首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
This study was conducted to define the regulatory mechanisms underlying stress-induced decreases in food intake and weight gain. Rats received a single or 4 daily injections of dexamethasone (0.1 or 1 mg/kg). Food intake and weight gain were recorded, and plasma leptin, brain contents of serotonin (5-hydroxytryptamine; 5-HT), 5-hydroxy-indole-acetic acid (5-HIAA) and the raphe expression of tryptophan hydroxylase (TPH), monoamine oxidase A (MAO-A) and 5-HT reuptake transporter (5-HTT) genes were examined. A single injection of dexamethasone did not acutely affect food intake, but cumulative food intake and weight gain were suppressed dose-dependently by daily injections of dexamethasone. Both a single and repeated injections of dexamethasone elevated plasma leptin in a dose dependent manner. 5-HT contents in the hypothalamus was decreased, but 5-HIAA increased, both by a single and repeated dexamethasone. A single injection of dexamethasone did not affect mRNA expressions of TPH, MAO-A and 5-HTT genes, but repeated dexamethasone increased them in the dorsal raphe nucleus. These results suggest that plasma leptin may play a role in dexamethasone-induced anorexia. Additionally, increased expression of MAO-A and 5-HTT genes by repeated dexamethasone appears to be implicated in decreases of the brain 5-HT contents.  相似文献   

3.
金航  张惠云 《中国药房》2012,(7):577-580
目的:研究经前期综合征(PMS)肝气郁证大鼠血清对大鼠原代海马神经元的5-羟色胺1A受体(5-HT1AR)信号转导通路相关基因5-羟色胺转运蛋白(SERT)、单胺氧化酶(MAO)-A、MAO-B表达的影响。方法:采用慢性束缚应激法复制PMS肝气郁证大鼠模型;高效液相色谱(HPLC)法检测血清中5-HT的含量;运用RT-PCR半定量和Westernblot法检测正常、模型、经前舒干预大鼠的血清对海马神经元中5-HT1AR、SERT、MAO-A、MAO-B表达的影响。结果:加入模型大鼠血清的大鼠海马原代神经细胞中MAO-A表达较正常大鼠显著升高(P<0.05),5-HT1AR、SERT表达显著降低(P<0.05),MAO-B表达无显著性差异。而加入经前舒干预大鼠血清后,5-HT1AR、SERT、MAO-A表达均趋于正常。结论:PMS肝气郁证的发生与海马神经元中MAO-A、SERT、5-HT1AR表达异常相关,可能是PMS肝气郁证发病的微观机制。  相似文献   

4.
Using a model of depression in which chronic social stress induces depressive-like symptoms, we investigated effects of the selective serotonin-reuptake inhibitor (SSRI) citalopram on gene expression in the dorsal raphe nucleus of male rats. Expression of tryptophan hydroxylase (TPH) protein was found to be upregulated by the stress and normalized by citalopram, while mRNAs for genes TPH 1 and 2 were differentially affected. Citalopram had no effect on serotonin transporter mRNA but reduced serotonin-1A autoreceptor mRNA in stressed animals. The SSRI prevented the stress-induced upregulation of mRNA for CREB binding protein, synaptic vesicle glycoprotein 2b and the glial N-myc downstream-regulated gene 2, but increased mRNA for neuron-specific enolase (NSE) in both stressed and unstressed animals having no effect on stress-induced upregulation of NSE protein. These findings demonstrate that in the dorsal raphe nucleus of chronically stressed rats, citalopram normalizes TPH expression and blocks stress effects on distinct genes related to neurotransmitter release and neuroplasticity.  相似文献   

5.
To evaluate the consequences of inactivation of the serotonin transporter (SERT) gene on 5-HT homeostasis and function, 5-HT synthesis and turnover rates were measured using the decarboxylase inhibition method in multiple brain regions (frontal cortex, striatum, brainstem, hippocampus and hypothalamus) from mice with a genetic disruption of SERT. 5-HT synthesis rates were increased 30-60% in the different brain regions of SERT -/- mice compared to littermate +/+ control mice despite 55-70% reductions in tissue 5-HT concentrations. Brain regions that possessed a greater capacity to increase synthesis and turnover (frontal cortex, striatum) demonstrated lesser reductions in tissue 5-HT. Female SERT -/- mice had greater increases (79%) in brain 5-HT synthesis than male -/- mice did (25%), a finding associated with higher brain tryptophan concentrations in females. Despite increased 5-HT synthesis, there was no change in either TPH2 or TPH1 mRNA levels or in maximal in vitro TPH activity in the brainstem of SERT -/- mice. Catecholamine homeostasis as reflected in brain tissue concentrations and in synthesis and turnover of dopamine and norepinephrine was unchanged in SERT -/- mice. Taken together, the results demonstrate a markedly altered homeostatic situation in SERT -/- mice that lack 5-HT reuptake, resulting in markedly depleted tissue stores that are inadequately compensated for by increased 5-HT synthesis, with brain region and gender specificity observed.  相似文献   

6.
The selective estrogen receptor modulator tamoxifen is widely used in breast cancer therapy though its use is associated with an elevated risk of endometrial carcinoma. An organotypic culture model was employed here to examine the effects of tamoxifen and raloxifene, a related compound with no known adverse uterine effects, on epithelial cells of the premenopausal human endometrium. Changes in the expression levels of the proliferation marker Ki67, and estrogen and progesterone receptors were evaluated. No change in the Ki67 index compared to untreated controls was detected in cultures exposed to tamoxifen or tamoxifen+estradiol. In response to tamoxifen, the level of progesterone receptor-expressing organoids was shown to vary markedly between individual samples, whereas no change in estrogen receptor expression could be demonstrated. A significant decrease in Ki67 expression was observed in raloxifene-exposed cultures. Raloxifene or raloxifene+estradiol had no effect on progesterone receptor expression. The expression of estrogen receptor was markedly inhibited in response to raloxifene or raloxifene+estradiol in all but two samples displaying an intense estrogen receptor labelling. The present observations add to current clinical data on the respective estrogen receptor agonist and antagonist activities of tamoxifen and raloxifene on the human uterus by providing novel insights into the interindividual variation in cellular responses. Our organotypic model may have uses as an alternative to animal experimentation in preclinical screening of the endometrial effects of selective estrogen receptor modulators and may serve as a tool in personalized medicine by identifying patients with an increased risk of developing endometrial pathologies.  相似文献   

7.
Studies of estrogen therapy in postmenopausal women provide evidence of an effect of sex hormones on cognitive function. Estrogen has demonstrated some utility in the prevention of normal, age-related decline in cognitive functions, especially in memory. The potential therapeutic utility of estrogens in schizophrenia is increasingly being recognized. Raloxifene, a selective estrogen receptor modulator (SERM), appears to act similarly to conjugated estrogens on dopamine and serotonin brain systems, and may be a better option since it lacks the possible negative effects of estrogen on breast and uterine tissue. We assessed the utility of raloxifene as an adjuvant treatment for cognitive symptoms in postmenopausal women with schizophrenia in a 12-week, double-blind, randomized, placebo-controlled study. Patients were recruited from both the inpatient and outpatient departments. Thirty-three postmenopausal women with schizophrenia (DSM-IV) were randomized to receive either adjuvant raloxifene (16 women) or adjuvant placebo (17 women) for three months. The main outcome measures were: Memory, attention and executive functions. Assessment was conducted at baseline and week 12. The total sample is homogenous with respect to: age, years of schooling, illness duration, baseline symptomatology and pharmacological treatment. The addition of raloxifene (60 mg) to regular antipsychotic treatment showed: we found significant differences in some aspects of memory and executive function in patients treated with raloxifene. This improvement does not correlate with clinical improvement. The use of raloxifene as an adjuvant treatment in postmenopausal women with schizophrenia seems to be useful in improving cognitive symptoms.  相似文献   

8.
We studied in vivo expression of the serotonin transporter (SERT) protein after 3,4-methylenedioxymethamphetamine (MDMA), p-chloroamphetamine (PCA), or fenfluramine (FEN) treatments, and compared the effects of substituted amphetamines to those of 5,7-dihydroxytryptamine (5,7-DHT), an established serotonin (5-HT) neurotoxin. All drug treatments produced lasting reductions in 5-HT, 5-HIAA, and [(3)H]paroxetine binding, but no significant change in the density of a 70 kDa band initially thought to correspond to the SERT protein. Additional Western blot studies, however, showed that the 70 kDa band did not correspond to the SERT protein, and that a diffuse band at 63-68 kDa, one that had the anticipated regional brain distribution of SERT protein (midbrain>striatum>neocortex>cerebellum), was reduced after 5,7-DHT and was absent in SERT-null animals, was decreased after MDMA, PCA, or FEN treatments. In situ immunocytochemical (ICC) studies with the same two SERT antisera used in Western blot studies showed loss of SERT-immunoreactive (IR) axons after 5,7-DHT and MDMA treatments. In the same animals, tryptophan hydroxylase (TPH)-IR axon density was comparably reduced, indicating that serotonergic deficits after substituted amphetamines differ from those in SERT-null animals, which have normal TPH levels but, in the absence of SERT, develop apparent neuroadaptive changes in 5-HT metabolism. Together, these results suggest that lasting serotonergic deficits after MDMA and related drugs are unlikely to represent neuroadaptive metabolic responses to changes in SERT trafficking, and favor the view that substituted amphetamines have the potential to produce a distal axotomy of brain 5-HT neurons.  相似文献   

9.
The effects of ZnSO(4) on mitochondrial monoamine oxidase (MAO) activity in monkey brain were compared with those in rat and rabbit, in vitro. After preincubation at 25 degrees C for 20 min with 1 microM ZnSO(4), MAO-A activity in monkey brain was about 50% using serotonin (5-HT) as a substrate, and the inhibition was proportional to the concentration of ZnSO(4). However, ZnSO(4) had no effect on MAO-B activity in monkey brain using beta-phenylethylamine (beta-PEA) as a substrate. The inhibition by ZnSO(4) of MAO-A activity was competitive and reversible. CdSO(4) also inhibits MAO-A, but not MAO-B in monkey brain mitochondria. ZnSO(4) did not inhibit either MAO-A or MAO-B activity in rat and rabbit brain mitochondria. These results indicate that the inhibiting action of Zn(2+) differs depending on animal species. In monkey brain mitochondria, MAO-A was highly sensitive to Zn(2+) and MAO-B was less sensitive. These results also suggest that Zn(2+) may regulate the level of catecholamine content in monkey brain.  相似文献   

10.
Suicide and depression are associated with reduced serotonergic neurotransmission. In suicides, there is a reduction in serotonin transporter (SERT) sites and an increase in postsynaptic 5-HT(1A) receptors in localized regions of the prefrontal cortex. In depression, there is a diffuse decrease in SERT binding throughout the dorsoventral extent of the prefrontal cortex. Serotonergic innervation of the prefrontal cortex arises predominantly from neurons in the brainstem dorsal raphe nucleus (DRN). We, therefore, examined postmortem SERT binding and mRNA expression, as well as 5-HT(1A) autoreceptor binding in the DRN of 10 matched pairs of controls and depressed suicide victims. The concentration of SERT sites, SERT mRNA, and 5-HT(1A) binding was not different between controls and suicides (p >.05). In the DRN of suicides, the volume of tissue defined by 5-HT(1A) binding was 40% smaller than controls. An index of the total number of 5-HT(1A) receptors (receptor binding x volume of receptor distribution) was 43.3% lower in the DRN of suicides, compared with controls. The suicide group had 54% fewer DRN neurons expressing SERT mRNA compared with controls. In the serotonin neurons that expressed the SERT gene, expression per neuron was greater in suicides. Less total 5-HT(1A) and SERT binding is consistent with results of in vivo studies in depression. Less feedback inhibition of serotonin DRN firing via 5-HT(1A) autoreceptors and enhancement of serotonin action due to less uptake of serotonin, is consistent with compensatory changes in response to hypofunction in depressed suicides.  相似文献   

11.
The purpose of this study is to examine whether raloxifene, one of the selective estrogen receptor modulators, could improve myocardial ischemia and to assess the mechanisms involved. In open-chest beagle dogs anesthetized by intravenous infusion of sodium pentobarbital, the left anterior descending coronary artery (LAD) was perfused from the left carotid artery through an extracorporeal bypass tube. Raloxifene was infused into the LAD through the bypass tube under either ischemic or non-ischemic conditions. In the non-ischemic heart, raloxifene had no effect on coronary blood flow, fractional shortening, and myocardial metabolism. However, raloxifene caused an acute increase in both coronary blood flow and fractional shortening, and also improved myocardial anaerobic metabolism in the ischemic heart. These effects were partially attenuated by pretreatment with either L-NAME or wortmannin and were completely abolished by ICI182780 (an estrogen receptor antagonist) or L-NAME plus charybdotoxin (a blocker of Ca-activated K channels). Raloxifene also increased both Akt activity and the NO level, with these changes being completely abrogated by pretreatment with wortmannin. These results demonstrated that raloxifene improves coronary perfusion, cardiac contractility, and myocardial metabolism by release of NO and opening of Ca-activated K channels in the ischemic heart, and that NO production is mediated by the phosphatidylinositol 3-kinase/Akt pathway.  相似文献   

12.
Major depressive disorder (MDD) and suicide are associated with deficient serotonergic neurotransmission. Tryptophan hydroxylase (TPH) is the rate-limiting biosynthetic enzyme for serotonin. Previously, we reported elevated levels of TPH protein in the dorsal raphe nucleus (DRN) of depressed suicides and now examine expression of neuronal TPH2 mRNA in a cohort of matched controls and depressed suicides (n = 11 pairs). DRN TPH2 mRNA was measured by densitometric analysis of autoradiograms from in situ hybridization histochemistry experiments. TPH2 mRNA is confirmed as the raphe-specific isoform of TPH in human brain, and is expressed in neurons throughout the anteroposterior extent of the DRN and median raphe nucleus (MRN). TPH2 mRNA expression correlates with TPH protein distribution in the DRN, and has a negative correlation with age. In drug-free suicides, TPH2 expression is 33% higher in the DRN and 17% higher in the MRN as compared to matched nonpsychiatric controls. Higher levels of TPH2 mRNA were found throughout the entire extent of the rostrocaudal axis of the DRN, and were not specific to any single subnucleus. Higher TPH2 mRNA expression may explain more TPH protein observed in depressed suicides and reflect a homeostatic response to deficient brain serotonergic transmission.  相似文献   

13.
14.
Raloxifene, a nonsteroidal benzothiophene, is a second-generation selective estrogen receptor modulator (SERM) that is an antiresorptive agent. Raloxifene is a non-hormonal agent that binds to the estrogen receptor and results in estrogen agonist effects on bone and the cardiovascular system and estrogen antagonist effects on endometrial and breast tissue. Raloxifene has diverse pharmacodynamic properties due to its differential interactions with the estrogen receptor and tissue selectivity. Raloxifene was the first SERM to be approved for the prevention and treatment of postmenopausal osteoporosis. In this review, we conducted a systematic search of the literature for trials that evaluated the following outcomes: bone density, fractures, quality of life, cardiovascular outcomes, safety and adverse events. Raloxifene at the approved dosage of 60 mg/day increased lumbar spine bone density by 2.5% relative to control after 2 years of therapy. A large fracture prevention trial confirmed that treatment with raloxifene 60 mg/day for 3 years decreased the relative risk of incident vertebral fractures by 30-50% in women with prevalent fractures or osteoporosis. Extraskeletal effects of raloxifene include a reduction in total cholesterol and low density lipoprotein cholesterol levels. Assessment of the safety profile revealed that raloxifene was not associated with endometrial hyperplasia and that there was a 72% reduction in the incidence of invasive breast cancer in raloxifene-treated postmenopausal women with osteoporosis. Adverse events associated with raloxifene included an increase in the absolute risk of venous thromboembolism and an increase in the risk of hot flashes and leg cramps. In comparison to other osteoporosis therapies, raloxifene has a lesser impact on bone mineral density, a similar effect on the occurrence of vertebral fractures, but no effect on the frequency of non-vertebral fractures. Raloxifene can be recommended for the prevention of vertebral fractures in women with osteopenia/osteoporosis who are not at high risk of non-vertebral fractures and who do not have a past history of venous thromboembolism.  相似文献   

15.
Raloxifene hydrochloride binds to the estrogen receptor and shows tissue-selective effects; thus, it belongs to a class of drugs recently described as selective estrogen receptor modulators (SERMs). Tissue selectivity of raloxifene may be achieved through several mechanisms: the ligand structure, interaction of the ligand with different receptor subtypes in various tissues, and intracellular events after ligand binding. Raloxifene has estrogen-agonist effects on bone and lipids and estrogen antagonist effects on the breast and uterus. In addition to its well established effects on osteoporosis, recent preclinical and clinical findings suggest that raloxifene also possesses beneficial effects on the cardiovascular system. These findings indicated that raloxifene may have cardioprotective properties without an increased risk of cancer or other side effects. Raloxifene has been shown to reduce total and low-density lipoprotein cholesterol concentrations in plasma, an effect similar to that produced by estrogens. Unlike estrogens, however, raloxifene does not increase high-density lipoprotein cholesterol and triglyceride levels in plasma. Endothelium is thought to play an important role in the genesis of atherosclerosis. Several lines of evidence suggest that an intervention with endothelial function might influence the progression of coronary disease and the incidence of cardiovascular events. Raloxifene increases the nitric oxide/endothelin-1 ratio, and improves endothelium-dependent vasomotion in post-menopausal women to the same extent as estrogens. Furthermore, in two randomized trials on post-menopausal women raloxifene reduced homocysteine levels, another independent risk factor for the development of cardiovascular disease. Although estrogens remain the drugs of choice in the hormonal therapy of most postmenopausal women, raloxifene may represent and alternative in women who are at risk of coronary artery disease.  相似文献   

16.
The effects of acute and chronic administration of clorgyline, an irreversible inhibitor of monoamine oxidase type A (MAO-A), on the deaminated metabolites of norepinephrine, dopamine and serotonin were examined in rhesus monkey cerebrospinal fluid (CSF). Acute clorgyline treatment resulted in highly significant, dose-dependent reductions in 3-methoxy-4-hydroxyphenylglycol (MHPG) of 50% (1 mg/kg) and 68% (2 mg/kg) compared to pretreatment values. Chronic clorgyline administration (0.25 to 0.5 mg/kg X 24 days) resulted in a 67% reduction in CSF MHPG. In contrast, the concentrations of 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) were less affected by acute clorgyline administration, being reduced significantly only after the 2 mg/kg dose, which lowered 5-HIAA 27% and HVA 48%. Chronic clorgyline treatment had no significant effect on the CSF concentrations of HVA and 5-HIAA. These data, which suggest that MAO-A inhibition by clorgyline in vivo is more closely associated with changes in the noradrenergic than the serotonergic or dopaminergic systems in nonhuman primates, are in general agreement with the effects of clorgyline on CSF and urinary biogenic amine metabolites in man. They differ from several in vitro studies which indicate a primary role of MAO-A in the metabolism of serotonin and of MAO-B in norepinephrine degradation in primate brain. The discrepancies may reflect modulating effects of synaptic feedback mechanisms on the actions of clorgyline in vivo or perhaps a failure of CSF metabolites to adequately reflect brain amine metabolism changes. The lack of change in platelet MAO-B activity during clorgyline treatment together with the minimal changes in HVA concentrations indicate that the selective inhibitory effects of clorgyline on MAO-A were maintained during chronic administration of low drug doses.  相似文献   

17.
18.
Evidence that the widely used methamphetamine analog MDMA (3,4-methylenedioxymethamphetamine, ecstasy) might damage brain serotonin neurones in humans is derived from imaging investigations showing variably decreased binding of radioligands to the serotonin transporter (SERT), a marker of serotonin neurones. However, in humans, it is not known whether low SERT binding reflects actual loss of SERT protein itself. As this question can only be answered in post-mortem brain, we measured protein levels of SERT and that of the rate-limiting serotonin-synthesizing enzyme tryptophan hydroxylase (TPH) in autopsied brain of a high-dose MDMA user. As compared with control values, SERT protein levels were markedly (-48% to -58%) reduced in striatum (caudate, putamen) and occipital cortex and less affected (-25%) in frontal and temporal cortices, whereas TPH protein was severely decreased in caudate and putamen (-68% and -95%, respectively). The magnitude of the striatal SERT protein reduction was greater than the SERT binding decrease typically reported in imaging studies. Although acknowledging limitations of a case study, these findings extend imaging data based on SERT binding and suggest that high-dose MDMA exposure could cause loss of two key protein markers of brain serotonin neurones, a finding compatible with either physical damage to serotonin neurones or downregulation of components therein.  相似文献   

19.
The type A monoamine oxidase (MAO)-inhibiting antidepressant clorgyline (1 mg/kg/24 days) administered to rhesus monkeys increased night-time cerebrospinal fluid (CSF) melatonin concentrations 3-fold and day-time maltonin values 5-fold. Other circadian parameters of melatonin release, including the peak time and duration of nocturnal melatonin elevation measured during continuous CSF collection periods of 90 min duration over 24-h cycles, were unaffected by clorgyline. While pinealocytes are thought to contain only MAO-B, treatment with the selective MAO-B inhibitor deprenyl (2 mg/kg/24 days) did not alter day or night-time melatonin concentrations. These results are consistent with MAO-A and non-selective MAO inhibitors acting via blockade of degradation of the preferential substrates of MAO-A, serotonin and/or norepinephrine, in adrenergic neurons entering the pineal gland. Further study is needed to evaluate the relative contributions of an increased availability of the melatonin precursor, serotonin, or a sustained net increase in alpha1-or beta adrenoceptor-mediated input on pinealocytes to these marked changes in melatonin production.  相似文献   

20.
Dysregulation of tryptophan hydroxylase (TPH)-dependent serotonin (5-HT) synthesis, has been implicated in various neuropsychiatric disorders, although the differential expression pattern of the two isoforms is controversial. Here, we report a comprehensive spatio-temporal isoform-specific analysis of TPH1 and TPH2 expression during pre- and postnatal development of mouse brain and in adult human brain. TPH2 expression was consistently detected in the raphe nuclei, as well as in fibers in the deep pineal gland and in small intestine. Although TPH1 expression was found in these peripheral tissues, no significant TPH1 expression was detected in the brain, neither during murine development, nor in mouse and human adult brain. In support of TPH2 specificity in brain 5-HT synthesis, raphe neurons of Tph2 knockout mice were completely devoid of 5-HT, with no compensatory activation of Tph1 expression. In conclusion, our findings indicate that brain 5-HT synthesis across the lifespan is exclusively maintained by TPH2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号