首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

BACKGROUND AND PURPOSE

Quercetin lowers plasma glucose, normalizes glucose tolerance tests and preserves pancreatic β-cell integrity in diabetic rats. However, its mechanism of action has never been explored in insulin-secreting β-cells. Using the INS-1 β-cell line, the effects of quercetin were determined on glucose- or glibenclamide-induced insulin secretion and on β-cell dysfunctions induced by hydrogen peroxide (H2O2). These effects were analysed along with the activation of the extracellular signal-regulated kinase (ERK)1/2 pathway. N-acetyl-L-cysteine (NAC) and resveratrol, two antioxidants also known to exhibit some anti-diabetic properties, were used for comparison.

EXPERIMENTAL APPROACH

Insulin release was quantified by the homogeneous time resolved fluorescence method and ERK1/2 activation tested by Western blot experiments. Cell viability was estimated by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) colorimetric assay.

KEY RESULTS

Quercetin (20 µmol·L−1) potentiated both glucose (8.3 mmol·L−1)- and glibenclamide (0.01 µmol·L−1)-induced insulin secretion and ERK1/2 phosphorylation. The ERK1/2 (but not the protein kinase A) signalling pathway played a crucial role in the potentiation of glucose-induced insulin secretion by quercetin. In addition, quercetin (20 µmol·L−1), protected β-cell function and viability against oxidative damage induced by 50 µmol·L−1 H2O2 and induced a major phosphorylation of ERK1/2. In the same conditions, resveratrol or NAC were ineffective.

CONCLUSION AND IMPLICATIONS

Quercetin potentiated glucose and glibenclamide-induced insulin secretion and protected β-cells against oxidative damage. Our study suggested that ERK1/2 played a major role in those effects. The potential of quercetin in preventing β-cell dysfunction associated with diabetes deserves further investigation.  相似文献   

2.

BACKGROUND AND PURPOSE

Nicotinic acetylcholine receptors (nAChRs) containing α6β2 subunits expressed by dopamine neurons regulate nicotine-evoked dopamine release. Previous results show that the α6β2* nAChR antagonist, N,N′-dodecane-1,12-diyl-bis-3-picolinium dibromide (bPiDDB) inhibits nicotine-evoked dopamine release from dorsal striatum and decreases nicotine self-administration in rats. However, overt toxicity emerged with repeated bPiDDB treatment. The current study evaluated the preclinical pharmacology of a bPiDDB analogue.

EXPERIMENTAL APPROACH

The C10 analogue of bPiDDB, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), was evaluated preclinically for nAChR antagonist activity.

KEY RESULTS

bPiDI inhibits nicotine-evoked [3H]dopamine overflow (IC50 = 150 nM, Imax = 58%) from rat striatal slices. Schild analysis revealed a rightward shift in the nicotine concentration–response curve and surmountability with increasing nicotine concentration; however, the Schild regression slope differed significantly from 1.0, indicating surmountable allosteric inhibition. Co-exposure of maximally inhibitory concentrations of bPiDI (1 µM) and the α6β2* nAChR antagonist α-conotoxin MII (1 nM) produced inhibition not different from either antagonist alone, indicating that bPiDI acts at α6β2* nAChRs. Nicotine treatment (0.4 mg·kg−1·day−1, 10 days) increased more than 100-fold the potency of bPiDI (IC50 = 1.45 nM) to inhibit nicotine-evoked dopamine release. Acute treatment with bPiDI (1.94–5.83 µmol·kg−1, s.c.) specifically reduced nicotine self-administration relative to responding for food. Across seven daily treatments, bPiDI decreased nicotine self-administration; however, tolerance developed to the acute decrease in food-maintained responding. No observable body weight loss or lethargy was observed with repeated bPiDI.

CONCLUSIONS AND IMPLICATIONS

These results are consistent with the hypothesis that α6β2* nAChR antagonists have potential for development as pharmacotherapies for tobacco smoking cessation.  相似文献   

3.

BACKGROUND AND PURPOSE

Agonists selective for the α7 nicotinic acetylcholine (nACh) receptor produce anti-hyperalgesic effects in rodent models of inflammatory pain, via direct actions on spinal pain circuits and possibly via attenuated release of peripheral pro-inflammatory mediators. Increasingly, allosteric modulation of ligand-gated receptors is recognized as a potential strategy to obtain desired efficacy in the absence of the putative adverse effects associated with agonist activation.

EXPERIMENTAL APPROACH

We compared the anti-hyperalgesic and anti-inflammatory effects of the α7 nACh receptor agonist compound B with the positive allosteric modulator (PAM) PNU-120596 and the standard non-steroidal anti-inflammatory drug (NSAID), diclofenac, in rats with hind paw inflammation induced by either formalin, carrageenan or complete Freund''s adjuvant (CFA).

KEY RESULTS

When administered before carrageenan, both diclofenac (30 mg·kg−1) and PNU-120596 (30 mg·kg−1) significantly reduced mechanical hyperalgesia and weight-bearing deficits for up to 4 h. Compound B (30 mg·kg−1) also attenuated both measures of pain-like behaviour, albeit less robustly. Whereas compound B and PNU-120596 attenuated the carrageenan-induced increase in levels of TNF-α and IL-6 within the hind paw oedema, diclofenac only attenuated IL-6 levels. Established mechanical hyperalgesia induced by carrageenan or CFA was also partially reversed by compound B and PNU-120596. However, diclofenac was considerably more efficacious. Formalin-induced nocifensive behaviours were only reversed by compound B, albeit at doses which disrupted motor performance.

CONCLUSIONS AND IMPLICATIONS

α7 nACh receptor PAMs could prove to be useful in the treatment of inflammatory pain conditions, which respond poorly to NSAIDs or in situations where NSAIDs are contra-indicated.  相似文献   

4.

Background and purpose:

Bladder contractility is regulated by intrinsic myogenic mechanisms interacting with autonomic nerves. In this study, we have investigated the physiological role of spontaneous release of acetylcholine in guinea pig and rat bladders.

Experimental approach:

Conventional isotonic or pressure transducers were used to record contractile activity of guinea pig and rat bladders.

Key results:

Hyoscine (3 µmol·L−1), but not tetrodotoxin (TTX, 1 µmol·L−1), reduced basal tension, distension-evoked contractile activity and physostigmine (1 µmol·L−1)-evoked contractions of the whole guinea pig bladder and muscle strips in vitro. ω-Conotoxin GVIA (0.3 µmol·L−1) did not affect physostigmine-induced contractions when given either alone or in combination with ω-agatoxin IVA (0.1 µmol·L−1) and SNX 482 (0.3 µmol·L−1). After 5 days in organotypic culture, when extrinsic nerves had significantly degenerated, the ability of physostigmine to induce contractions was reduced in the dorso-medial strips, but not in lateral strips (which have around 15 times more intramural neurones). Most muscle strips from adult rats lacked intramural neurones. After 5 days in culture, physostigmine-induced or electrical field stimulation-induced contractions of the rat bladder strips were greatly reduced. In anaesthetized rats, topical application of physostigmine (5–500 nmol) on the bladder produced a TTX-resistant tonic contraction that was abolished by atropine (4.4 µmol·kg−1 i.v.).

Conclusions and implications:

The data indicate that there is spontaneous TTX-resistant release of acetylcholine from autonomic cholinergic extrinsic and intrinsic nerves, which significantly affects bladder contractility. This release is resistant to blockade of N, P/Q and R type Ca2+ channels.British Journal of Pharmacology (2009) 157, 607–619; doi:10.1111/j.1476-5381.2009.00166.x; published online 3 April 2009  相似文献   

5.

BACKGROUND AND PURPOSE

Dissociating anti-inflammatory efficacy from the metabolic side effects of glucocorticoids is an attractive therapeutic goal. 5α-Tetrahydro-corticosterone (5αTHB), produced from corticosterone by 5α-reductases, activates glucocorticoid receptors. This study compares the effects of 5αTHB on inflammation and metabolism in vitro and in vivo.

METHODS

Suppression of cytokine release by 5αTHB and corticosterone were studied following LPS activation of mouse bone marrow derived macrophages. In vivo the efficacy of these steroids to dysregulate metabolic homeostasis and modulate immune suppression and the responses to thioglycollate-induced peritonitis in C57BL/6 mice were studied following acute injection (1.5–15 mg) and chronic infusion (50 µg·day−1, 14 days).

RESULTS

In macrophages, 5αTHB increased secretion of IL-10 similarly to corticosterone (180%, 340%; data are % vehicle, treated with 5αTHB and corticosterone, respectively) and suppressed LPS-induced secretion of TNF-α (21.9%, 74.2%) and IL-6 (16.4%, 69.4%). In mice with thioglycollate-induced peritonitis, both 5αTHB and corticosterone reduced the numbers of neutrophils (58.6%, 49.9%) and inflammatory monocytes (69.5%, 96.4%), and also suppressed MCP-1 (48.7%, 80.9%) and IL-6 (53.5%, 86.7%) in peritoneal exudate. In mice chronically infused with 5αTHB and corticosterone LPS-induced production of TNF-α from whole blood was suppressed to the same degree (63.2%, 37.2%). However, in contrast to corticosterone, 5αTHB did not induce body weight loss, increase blood pressure or induce hyperinsulinaemia.

CONCLUSIONS

5αTHB has anti-inflammatory effects in vitro and in vivo. At doses with equivalent anti-inflammatory efficacy to corticosterone, 5αTHB did not induce metabolic toxicity and thus may be a prototype for a safer anti-inflammatory drug.  相似文献   

6.

Background and purpose:

We have evaluated the effects of a peroxisome proliferator-activated receptor (PPAR)α/γ agonist on the progression of pre-existing atherosclerotic lesions in APOE*3Leiden.cholesteryl ester transfer protein (E3L.CETP) transgenic mice.

Experimental approach

E3L.CETP mice were fed a high-cholesterol diet for 11 weeks to induce atherosclerosis, followed by a low-cholesterol diet for 4 weeks to obtain a lower plasma total cholesterol level of ∼10 mmol·L−1. Mice were divided into three groups, which were either killed before (baseline) or after an 8 week treatment period with low-cholesterol diet without (control) or with the PPARα/γ agonist tesaglitazar (10 µg·kg−1·day−1). Atherosclerosis was assessed in the aortic root.

Key results:

Treatment with tesaglitazar significantly reduced plasma triglycerides, total cholesterol, CETP mass and CETP activity, and increased high-density lipoprotein-cholesterol. At baseline, substantial atherosclerosis had developed. During the 8 week low-cholesterol diet, atherosclerosis progressed in the control group with respect to lesion area and severity, whereas tesaglitazar inhibited lesion progression during this period. Tesaglitazar reduced vessel wall inflammation, as reflected by decreased monocyte adhesion and macrophage area, and modified lesions to a more stabilized phenotype, with increased smooth muscle cell content in the cap and collagen content.

Conclusions and implications:

Dual PPARα/γ agonism with tesaglitazar markedly improved the atherogenic triad by reducing triglycerides and very low-density lipoprotein-cholesterol and increasing high-density lipoprotein-cholesterol and additionally reduced cholesterol-induced vessel wall activation. These actions resulted in complete inhibition of progression and stabilization of pre-existing atherosclerotic lesions in E3L.CETP mice.  相似文献   

7.

BACKGROUND AND PURPOSE

Bones are widely innervated, suggesting an important role for the sympathetic regulation of bone metabolism, although there are controversial studies. We investigated the effects of propranolol in a model of experimental periodontal disease.

EXPERIMENTAL APPROACH

Rats were assigned as follows: animals without ligature; ligated animals receiving vehicle and ligated animals receiving 0.1, 5 or 20 mg·kg−1 propranolol. After 30 days, haemodynamic parameters were measured by cardiac catheterization. Gingival tissues were removed and assessed for IL-1β, TNF-α and cross-linked carboxyterminal telopeptides of type I collagen (CTX) by elisa, or intercellular adhesion molecule 1 (ICAM-1), receptor activator of NF-κ B ligand (RANKL) and osteoprotegerin (OPG) by Western blot analysis. Sections from the mandibles were evaluated for bone resorption. Also, we analysed the ability of propranolol to inhibit osteoclastogenesis in vitro.

RESULTS

Propranolol at 0.1 and 5 mg·kg−1 reduced the bone resorption as well as ICAM-1 and RANKL expression. However, only 0.1 mg·kg−1 reduced IL-1β, TNF-α and CTX levels as well as increased the expression of OPG, but did not alter any of the haemodynamic parameters. Propranolol also suppressed in vitro osteoclast differentiation and resorptive activity by inhibiting the nuclear factor of activated T cells (NFATc)1 pathway and the expression of tartrate-resistant acid phosphatase (TRAP), cathepsin K and MMP-9.

CONCLUSIONS AND IMPLICATIONS

Low doses of propranolol suppress bone resorption by inhibiting RANKL-mediated osteoclastogenesis as well as inflammatory markers without affecting haemodynamic parameters.  相似文献   

8.

BACKGROUND AND PURPOSE

Cell cycle regulators are regarded as essential for cardiomyocyte hypertrophic growth. Given that the β-adrenoceptor antagonist propranolol blunts cardiomyocyte hypertrophic growth, we determined whether propranolol alters the expression of cell cycle-related genes in mouse hearts subjected to pressure overload.

EXPERIMENTAL APPROACH

Pressure overload was induced by transverse aortic constriction (TAC), whereas the expression levels of 84 cell cycle-related genes were assayed by real-time PCR. Propranolol (80 mg·kg−1·day−1) was administered in drinking water for 14 days.

KEY RESULTS

Two weeks after surgery, TAC caused a 46% increase in the left ventricular weight-to-body weight (LVW/BW) ratio but no significant changes in cell cycle gene expression. Propranolol, at plasma concentrations ranging from 10 to 140 ng·mL−1, blunted the LVW/BW ratio increase in TAC mice, while significantly increasing expression of 10 cell cycle genes including mitotic cyclins and proliferative markers such as Ki67. This increase in cell cycle gene expression was paralleled by a significant increase in the number of Ki67-positive non-cardiomyocyte cells as revealed by immunohistochemistry and confocal microscopy. β-Adrenoceptor signalling was critical for cell cycle gene expression changes, as genetic deletion of β-adrenoceptors also caused a significant increase in cyclins and Ki67 in pressure overloaded hearts. Finally, we found that metoprolol, a β1-adrenoceptor antagonist, failed to enhance cell cycle gene expression in TAC mice.

CONCLUSIONS AND IMPLICATIONS

Propranolol treatment enhances cell cycle-related gene expression in pressure overloaded hearts by increasing the number of cycling non-cardiomyocyte cells. These changes seem to occur via β2-adrenoceptor-mediated mechanisms.  相似文献   

9.

Aim:

To investigate the molecular interaction of peroxisome proliferator-activated receptor γ (PPARγ) with 17β-estradiol (E) in the regulation of adipogenesis.

Methods:

Female ovariectomized (OVX) mice and differentiated 3T3-L1 adipocytes were treated with combinations of the PPARγ agonist troglitazone or E, and the variables and determinants of adipogenesis were measured using in vivo and in vitro approaches.

Results:

Troglitazone (250 mg·kg−1·d−1 for 13 weeks) decreased the size of adipocytes without the change in white adipose tissue (WAT) mass and increased the expression of adipocyte-specific genes, such as PPARγ, adipocyte fatty acid binding protein, and lipoprotein lipase, compared with OVX control mice. E (0.05 mg/pellet, sc implanted) significantly reduced WAT mass, adipocyte size, and adipose marker gene expression. When mice were concomitantly treated with troglitazone and E, E blunted the effects of troglitazone on WAT mass, adipocyte size, and adipose PPARγ target gene expression. Consistent with the in vivo data, E (10 μmol/L) treatment inhibited lipid accumulation and the expression of adipocyte-specific genes caused by troglitazone (10 μmol/L) in 3T3-L1 cells. E (10 μmol/L) also decreased troglitazone-induced PPARγ reporter activity through both estrogen receptor (ER) α and ERβ. Mechanistic studies indicated that E (0.1 μmol/L) decreased the DNA binding of PPARγ induced by troglitazone (1 μmol/L) and inhibited the recruitment of the PPARγ coactivator CREB-binding protein.

Conclusion:

These results suggest that in vivo and in vitro treatment of E interferes with the actions of PPARγ on adipogenesis by down-regulating adipogenesis-related genes, which are mediated through the inhibition of PPARγ coactivator recruitment. In addition, it is likely that the activities of PPARγ activators may be enhanced in estrogen-deficient states.  相似文献   

10.

BACKGROUND AND PURPOSE

Flavonoids are known to have anxiolytic and sedative effects mediated via actions on ionotropic GABA receptors. We sought to investigate this further.

EXPERIMENTAL APPROACH

We evaluated the effects of 2′-methoxy-6-methylflavone (2′MeO6MF) on native GABAA receptors in new-born rat hippocampal neurons and determined specificity from 18 human recombinant GABAA receptor subtypes expressed in Xenopus oocytes. We used ligand binding, two-electrode voltage clamp and patch clamp studies together with behavioural studies.

KEY RESULTS

2′MeO6MF potentiated GABA at α2β1γ2L and all α1-containing GABAA receptor subtypes. At α2β2/3γ2L GABAA receptors, however, 2′MeO6MF directly activated the receptors without potentiating GABA. This activation was attenuated by bicuculline and gabazine but not flumazenil indicating a novel site. Mutation studies showed position 265 in the β1/2 subunit was key to whether 2′MeO6MF was an activator or a potentiator. In hippocampal neurons, 2′MeO6MF directly activated single-channel currents that showed the hallmarks of GABAA Cl- currents. In the continued presence of 2′MeO6MF the single-channel conductance increased and these high conductance channels were disrupted by the γ2(381–403) MA peptide, indicating that such currents are mediated by α2/γ2-containing GABAA receptors. In mice, 2′MeO6MF (1–100 mg·kg−1; i.p.) displayed anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark tests. 2′MeO6MF induced sedative effects at higher doses in the holeboard, actimeter and barbiturate-induced sleep time tests. No myorelaxant effects were observed in the horizontal wire test.

CONCLUSIONS AND IMPLICATIONS

2′MeO6MF will serve as a tool to study the complex nature of the activation and modulation of GABAA receptor subtypes.  相似文献   

11.

Background and purpose

Changes in smooth muscle tone of the prostate gland are involved in aetiology of symptomatic prostatic hyperplasia, however the control mechanisms of prostatic smooth muscle are not well understood. Here, we have examined the role of internal Ca2+ compartments in regulating slow wave activity in the guinea pig prostate.

Experimental approach

Standard intracellular membrane potential recording techniques were used.

Key results

The majority (89%) of impaled cells displayed ‘slow wave’ activity. Cyclopiazonic acid (10 µmol·L−1) transiently depolarized (3–9 mV) the membrane potential of the prostatic stroma and transiently increased slow wave frequency. Thereafter, slow wave frequency slowly decreased over 20–30 min. Ryanodine transiently increased slow wave frequency, although after 30 min exposure slow wave frequency and time course returned to near control values. Caffeine (1 mmol·L−1) reduced slow wave frequency, accompanied by membrane depolarization of about 8 mV. Blockade of inositol trisphosphate receptor (IP3R)-mediated Ca2+ release with 2-aminoethoxy-diphenylborate (60 µmol·L−1) or Xestospongin C (3 µmol·L−1) or inhibiting phospholipase C and IP3 formation using U73122 (5 µmol·L−1) or neomycin (1 and 4 mmol·L−1) reduced slow wave frequency, amplitude and duration. The mitochondrial uncouplers, p-trifluoromethoxy carbonyl cyanide phenyl hydrazone (1–10 µmol·L−1), carbonyl cyanide m-chlorophenylhydrazone (1–3 µmol·L−1) or rotenone (10 µmol·L−1), depolarized the membrane (8–10 mV) before abolishing electrical activity.

Conclusion and implications

These results suggest that slow wave activity was dependent on the cyclical release of Ca2+ from IP3-controlled internal stores and mitochondria. This implies that intracellular compartments were essential in the initiation and/or maintenance of the regenerative contractile activity in the guinea pig prostate gland.  相似文献   

12.

BACKGROUND AND PURPOSE

P2X receptors mediate sympathetic control and autoregulation of the renal circulation triggering contraction of renal vascular smooth muscle cells (RVSMCs) via an elevation of intracellular Ca2+ concentration ([Ca2+]i). Although it is well-appreciated that the myocyte Ca2+ signalling system is composed of microdomains, little is known about the structure of the [Ca2+]i responses induced by P2X receptor stimulation in vascular myocytes.

EXPERIMENTAL APPROACHES

Using confocal microscopy, perforated-patch electrical recordings, immuno-/organelle-specific staining, flash photolysis and RT-PCR analysis we explored, at the subcellular level, the Ca2+ signalling system engaged in RVSMCs on stimulation of P2X receptors with the selective agonist αβ-methylene ATP (αβ-meATP).

KEY RESULTS

RT-PCR analysis of single RVSMCs showed the presence of genes encoding inositol 1,4,5-trisphosphate receptor type 1(IP3R1) and ryanodine receptor type 2 (RyR2). The amplitude of the [Ca2+]i transients depended on αβ-meATP concentration. Depolarization induced by 10 µmol·L−1αβ-meATP triggered an abrupt Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum enriched with IP3Rs but poor in RyRs. Depletion of calcium stores, block of voltage-gated Ca2+ channels (VGCCs) or IP3Rs suppressed the sub-plasmalemmal [Ca2+]i upstroke significantly more than block of RyRs. The effect of calcium store depletion or IP3R inhibition on the sub-plasmalemmal [Ca2+]i upstroke was attenuated following block of VGCCs.

CONCLUSIONS AND IMPLICATIONS

Depolarization of RVSMCs following P2X receptor activation induces IP3R-mediated Ca2+ release from sub-plasmalemmal (‘junctional’) sarcoplasmic reticulum, which is activated mainly by Ca2+ influx through VGCCs. This mechanism provides convergence of signalling pathways engaged in electromechanical and pharmacomechanical coupling in renal vascular myocytes.  相似文献   

13.

BACKGROUND AND PURPOSE

Troglitazone (Tro), rosiglitazone (Rosi) and pioglitazone (Pio) are anti-diabetic thiazolidinediones that function as ligands for peroxisome proliferator-activated receptor γ (PPARγ); however, Tro has been withdrawn from the market due to liver toxicity issues. Mitochondrial dysfunction induced by Tro has been suggested to be an important mechanism behind its cytotoxicity. Constitutively active nuclear hormone receptors, oestrogen-related receptor α and γ are thought to regulate mitochondrial mass and oxidative phosphorylation together with their co-activators PPARγ co-activator-1α and -1β (PGC-1α and PGC-1β). Hence, in this study, we investigated whether Tro affects the expression and activity levels of these regulators.

EXPERIMENTAL APPROACH

Cellular viability was measured by an ATP-based assay. Mitochondrial mass and reactive oxygen species (ROS) were quantified by two different fluorogenic probes. Apoptosis was measured by an Annexin-V-based kit. Gene expression at the levels of mRNA and protein was measured by quantitative RT-PCR and Western analysis. Over-expression of PGC-1α was mediated by an adenovirus.

KEY RESULTS

Tro, but not Rosi or Pio, selectively stimulated PGC-1α protein degradation. As a result, Tro reduced mitochondrial mass, and superoxide dismutases 1 and 2 expressions, but induced ROS to initiate apoptosis. Using a ubiquitin–proteasome inhibitor MG132, it was established that blocking PGC-1α degradation partially suppressed the reduction of mitochondrial mass. Importantly, over-expressing PGC-1α partially restored the Tro-suppressed mitochondrial mass and attenuated the cytotoxic effects of Tro.

CONCLUSIONS AND IMPLICATIONS

Collectively, these results suggest that PGC-1α degradation is an important mechanism behind the cytotoxic effects of Tro in the liver.  相似文献   

14.

BACKGROUND AND PURPOSE

The aggregation of α-synuclein is connected to the pathology of Parkinson''s disease and prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein in vitro. The aim of this study was to investigate the effects of a PREP inhibitor, KYP-2047, on α-synuclein aggregation in cell lines overexpressing wild-type or A30P/A53T mutant human α-syn and in the brains of two A30P α-synuclein transgenic mouse strains.

EXPERIMENTAL APPROACH

Cells were exposed to oxidative stress and then incubated with the PREP inhibitor during or after the stress. Wild-type or transgenic mice were treated for 5 days with KYP-2047 (2 × 3 mg·kg−1 a day). Besides immunohistochemistry and thioflavin S staining, soluble and insoluble α-synuclein protein levels were measured by Western blot. α-synuclein mRNA levels were quantified by PCR. The colocalization of PREP and α-synuclein,and the effect of KYP-2047 on cell viability were also investigated.

KEY RESULTS

In cell lines, oxidative stress induced a robust aggregation of α-synuclein,and low concentrations of KYP-2047 significantly reduced the number of cells with α-synuclein inclusions while abolishing the colocalization of α-synuclein and PREP. KYP-2047 significantly reduced the amount of aggregated α-synuclein,and it had beneficial effects on cell viability. In the transgenic mice, a 5-day treatment with the PREP inhibitor reduced the amount of α-synuclein immunoreactivity and soluble α-synuclein protein in the brain.

CONCLUSIONS AND IMPLICATIONS

The results suggest that the PREP may play a role in brain accumulation and aggregation of α-synuclein, while KYP-2047 seems to effectively prevent these processes.  相似文献   

15.

BACKGROUND AND PURPOSE

Recently, we identified etodolac as a possible ligand for the human intestinal proton-couple peptide transporter (hPEPT1). This raised the possibility that other non-steroidal anti-inflammatory drugs, and especially ibuprofen, could also interact with hPEPT1. Here, we have assessed the interactions of ibuprofen with hPEPT1.

EXPERIMENTAL APPROACH

The uptake of [14C]Gly-Sar, [3H]Ibuprofen and other radio-labelled compounds were investigated in Madin–Darby canine kidney cells (MDCK)/hPEPT1, MDCK/Mock, LLC-PK1 or Caco-2 cells. The transepithelial transport of ibuprofen and hPEPT1 substrates was investigated in Caco-2 cell monolayers.

KEY RESULTS

Ibuprofen concentration dependently inhibited hPEPT1-mediated uptake of Gly-Sar in MDCK/hPEPT1 cells (Kiapp= 0.4 mM) but uptake of ibuprofen in Caco-2 cells and MDCK/hPEPT1 cells was not inhibited by hPEPT1 substrates. The maximum uptake rate for Gly-Sar uptake was reduced from 522 pmol·min−1·cm−2 to 181 pmol·min−1·cm−2 and 78 pmol·min−1·cm−2 in the presence of 0.5 mM and 1 mM ibuprofen, respectively. The interaction between ibuprofen and hPEPT1 was thus non-competitive. In LLC-PK1 cells, ibuprofen (1 mM) did not influence the transporter-mediated uptake of glycine or α-methyl-D-glycopyranoside. In Caco-2 cell monolayers the absorptive transport of δ-aminolevulinic acid was reduced by 23% and 48% by ibuprofen (1 and 10 mM), respectively. Likewise the transport of Gly-Sar was reduced by 23% in the presence of ibuprofen (1 mM).

CONCLUSIONS AND IMPLICATIONS

Ibuprofen is a non-competitive inhibitor of hPEPT1. As ibuprofen reduced the transepithelial transport of δ-aminolevulinic acid, drug–drug interactions between ibuprofen and hPEPT1 drug substrates at their site of absorption are possible if administered together.  相似文献   

16.

BACKGROUND AND PURPOSE

The use of ±3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’) is associated with cardiovascular complications and hyperthermia.

EXPERIMENTAL APPROACH

We assessed the effects of the α1- and β-adrenoceptor antagonist carvedilol on the cardiostimulant, thermogenic and subjective responses to MDMA in 16 healthy subjects. Carvedilol (50 mg) or placebo was administered 1 h before MDMA (125 mg) or placebo using a randomized, double-blind, placebo-controlled, four-period crossover design.

KEY RESULTS

Carvedilol reduced MDMA-induced elevations in blood pressure, heart rate and body temperature. Carvedilol did not affect the subjective effects of MDMA including MDMA-induced good drug effects, drug high, drug liking, stimulation or adverse effects. Carvedilol did not alter the plasma exposure to MDMA.

CONCLUSIONS AND IMPLICATIONS

α1- and β-Adrenoceptors contribute to the cardiostimulant and thermogenic effects of MDMA in humans but not to its psychotropic effects. Carvedilol could be useful in the treatment of cardiovascular and hyperthermic complications associated with ecstasy use.  相似文献   

17.

BACKGROUND AND PURPOSE

rhuMAb Beta7 is a humanized anti-human β7 monoclonal antibody currently in phase I in inflammatory bowel disease. rhuMAb Beta7 binds the β7 subunit of the integrins α4β7 and αEβ7, blocking interaction with their ligands. These integrins play key roles in immune cell homing to and retention in mucosal sites, and are associated with chronic inflammatory diseases of the gastrointestinal tract. The goal of this study was to evaluate the mucosal specificity of rhuMAb Beta7.

EXPERIMENTAL APPROACH

We assessed the effect of murine anti-Beta7 on lymphocyte homing in mouse models of autoimmune disease. We also compared the effect of rhuMAb Beta7 on circulating mucosal-homing versus peripheral-homing T cells in naïve non-human primates.

KEY RESULTS

In cynomolgus monkeys, occupancy of β7 integrin receptors by rhuMAb Beta7 correlated with an increase in circulating β7+ mucosal-homing lymphocytes, with no apparent effect on levels of circulating β7- peripheral-homing lymphocytes. rhuMAb Beta7 also inhibited lymphocyte homing to the inflamed colons of severe combined immunodeficient mice in CD45RBhigh CD4+ T-cell transfer models. Consistent with a lack of effect on peripheral homing, in a mouse model of experimental autoimmune encephalomyelitis, anti-β7 treatment resulted in no amelioration of CNS inflammation.

CONCLUSIONS AND IMPLICATIONS

The results presented here suggest that rhuMAb Beta7 selectively blocks lymphocyte homing to the gastrointestinal tract without affecting lymphocyte trafficking to non-mucosal tissues. rhuMAb Beta7 provides a targeted therapeutic approach with the potential for a more attractive benefit : risk ratio than currently available inflammatory bowel disease therapies.  相似文献   

18.

Background and purpose:

The transient receptor potential (TRP) channels, transient receptor potential melastatin-1 (TRPM8) and transient receptor potential ankyrin-1 (TRPA1), are expressed in subpopulations of sensory neurones and have been proposed to mediate innocuous and noxious cold sensation respectively. The aim of this study was to compare TRPM8 and TRPA1 modulation of glutamatergic afferent transmission within the spinal dorsal horn.

Experimental approach:

Whole cell patch clamp recordings were made from rat spinal cord slices in vitro to examine the effect of TRP agonists and temperature on glutamatergic excitatory postsynaptic currents (EPSCs).

Key results:

Icilin (3 or 100 µmol·L−1), menthol (200 µmol·L−1) and capsaicin (1 µmol·L−1) reduced the amplitude of primary afferent evoked EPSCs in subpopulations of lamina I and II neurones. In a subpopulation of superficial neurones, innocuous cold (threshold 29°C), 3 µmol·L−1 icilin (EC50 1.5 µmol·L−1) and menthol (EC50 263 µmol·L−1) increased the rate of spontaneous miniature EPSCs. In the majority of lamina I and II neurones, 100 µmol·L−1 icilin (EC50 79 µmol·L−1), allyl isothiocyanate (EC50 226 µmol·L−1), cinnamaldehyde (EC50 38 µmol·L−1) and capsaicin (1 µmol·L−1) increased miniature EPSC rate. The response to 100 µmol·L−1, but not 3 µmol·L−1 icilin, was abolished by ruthenium red, while neither was affected by iodoresiniferatoxin. Responsiveness to 3 µmol·L−1, but not to 100 µmol·L−1 icilin, was highly predictive of innocuous cold responsiveness. Neurones responding to 3 µmol·L−1 icilin and innocuous cold were located more superficially than those responding to 100 µmol·L−1 icilin.

Conclusions and implications:

Activation of TRPM8 and TRPA1 presynaptically modulated glutamatergic transmission onto partially overlapping but distinct populations of superficial dorsal horn neurones. Spinal TRPM8 and TRPA1 channels may therefore provide therapeutic targets in cold hyperesthesia.  相似文献   

19.

BACKGROUND AND PURPOSE

While maintaining cardiac performance, chronic β-adrenoceptor activation eventually exacerbates the progression of cardiac remodelling and failure. We examined the adverse signalling pathways mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and reactive oxygen species (ROS) after chronic β2-adrenoceptor activation.

EXPERIMENTAL APPROACH

Mice with transgenic β2-adrenoceptor overexpression (β2-TG) and non-transgenic littermates were either untreated or treated with an antioxidant (N-acetylcysteine, NAC) or NADPH oxidase inhibitors (apocynin, diphenyliodonium). Levels of ROS, phosphorylated p38 mitogen-activated protein kinase (MAPK), pro-inflammatory cytokines and collagen content in the left ventricle (LV) and LV function were measured and compared.

KEY RESULTS

β2-TG mice showed increased ROS production, phosphorylation of p38 MAPK and heat shock protein 27 (HSP27), expression of pro-inflammatory cytokines and collagen, and progressive ventricular dysfunction. β2-adrenoceptor stimulation similarly increased ROS production and phosphorylation of p38 MAPK and HSP27 in cultured cardiomyocytes. Treatment with apocynin, diphenyliodonium or NAC reduced phosphorylation of p38 MAPK and HSP27 in both cultured cardiomyocytes and the LV of β2-TG mice. NAC treatment (500 mg·kg−1·day−1) for 2 weeks eliminated the up-regulated expression of pro-inflammatory cytokines and collagen in the LV of β2-TG mice. Chronic NAC treatment to β2-TG mice from 7 to 10 months of age largely prevented progression of ventricular dilatation, preserved contractile function (fractional shortening 37 ± 5% vs. 25 ± 3%, ejection fraction 52 ± 5% vs. 32 ± 4%, both P < 0.05), reduced cardiac fibrosis and suppressed matrix metalloproteinase activity.

CONCLUSION AND IMPLICATIONS

β2-adrenoceptor stimulation provoked NADPH oxidase-derived ROS production in the heart. Elevated ROS activated p38 MAPK and contributed significantly to cardiac inflammation, remodelling and failure.

LINKED ARTICLE

This article is commented on by Di Lisa et al., pp. 1009–1011 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.01130.x  相似文献   

20.

BACKGROUND AND PURPOSE

Expression of α7 nicotinic acetylcholine receptors (nAChRs) and their role in exocytosis have not yet been examined in human chromaffin cells.

EXPERIMENTAL APPROACH

To characterize these receptors and investigate their function, patch-clamp experiments were performed in human chromaffin cells from organ donors.

KEY RESULTS

The nicotinic current provoked by 300 µM ACh in voltage-clamped cells was blocked by the nicotinic receptor antagonists α-bungarotoxin (α-Bgtx; 1 µM; 6 ± 1.7%) or methyllycaconitine (MLA; 10 nM; 7 ± 1.6%), respectively, in an irreversible and reversible manner, without affecting exocytosis. Choline (10 mM) pulses induced a biphasic current with an initial quickly activated (5.5 ± 0.4 ms rise time) and inactivated component (8.5 ± 0.4 ms time constant) (termed α7), which was blocked by α-Bgtx or MLA, followed by a slower component (non-α7). α7 nAChR currents were dissected by blocking the non-α7 nAChR current component of the ACh and choline response with the α6* nAChR blocker α-conotoxin (α-Ctx) MII[S4A, E11A, L15A]. PNU-282987, an α7 nAChR-specific agonist, elicited rapidly activated and rapidly inactivated currents. α7 nAChR-positive allosteric modulators, such as 5-hydroxyindole (1 mM) and PNU-120596 (10 µM), potentiated responses that were blocked by α-Bgtx or MLA. Exocytosis was evoked by depolarization-elicited α7 nAChR currents, using choline in the presence of α-Ctx MII[MS4A, E11A, L15A] or PNU-282987 as agonists.

CONCLUSIONS AND IMPLICATIONS

Our electrophysiological recordings of pure α7 nAChR currents elicited by rapid application of agonists demonstrated that functional α7 nAChRs are expressed and contribute to depolarization-elicited exocytosis in human chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号