrovascular accidents.  相似文献   

8.
P-glycoprotein (P-gp) is a membrane-bound transporter protein that is encoded by the human multidrug resistance gene MDR1 (ABCB1). P-gp recognizes a wide range of xenobiotics, is pivotal in mediating cancer drug resistance, and plays an important role in limiting drug penetration across the blood–brain barrier. MDR1 genetic variation can lead to changes in P-gp function and may have implications on drug pharmacokinetics. We have identified a novel MDR1GT1292-3TG (Cys431Leu) genetic variation through systematic profiling of subjects with leukemia. The cellular and transport function of this variation was investigated with recombinant human embryonic kidney cells expressing MDR1. Compared with the wild type, MDR1GT1292-3TG recombinant cells exhibited a lower drug resistance phenotype for a panel of chemotherapeutic agents. When compared with wild type, MDR1GT1292-3TG recombinant cells exposed exhibited a 75% decrease in IC50 for doxorubicin (162.6 ± 17.4 to 37.9 ± 2.6 nM) and a 50% decrease in IC50 for paclitaxel (155.7 ± 27.5 to 87.7 ± 9.2 nM), vinblastine (128.0 ± 15.9 to 65.9 ± 5.1 nM), and vincristine (593.7 ± 61.8 to 307.3 ± 17.0 nM). The effects of the Cys431Leu variation, due to MDR1GT1292-3TG nucleotide transition, on P-gp-dependent intracellular substrate accumulation appeared to be substrate dependent where doxorubicin, vinblastine, and paclitaxel exhibit an increased accumulation (p < 0.05), while verapamil and Hoechst33342 exhibit a decreased intracellular concentration compared with wild type (p < 0.05). Collectively, these data suggest MDR1GT1292-3TG variation of P-gp may reduce drug resistance and that subjects with this genotype undergoing chemotherapy with drugs that are transported by P-gp could potentially be more responsive to therapy than those with MDR1 wild-type genotype.Key words: ABC transporter, drug resistance, genetic variation, MDR1, P-glycoprotein, polymorphism, transporter  相似文献   

9.

Background:

Pantoprazole sodium, a proton-pump inhibitor, is approved for the short-term treatment of several types of ulcer, Zollinger–Ellison syndrome, and gastroesophageal reflux disease.

Objective:

To determine the physical compatibility and chemical stability of ethylenediaminetetra-acetic acid (EDTA)–free pantoprazole in glass vials, polypropylene syringes, and polyvinylchloride (PVC) minibags, after storage at 2°C to 8°C with protection from light or at 20°C to 25°C with exposure to light.

Methods:

Solutions of pantoprazole 4 mg/mL reconstituted in 0.9% sodium chloride (normal saline [NS]) were stored in glass vials at 20°C to 25°C. Similar solutions were transferred to polypropylene syringes and stored at 2°C to 8°C. Stock solution was further diluted, in 5% dextrose in water (D5W) or NS, to 0.4 or 0.8 mg/mL, and samples were then packaged in PVC minibags for storage at 2°C to 8°C or at 20°C to 25°C. Samples collected on days 0, 2, 3, 7, 14, 21, and 28 were analyzed in duplicate with a stability-indicating high-performance liquid chromatography assay.

Results:

Pantoprazole 4 mg/mL was stable (i.e., retained at least 90% of initial concentration) for 3 days when stored in glass vials at 20°C to 25°C or for 28 days when stored in polypropylene syringes at 2°C to 8°C. Pantoprazole 0.4 mg/mL diluted in D5W and stored in PVC minibags was stable for 2 days at 20°C to 25°C or for 14 days at 2°C to 8°C. At 0.8 mg/mL, pantoprazole in D5W was stable for 3 days at 20°C to 25°C or 28 days at 2°C to 8°C. Pantoprazole diluted to either 0.4 or 0.8 mg/mL in NS and stored in PVC minibags was stable for 3 days at 20°C to 25°C or 28 days at 2°C to 8°C.

Conclusions:

The present study confirmed or extended previously reported expiry dates for pantoprazole sodium packaged in glass vials, polypropylene syringes, and PVC minibags.  相似文献   

10.
1. Administration of two doses of amphetamine HCl (5 mg/kg intraperitoneally) 45 min apart raised body temperature of rats by an average of 3·4° C and increased the turnover rate of brain 5-hydroxytryptamine (5-HT) by almost one-half.2. Both effects were blocked by exposure to 4° C or by pretreatment with the β-blocker Kö 592 (1-(2-methylphenoxy)-3-isopropylamine-2-propanol), but not by the administration of the ganglionic blocker chlorisondamine combined with atropine.3. Since it has previously been shown that hyperthermia per se increases the turnover rate of brain 5-HT, and that amphetamine does not directly affect the uptake and release of 5-HT in brain slices, it is concluded that the amphetamine-induced increase in 5-HT turnover may be secondary to the rise in temperature produced by the drug.  相似文献   

11.

AIMS

We aimed to describe the pharmacokinetic interaction between phenytoin, a potent CYP3A4 and P-glycoprotein (P-gp) (ABCB1) inducer, and gefitinib, a CYP3A4, CYP2D6 and P-gp substrate.

METHODS

An open-label, randomized, two-phase crossover study was conducted. Eighteen healthy male volunteers (nine homozygous CC and nine homozygous TT as determined by their ABCB1 C3435T polymorphism in exon 26) received a single oral dose of 250 mg gefitinib alone or after 5 days treatment with phenytoin (5 mg kg−1 daily). Gefitinib plasma concentrations were determined by high-performance liquid chromatography. Hepatic CYP3A4 activity was evaluated by the 14C-erythromycin breath test (ERMBT) and the ABCB1 and CYP2D6 genetic polymorphisms were determined by the TaqMan allelic discrimination assay and long polymerase chain reaction, respectively.

RESULTS

Following treatment with phenytoin, mean gefitinib Cmax and AUC0–∞ decreased by 26 ± 44% [95% confidence interval (CI) for the difference 5–48%, P= 0.005] and 47 ± 26% (95% CI for the difference 34–60%, P= 0.001), respectively, and apparent oral clearance increased by 126 ± 93% (95% CI for the difference 80–172%, P= 0.004). Concomitantly, phenytoin increased the mean ERMBT by 91 ± 44% (95% CI 75–105%, P < 0.001) from baseline, but the extent of liver CYP3A4 induction was not correlated to the extent of interaction. Furthermore, this interaction was independent of ABCB1 genetic polymorphism. The CYP2D6 genotype was slightly but significantly related to gefitinib clearance (P= 0.04) during the control phase.

CONCLUSIONS

The significant interaction between gefitinib and phenytoin was not correlated with the erythromycin breath test and was independent of ABCB1 polymorphism, but may involve presystemic CYP3A-mediated intestinal first-pass.  相似文献   

12.
A simple, precise, and sensitive capillary electrophoresis technique coupled with a diode array detector has been developed for the separation and simultaneous determination of ezetimibe and atorvastatin in pharmaceutical formulations. Separation of both ezetimibe and atorvastatin was achieved utilizing fused silica capillary (58 cm × 75 μm ID) and background electrolyte solution that consisted of phosphate buffer (2.5 mM, pH 6.7): methanol (70:30 v/v). The proposed method was validated by testing its specificity, linearity, precision, accuracy, recovery, and detection limit/quantitation limit values. The method was linear over the range 2.5–50 μg/ml for ezetimibe (r = 0.9992) and 1–100 μg/ml for atorvastatin (r = 0.9999). Within-day and between-day RSD for ezetimibe and atorvastatin were ⩽5.6% and ⩽2.9%, respectively. The detection limit was 0.07 μg/ml for ezetimibe and 0.06 μg/ml for atorvastatin. The validated method was successfully employed for the determination of ezetimibe and atorvastatin in tablets with no interfering peaks from common pharmaceutical excipients. The percentage recoveries of the two drugs from their tablets were 99.80 ± 1.76 and 100.19 ± 1.83, respectively.  相似文献   

13.

AIMS

The aim of this study was to determine whether simvastatin would protect against inflammation-induced aortic stiffening and endothelial dysfunction.

METHODS

Aortic pulse wave velocity (aPWV) and flow-mediated dilatation (FMD) were assessed three times, at baseline, after a 14 day administration of simvastatin or placebo and 8 h after Salmonella typhi vaccination in 50 healthy subjects.

RESULTS

Following vaccination there was a significant increase in aPWV in the placebo group (5.80 ± 0.87 vs. 6.21 ± 0.97 m s−1, 95% CI 0.19, 0.62, P = 0.002) but not the simvastatin group (5.68 ± 0.73 vs. 5.72 ± 0.74 m s−1, 95% CI −0.19, 0.27, P = 0.9; P = 0.016 for comparison). Whereas FMD response was reduced in the placebo group (6.77 ± 4.10 vs. 5.27 ± 2.88%, 95% CI −2.49, −0.52, P = 0.02) but not in the simvastatin group (7.07 ± 4.37 vs. 7.17 ± 9.94%, 95% CI −1.1, 1.3. P = 0.9, P < 0.001 for comparison). There was no difference in the systemic inflammatory response between groups following vaccination. However, there was a significant reduction in serum apolipoprotein A-I (Apo A-I) in the placebo, but not in the simvastatin, group.

CONCLUSIONS

Simvastatin prevents vaccination-induced aortic stiffening and endothelial dysfunction. This protective mechanism may be due to preservation of the Apo A-I lipid fraction, rather than pleiotropic anti-inflammatory effects of statins.  相似文献   

14.
The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H2 receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05–10 mM in both apical–basolateral (AP–BL) and BL–AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL–AP than AP–BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC50 of verapamil on nizatidine P-gp secretion was 1.2 × 10−2 mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (Jmax = 5.7 × 10−3 nmol∙cm−2∙s−1 and Km = 2.2 mM) and one nonsaturable component (Kd = 7 × 10−4 μL∙cm−2∙s−1). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. Vmax and Km estimated for nizatidine P-gp-mediated secretion were 4 × 10−3 nmol∙cm−2∙s−1 and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug–drug interactions.Key words: BCS class III drugs, caco-2 permeability, efflux transporters, intestinal absorption, nizatidine, P-glycoprotein  相似文献   

15.

Background:

Ciprofloxacin is a fluoroquinolone antibiotic used to treat infections caused by both gram-positive and gram-negative organisms.

Objective:

To determine the physical and chemical stability of ciprofloxacin diluted in 5% dextrose in water (D5W) or 0.9% sodium chloride (normal saline [NS]) and stored in polyvinylchloride (PVC) minibags at various temperatures.

Methods:

Solutions of ciprofloxacin (1 and 2 mg/mL) were prepared by diluting a commercially available concentrate (10 mg/mL) with either D5W or NS. The prepared solutions were then packaged in PVC mini-bags. Three minibags of each concentration–diluent combination were stored at 2°C to 8°C with protection from light, at 21°C to 24°C with exposure to light, and at 29°C to 31°C with protection from light. Samples were collected from each minibag on days 0, 7, 14, and 30 and then analyzed. Colour, clarity, and pH were monitored when the samples were collected. On each day of analysis, the samples were accurately diluted before duplicate analysis with a stability-indicating high-performance liquid chromatography assay. A solution was considered stable if the concentration remained above 90% of the initial values.

Results:

There were no changes in the physical characteristics of any of the solutions. At both concentrations (1 and 2 mg/mL), the ciprofloxacin solutions prepared in D5W remained above 93.9% of the initial concentration over the 30-day study period under all 3 storage conditions. Similarly, at both concentrations, solutions diluted in NS remained above 95.9% of the initial concentration over the 30-day study period under all 3 storage conditions.

Conclusions:

Ciprofloxacin prepared in either D5W or NS and stored in PVC minibags was stable for 30 days under 3 separate storage conditions: 2°C to 8°C with protection from light, 21°C to 24°C with exposure to light, and 29°C to 31°C with protection from light.  相似文献   

16.
Variations in influx transport at the blood-brain barrier might affect the concentration of psychotropic drugs at their site of action and as a consequence might alter therapy response. Furthermore, influx transporters in organs such as the gut, liver and kidney may influence absorption, distribution, and elimination. Here, we analyzed 30 commonly used psychotropic drugs using a parallel artificial membrane permeability assay. Amisulpride and sulpiride showed the lowest membrane permeability (Pe < 1.5 × 10−6 cm/s) and will require influx transport to penetrate the blood-brain barrier and other physiological barriers. We then studied the uptake of amisulpride and sulpiride by the organic cation transporters of the SLC22 family OCT1, OCT2, OCT3, OCTN1, and OCTN2 Amisulpride was found to be transported by all five transporters studied. In contrast, sulpiride was only transported by OCT1 and OCT2. OCT1 showed the highest transport ability both for amisulpride (CLint = 1.9 ml/min/mg protein) and sulpiride (CLint = 4.2 ml/min/mg protein) and polymorphisms in OCT1 significantly reduced the uptake of both drugs. Furthermore, we observed carrier-mediated uptake that was inhibitable by known OCT inhibitors in the immortalized human brain microvascular endothelial cell line hCMEC/D3. In conclusion, this study demonstrates that amisulpride and sulpiride are substrates of organic cation transporters of the SLC22 family. SLC22 transporters may play an important role in the distribution of amisulpride and sulpiride, including their ability to penetrate the blood-brain barrier.

Electronic supplementary material

The online version of this article (doi:10.1208/s12248-014-9649-9) contains supplementary material, which is available to authorized users.KEY WORDS: amisulpride, blood-brain barrier, membrane permeability, organic cation transporters, sulpiride  相似文献   

17.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

  • The absorption of valacyclovir presents a highly negative correlation with the level of P-glycoprotein expression.
  • It has been confirmed that a polymorphism of the MDR1 gene in exon 26 is related to the level of P-glycoprotein expression in intestine.
  • This study was conducted to find the relationship between polymorphism of MDR1 gene and absorption of valacyclovir.

WHAT THIS STUDY ADDS

  • Linkage disequilibrium exists between G2677T/A in exon 21 and C3435T in exon 26, between C1236T in exon 12 and C3435T, but not between C1236T and G2677T/A of MDR1 gene in the Chinese Han ethnic population.
  • Three single nucleotide polymorphisms of MDR1 gene do not influence the absorption of valacyclovir in the healthy Chinese Han ethnic population.

AIMS

To investigate the influence of three single nucleotide polymorphisms (SNPs) in exon 12 (C1236T), exon 21 (G2677T/A) and exon 26 (C3435T) of MDR1 gene on the absorption of valacyclovir after a single oral administration in the Chinese Han ethnic population.

METHODS

Two hundred healthy Chinese subjects were genotyped for the SNPs of C1236T, G2677T/A and C3435T in the MDR1 gene using allele-specific polymerase chain reaction. Linkage disequilibrium (LD) was analysed. Twenty-four subjects derived from a large random sample (n = 200) received a single oral dose of 600 mg valacyclovir. Plasma concentrations of acyclovir were determined up to 14 h after administration to obtain a pharmacokinetic profile.

RESULTS

LD existed between G2677T/A in exon 21 and C3435T in exon 26 (P < 0.001), between C1236T in exon 12 and C3435T (P < 0.001), but not between C1236T and G2677T/A (P > 0.05). Cmax, AUC0–1.5 h and AUC0–∞ were used as indices of valacyclovir absorption. AUC0–∞ for the 2677TA genotype was 17.45 ± 2.40 µg × h/ml, which was much higher compared with the 2677GG, GA and TT genotypes of 10.44 ± 1.00, 11.84 ± 2.83, 11.34 ± 2.32 µg × h/ml, respectively (P < 0.05). Similarly, a statistically significant difference of AUC0–∞ was also observed for different linked genotypes at position 2677 vs. 3435, and 1236 vs. 3435 (P < 0.05). However, there was no significant difference in valacyclovir absorptive pharmacokinetics between carriers and noncarriers of different haplotypes (P > 0.05).

CONCLUSIONS

Three SNPs of MDR1 gene did not influence the absorption of a single oral dose of 600 mg valacyclovir in healthy Chinese Han ethnic subjects.  相似文献   

18.
19.
A super-saturated self-nanoemulsifying drug delivery system (super-SNEDDS), containing the poorly water-soluble drug halofantrine (Hf) at 150% of equilibrium solubility (Seq), was compared in vitro and in vivo with a conventional SNEDDS (75% of Seq) with respect to bioavailability and digestibility. Further, the effect of digestion on oral absorption of Hf from SNEDDS and super-SNEDDS was assessed by incorporation of the lipase inhibitor tetrahydrolipstatin (orlistat) into the SNEDDS. The SNEDDS contained soybean oil/Maisine 34-I (1:1), Kolliphor RH40, and ethanol at a ratio of 55:35:10, w/w percent. For the dynamic in vitro lipolysis, the precipitation of Hf at 60 min was significantly larger for the super-SNEDDS (66.8 ± 16.4%) than for the SNEDDS (18.5 ± 9.2%). The inhibition of the in vitro digestion by orlistat (1% (w/w)) lowered drug precipitation significantly for both the super-SNEDDS (36.8 ± 1.7%) and the SNEDDS (3.9 ± 0.7%). In the in vivo studies, the super-SNEDDS concept proved valid in a rat model with a significantly larger Cmax for the super-SNEDDS (964 ± 167 ng/mL) than for the SNEDDS (506 ± 112 ng/mL). The bioavailability of Hf dosed in super-SNEDDS (32.9 ± 3.6%) and SNEDDS (22.5 ± 6.3%) did not change significantly with co-administration of orlistat (45.5 ± 7.3% and 21.9 ± 6.5%, respectively). However, the pharmacokinetic parameters changed; the tmax of the super-SNEDDS (1.3 ± 0.1 h) and SNEDDS (2.8 ± 1.2 h) were significantly lower when dosed with orlistat (6.0 ± 1.3 and 6.3 ± 1.2 h, respectively). These findings suggest that the role of lipid digestion for the absorption of drugs from SNEDDS may be less important than previously thought.KEY WORDS: absorption, digestion, halofantrine, orlistat, SNEDDS, super-SNEDDS  相似文献   

20.

BACKGROUND AND PURPOSE

Recently, we identified etodolac as a possible ligand for the human intestinal proton-couple peptide transporter (hPEPT1). This raised the possibility that other non-steroidal anti-inflammatory drugs, and especially ibuprofen, could also interact with hPEPT1. Here, we have assessed the interactions of ibuprofen with hPEPT1.

EXPERIMENTAL APPROACH

The uptake of [14C]Gly-Sar, [3H]Ibuprofen and other radio-labelled compounds were investigated in Madin–Darby canine kidney cells (MDCK)/hPEPT1, MDCK/Mock, LLC-PK1 or Caco-2 cells. The transepithelial transport of ibuprofen and hPEPT1 substrates was investigated in Caco-2 cell monolayers.

KEY RESULTS

Ibuprofen concentration dependently inhibited hPEPT1-mediated uptake of Gly-Sar in MDCK/hPEPT1 cells (Kiapp= 0.4 mM) but uptake of ibuprofen in Caco-2 cells and MDCK/hPEPT1 cells was not inhibited by hPEPT1 substrates. The maximum uptake rate for Gly-Sar uptake was reduced from 522 pmol·min−1·cm−2 to 181 pmol·min−1·cm−2 and 78 pmol·min−1·cm−2 in the presence of 0.5 mM and 1 mM ibuprofen, respectively. The interaction between ibuprofen and hPEPT1 was thus non-competitive. In LLC-PK1 cells, ibuprofen (1 mM) did not influence the transporter-mediated uptake of glycine or α-methyl-D-glycopyranoside. In Caco-2 cell monolayers the absorptive transport of δ-aminolevulinic acid was reduced by 23% and 48% by ibuprofen (1 and 10 mM), respectively. Likewise the transport of Gly-Sar was reduced by 23% in the presence of ibuprofen (1 mM).

CONCLUSIONS AND IMPLICATIONS

Ibuprofen is a non-competitive inhibitor of hPEPT1. As ibuprofen reduced the transepithelial transport of δ-aminolevulinic acid, drug–drug interactions between ibuprofen and hPEPT1 drug substrates at their site of absorption are possible if administered together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号