首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A variety of evidence has led to suggestions that brain serotonin (5-HT) and norepinephrine (NE) interact within the medial hypothalamus to control food intake. To test the possibility that chronic decrements in 5-HT might enhance NE-induced feeding, adult male rats were prepared with permanently indwelling cannulae aimed at the paraventricular nucleus (PVN), then received either intracisternal (IC) or PVN injections of the 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT) vs. its vehicle, 1% ascorbic acid. Over a 4-week period, IC-5,7-DHT rats showed no signs of enhanced daily feeding or drinking. However, in 40-min intake tests, feeding but not drinking was enhanced by injecting 20 nmol NE into the PVN commencing 2 weeks after neurotoxin treatment. Terminal monoamine assays confirmed that IC-5,7-DHT produced large (80-90%) depletions of brain regional 5-HT. A functional index of 5-HT terminal damage was also implied by the impaired short-term feeding responses IC-5,7-DHT rats showed to the systemic administration of the 5-HT1A agonist, 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) when tested between 3 and 4 weeks after IC treatment. Over a comparable 4-week period, PVN-5,7-DHT rats also showed no tendencies to overeat or overdrink on a daily basis. However, in contrast to IC-5,7-DHT rats, they also showed no differences in their feeding or drinking responses to NE injections into the PVN. This was so despite reliable depletions of 5-HT in the hypothalamus (-28%) and hippocampus (-71%). These results support earlier work showing that neither widespread nor localized hypothalamic damage to brain 5-HT neurons produce chronic overeating. However, the data suggest that phasic enhancements of PVN NE activity may trigger enhanced feeding when there is widespread damage to brain 5-HT neurons, although the PVN does not appear to be the brain site mediating this effect.  相似文献   

2.
The role of 5-HT (serotonin) in regulating lordosis was investigated by combining peripheral administration of the 5-HT agonists 8-OH-DPAT (8-hydroxy-2-[di-N-propylamino]tetralin) or TFMPP (1-[m-trifluoromethylphenyl]piperazine), with intrahypothalamic application of the 5-HT neurotoxin 5,7-DHT (5,7-dihydroxytryptamine). The 5-HT1A agonist, 8-OH-DPAT, significantly inhibited lordosis in 5,7-DHT-treated and non-treated rats. TFMPP, an agonist at 5-HT1B and 5-HT1C receptors, significantly facilitated lordosis in 5,7-DHT-treated and non-treated rats. Our results show that both inhibitory and facilitatory influences of hypothalamic 5-HT on lordosis, are modulated via postsynaptic receptors.  相似文献   

3.
We investigated the mutual interactions between hypothalamic norepinephrine (NE) and serotonin (5-HT) in mediating the ACTH and corticosterone responses to direct stimulation of the paraventricular nucleus (PVN) with adrenergic and serotonergic agonists. The hormone responses to the intrahypothalamic injection of the alpha1-adrenergic agonist phenylephrine (20 nmol/2 microl) were significantly reduced by prior depletion of hypothalamic 5-HT with intra-PVN injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), but not after depletion of hypothalamic NE by intra-PVN injection of the noradrenergic neurotoxin 6-hydroxydopamine (6-OHDA). The ACTH and corticosterone responses to intrahypothalamic injection of the 5-HT(1A) receptor agonist 8-OH-DPAT (20 n mol/2 microl) were significantly reduced by depletion of hypothalamic NE with 6-OHDA, but not after depletion of hypothalamic 5-HT with 5,7-DHT. These mutual interactions between the NE and 5-HT neuronal systems, which innervate the PVN, may explain previous findings of equivalent reductions in the hypothalamic-pituitary-adrenal axis responses to neural stimulation after neurotoxic lesioning of either the NE or 5-HT systems.  相似文献   

4.
We studied whether antinociception produced by injection of morphine into the nucleus raphe magnus (NRM) or superfusion onto the spinal cord involved serotonergic neurons that descend from brainstem to spinal cord. Involvement of 5-hydroxytryptamine (5-HT)-containing neurons was determined by correlating morphine-induced analgesia with an increase in turnover of 5-HT and by determining if depletion of cord 5-HT with the neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT) could attenuate the antinociceptive effects of morphine. When injected directly into the NRM, 10 micrograms of morphine produced profound analgesia as measured by the paw-pressure technique, and significantly increased the turnover of 5-HT in both posterior medulla and spinal cord. Depletion of cord 5-HT to less than 10% of control concentrations attenuated the antinociceptive effect of morphine injected into the NRM. When various concentrations of morphine (1, 10 or 50 micrograms) were injected directly into the spinal subarachnoid space, a dose-dependent analgesia was observed. No change in 5-HT turnover in spinal cord was observed with any dose of morphine superfused onto the cord. In addition, depletion of cord 5-HT with 5,7-DHT did not alter the analgesic response to either 1 or 10 micrograms of intrathecal morphine. These results suggest that although 5-HT-containing neurons descending from brainstem into spinal cord are involved with analgesia produced by morphine injection into the NRM, they are not involved in the analgesia induced by applying morphine directly to the cord.  相似文献   

5.
Histidyl-proline diketopiperazine (His-Pro DKP) has been proposed as a metabolite of thyrotropin releasing hormone (TRH). Since spinal cord TRH arises from serotoninergic (5-HT) neurons in the brainstem, a 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), was injected into the lateral ventricle of 7 rats, and the levels of TRH and His-Pro DKP in the spinal cord were studied 5 weeks later. In comparison to the saline treated controls, 5,7-DHT treated animals showed marked depletion of TRH throughout the spinal cord, especially in the lumbosacral area where almost 90% disappeared, (0.28 +/- 0.02 vs. 2.46 +/- 0.01 ng/mg protein; P less than 0.0001). In contrast, His-Pro DKP showed no significant change in any region. Since 5,7-DHT lowers spinal cord TRH by destroying TRH perikarya in the medulla, we conclude that spinal cord His-Pro DKP is not derived from the same neurons as TRH.  相似文献   

6.
In animal models of depression, the 5-HT1A agonists, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), buspirone, gepirone and ipsapirone administered i.p. have been shown to mimic the behavioural effects of antidepressants. For instance, in the present study, using the learned helplessness paradigm, 8-OH-DPAT dose-dependently reversed helpless behaviour. To assess the possible role of pre- or postsynaptic 5-HT1A receptors in this effect, the ability of 8-OH-DPAT to reduce helpless behaviour was investigated following (1) i.p. administration (0.125 or 0.25 mg/kg/day) in rats whose ascending 5-HT neurons were partially destroyed by previous 5,7-dihydroxytryptamine (5,7-DHT) injection (5 micrograms free base in 0.6 microliter) into the raphe nuclei or (2) after local microinjection (0.1 or 1.0 microgram in 0.5 microliter) into the raphe nuclei or into the septum. The reversal of helpless behaviour by 8-OH-DPAT (i.p.) was still observed in 5,7-DHT-treated rats with telencephalic 5-HT uptake reduced by 50-75% depending on the region. 8-OH-DPAT microinjected into the raphe nuclei did not reverse helpless behaviour; in contrast, 8-OH-DPAT microinjected into the septum reversed helpless behaviour. These results suggest that the ability of 8-OH-DPAT to reverse helpless behaviour probably involved the stimulation of postsynaptic rather than presynaptic 5-HT1A receptors.  相似文献   

7.
Depletion of 5-hydroxytryptamine (5-HT) in mice was produced by intracerebroventricular injection of 5,7-dihydroxytryptamine (5,7-DHT, 80 micrograms) or by systemic injections of p-chloroamphetamine (PCA, 3 X 40 or 4 X 40 mg/kg), p-chlorophenylalanine (PCPA, 5 X 400 or 14 X 400 mg/kg) or combined PCA (3 X 40 mg/kg) + PCPA (11 X 400 mg/kg). Neither of the pretreatments altered nociception in the increasing temperature hot-plate test, whereas hyperalgesia was demonstrated in 5,7-DHT lesioned animals in the tail-flick test. 5,7-DHT-pretreatment enhanced the antinociceptive effect of the 5-HT agonists 5-methoxy-N,N-dimethyltryptamine (5-MeODMT), 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and 5-hydroxytryptophan (5-HTP). This effect was observed after 2, 5 and 8 days in the tail-flick test and after 5 and 8 days in the hot-plate test. However, pretreatment with PCPA or PCA failed to alter the antinociception elicited by the 5-HT agonists, although a tendency towards enhancement of antinociception was found after combined treatment with PCA and PCPA. It is suggested that the injection of 5,7-DHT induces denervation supersensitivity of post-synaptic 5-HT receptors. The lack of such supersensitivity after PCPA-pretreatment which induces similar 5-HT depletion to 5,7-DHT, may suggest that other factors than the absence of 5-HT may contribute to the development of denervation supersensitivity. Alternatively, the three 5-HT depleting agents may produce a qualitatively different reduction of 5-HT.  相似文献   

8.
The neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) is often used in neonatal rats to induce specific, rapid, and permanent depletion of brain serotonin (5-HT). One assumed benefit of using this drug in neonates is that it is well-tolerated, with pups exhibiting few side effects normally attributed to 5-HT depletion. Here, we present evidence that 5,7-DHT administered neonatally induces seizure-like behavior, decreases weight gain, and increases plasma corticosterone without depletion of brain 5-HT.  相似文献   

9.
To study the involvement of serotonin (5-HT) receptor subtypes in behavioral supersensitivity following neonatal 5,7-dihydroxytryptamine (5,7-DHT) lesions, we measured acute behavioral responses to a single dose of selective 5-HT1A (8-OH-DPAT) or 5-HT2,1C (DOI) agonist compared to 5-hydroxytryptophan (5-HTP) in rats injected with 5,7-DHT intraperitoneally or intracisternally 14 weeks earlier. Only intraperitoneal 5,7-DHT injection resulted in brainstem 5-HT hyperinnervation, but cortical 5-HT depletions were also less. Effects of DOI, such as shaking behavior and forepaw myoclonus, were enhanced by 5,7-DHT lesions made intracisternally not intraperitoneally, whereas 8-OH-DPAT-evoked behaviors, such as forepaw myoclonus and head weaving, were enhanced more by the intraperitoneal route. The main consequence of intraperitoneal compared to intracisternal 5,7-DHT injection on supersensitivity to 5-HT agonists was increased presynaptic 5-HT1A responses and decreased 5-HT2,1C responses. In contrast, 5-HTP evoked more shaking behavior and less of the serotonin syndrome with the intraperitoneal compared to the intracisternal route of 5,7-DHT injection. Behavioral supersensitivity to 5-HTP, which was attributable to 5-HT1A, 5-HT2,1C, and possibly to other 5-HT receptors, was orders of magnitude greater than that elicited by direct receptor agonists and more clearly differentiated between rats with 5,7-DHT lesions and their controls, and between routes of 5,7-DHT injections, than responses to 5-HT agonists at the dose studied. 5,7-DHT induced dysregulation of 5-HT receptors, including both presynaptic and postsynaptic changes and altered interactions between receptor subtypes, better explains these data than postsynaptic changes alone.  相似文献   

10.
Drugs that enhance serotonergic neurotransmission reduce food intake by directly or indirectly activating serotonergic receptors. In contrast drugs that inhibit serotonergic neurotransmission such as the 5-HT1A agonist 8-hydroxy-2-(di-n-propyl-amino)tetralin (8-OH-DPAT) stimulate food intake. The present study examined the effects of 8-OH-DPAT on the feeding suppressant action of the indirect 5-HT agonists fenfluramine (FEN; 0.63–2.5 mg/kg) and fluoxetine (FLU; 2.5–10 mg/kg), as well as the 5-HT1B/2C agonist 1-(3-trifluoromethylphenyl)piperazine (TFMPP; 0.5–2 mg/kg). 8-OH-DPAT (62.5–250 μg/kg) was administered 5 min prior to FEN, FLU or TFMPP, injected 30 min before food access. While FEN, FLU and TFMPP dose-dependently reduced 2 h food intake, 8-OH-DPAT stimulated eating behavior. 8-OH-DPAT (62.5–250 μg/kg) pretreatment reversed the anorectic action of FEN (1.25 mg/kg) and FLU (5 mg/kg) but not TFMPP (1 mg/kg). Separate groups of rats were injected with 5,7-dihydroxytryptamine (5,7-DHT; 3 μg free base) into both the dorsal and median raphe, which resulted in extensive 5-HT depletion in hypothalamus (80%), striatum and hippocampus (90%). In both 5,7-DHT and vehicle-injected rats, FEN (1.25 mg/kg) and FLU (5 mg/kg) suppressed feeding. In 5,7-DHT treated rats, however, the ability of 8-OH-DPAT (125 μg/kg) to block FEN and FLU induced anorexia was attenuated. That is, 8-OH-DPAT pretreatment did not reverse the feeding inhibitory effects of either FEN or FLU. Further, the ability of FEN and FLU to suppress food intake was not altered by the 5,7-DHT lesion. These findings suggest that the reversal of FEN and FLU anorexia by 8-OH-DPAT is partially dependent on the integrity of brain 5-HT systems since their disruption compromises the ability of this 5-HT1A agonist to antagonize the feeding suppressant action of either FEN or FLU. However, the ability of treatments which impair 5-HT neurotransmission to reverse FEN and FLU induced suppression of food intake may depend upon whether this impairment is acute and reversible (8-OH-DPAT), or chronic and irreversible (5,7-DHT).  相似文献   

11.
This study examined the relationship between the magnitude of tissue serotonin (5-HT)depletion produced by treatment with the neurotoxin 5,7-dihydroxytryptamine (5,7) and basal and fenfluramine-induced 5-HT release in the striatum. Separate groups of rats were treated with either vehicle or 5,7-DHT (100μ 76% striatal 5-HT depletion; or 200μ 93% styriatal 5-HT depletion). four weeks after treatment 5-HT release was measured in the ventral striatum using in vivo microdialysis in animals anesthetized with chloral hydrate. Basal 5-HT levels were not significantly altered in any lesion group, whereas basal 5-hydroxyindoleacetic acid levels were dosedependently reduced by 5,7-DHT. In contrast, the increase of 5-HT release produced by fenfluramine treatement (10 mg/kg) wa diminished significantly after 5-HT neuronal destruction in correlation with the reduction of striatal tissue 5-HT content. Fractional 5-HT efflux, a measure of the 5-HT release from surviving striatal nerve terminals, was also significantly elevated when tissue depletion of 5-HT exceeded 95%. This study suggests that compensatory mechanisms may enable surviving 5-HT terminals to maintain basal 5-HT levels in th striatum with as little as 5% of the terminals remaining, but those mechanisms are not sufficient to allow the damaged system to respond to a pharmacological challenge. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Summary In order to establish whether the 5-HT1A or the 5HT1B agonists, 8-OH-DPAT or TFMPP, produce their facilitatory or inhibitory actions on masculine sexual behaviour via a mechanism involving: (a) the serotonin synthesis or release; (b) the stimulation of presynaptic receptors, or (c) the stimulation of somatodendritic receptors, three series of experiments were performed. The administration of the serotonin synthesis inhibitor, p-chlorophenylalanine (p-CPA, 300mg/kg×3 days), facilitated sexual behaviour but does not interfere neither with the inhibitory nor with the facilitatory effects of TFMPP (0.5mg/kg) or 8-OH-DPAT (0.5 mg/kg), respectively. The icv or the intraraphé administration of the serotonergic neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), slightly stimulated masculine sexual behaviour and produced a decrease in serotonin and its metabolite levels. In lesioned animals TFMPP (0.5 mg/kg) resulted in an inhibitory effect reflected as a prolongation of the ejaculation latency. The inhibitory effect of this drug on mounting behaviour was not observed in 5,7-DHT treated rats. In lesioned animals 8-OH-DPAT (0.5 mg/kg) produced the same facilitatory effect. Present data indicate that serotonergic postsynaptic receptors mediate both the inhibitory and the facilitatory actions of TFMPP or 8-OH-DPAT in copulation. All data further support the idea that endogenous serotonin acts via the stimulation of 5-HT1B receptors to induce its inhibitory effects on masculine sexual behaviour.  相似文献   

13.
BACKGROUND: The functioning of the brain serotonin system has been implicated in the action of antidepressant drugs. The behavior of rats performing the Differential Reinforcement of Low Rate-72 sec (DRL 72s) has been used as a screen for drugs with antidepressant activity. Many antidepressant drugs alter serotonergic function. Hence, experiments were designed to investigate the role of the brain serotonin system in the performance of DRL 72s behavior. METHODS: Rats were trained to perform a DRL 72s, and then depleted (LESION) of brain serotonin (5-HT) using intracerebroventricular 5,7-dihydroxytryptamine (5,7-DHT). Control rats (SHAM) were injected with the 5,7-DHT vehicle. RESULTS: The 5,7-DHT-treated rats showed a higher response rate, a decrease in the number of reinforcements, and a shift in the interresponse time (IRT) distribution toward shorter IRTs when compared to SHAM and prelesion performance. The behavioral deficit in the 5,7-DHT rats persisted for 17 weeks. Postmortem assays indicated extensive depletion of 5-HT in all the assayed brain regions of the LESION rats. The effects of the serotonergic agonists 8-hydroxy-2-di-N-propylaminotetralin (8-OH-DPAT), 5-methoxy-dimethyltryptamine (5-MeODMT), buspirone, and 5-hydroxytryptophan (5-HTP) were assessed. 5-MeODMT and 8-OH-DPAT resulted in greater improvement of DRL 72s performance in the LESION rats than in the SHAM rats. Buspirone failed to ameliorate the behavioral deficit in the LESION rats and produced a behavioral deficit in the SHAM rats. 5-HTP improved performance in the SHAM rats and in the LESION rats. CONCLUSIONS: These results support the contention that the brain 5-HT system is involved in the mediation of antidepressant drug effects.  相似文献   

14.
The cardiovascular role of spinal serotonin (5-HT) neurones descending from 5-HT cells near the ventrolateral surface of the medulla oblongata was investigated by stimulating these cells in normal animals and in animals with selective chemical ablation of 5-HT nerves. These laterally placed 5-HT nerves fall within the B1 and B3 groups in the medulla and were identified using immunohistochemistry. 5,7-Dihydroxytryptamine (5,7-DHT) was injected into the lateral cerebral ventricle (i.c.v.) to produce a generalized destruction of central 5-HT pathways, with preliminary intraperitoneal administration of desipramine to prevent depletion of noradrenaline stores. In other experiments, 5,7-DHT was injected directly into the cervical spinal cord, after preliminary treatment with desipramine, to produce selective destruction of spinal 5-HT nerves, confirmed both biochemically and immunohistochemically. Electrical stimulation near the lateral 5-HT cells in the B1 and B3 cell groups elicited pressor responses in control (vehicle-injected) rats; the increase in mean arterial pressure was proportional to the intensity and to the frequency of stimulation. Microinjections of kainic acid or l-glutamate at the same sites also produced an increase in mean arterial pressure. Selective destruction of 5-HT nerves, whether produced by i.c.v. or intra-spinal administration of 5,7-DHT, reduced the magnitude of the pressor response to electrical stimulation by over 50%. These experiments suggest the activity of 5-HT nerve cells adjacent to the ventrolateral surface of the medulla oblongata and projecting to the intermediolateral cell column serves to elevate arterial pressure and maintain vasomotor tone.  相似文献   

15.
The purpose of this study was to further elucidate the role of serotonin (5-HT) in adrenocortical regulation. The effects of stimulating the frontal cortex and extrahypothalamic limbic structures, on plasma corticosterone (CS) responses, were studied in rats with vehicle or 5,7-dihydroxytryptamine (5,7-DHT) injection into the midbrain raphe nuclei. In another group of rats the neurotoxin was injected locally into the paraventricular nucleus (PVN) in view of its importance in adrenocortical regulation, and the effects of photic and dorsal hippocampal stimulation on plasma CS were studied. 5,7-DHT caused a significant depletion of hypothalamic 5-HT and blocked the rise in plasma CS following the stimulation of the above neural modalities. These studies suggest that the PVN 5-HT mediates the adrenocortical responses following afferent neural stimuli.  相似文献   

16.
In the present experiment we analyzed whether the antianxiety action of the serotonergic 1A agonists buspirone (5 mg/kg), ipsapirone (5 mg/kg), indorenate (5 mg/kg), and 8-OH-DPAT (0.5 mg/kg) were mediated through the stimulation of pre- or postsynaptic serotonergic receptors. The experimental anxiety values were determined with the burying behavior test, where a reduction in the cumulative time of burying behavior was interpreted as a reduction in anxiety. To that purpose we analyzed the putative anxiolytic action of these drugs in animals with lesion of the serotonergic fibers after the intracerebroventricular (ICV) injection of 5,7-dihydroxytyptamine (5,7-DHT, 10 or 150 micrograms/10 microliters). The neurochemical analysis shows that these treatments produce a statistically significant reduction in 5-HT and 5-HIAA levels in various brain areas. The results of the behavioral experiments reveal that buspirone, ipsapirone, and indorenate produced exactly the same reduction in burying behavior in lesioned animals as compared with control rats. The reduction in burying behavior produced by 8-OH-DPAT was effectively prevented by the lesion with 5,7-DHT. These data suggest that the anxiolytic effect of buspirone, ipsapirone, and indorenate is mediated via the stimulation of postsynaptic receptors, while the somatodendritic receptors are involved in the antianxiety effect of 8-OH-DPAT.  相似文献   

17.
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) may play an important role in learning and memory. It has also been suggested that 5-HT abnormalities may mediate some aspects of the cognitive disorders associated with Korsakoff syndrome and Alzheimer's Disease. The effect of intracisternally applied 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT) on learning and memory in rodents was evaluated. Three-day-old rat pups were treated with pargyline (40 mg/kg, i.p.) followed by 5,7-DHT (50 micrograms/pup) and returned to the dam for a month. At 75 days of age, rats were tested on a learning set problem in the Morris water maze for 5 days followed by 30 days of testing in a 12-arm radial maze with 8 of the 12 arms baited. In the Morris water maze, the latency to locate the hidden platform did not differ significantly for 5,7-DHT treated and control rats (F less than 1.0). Similarly, 5,7-DHT treated rats performed comparably to controls on the 12-arm radial maze (F less than 1.0). At 106 days of age the assay of tryptophan hydroxylase activity in the dorsal raphe nuclei and hippocampus showed marked reduction (86%, 78%, respectively) in 5,7-DHT treated animals compared to vehicle injected controls. Immunocytochemical analysis was consistent with the biochemical results. In 5,7-DHT treated animals there was severe loss of neurons that bind 5-HT antibody in the dorsal and medial raphe nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of direct administration of adrenergic and serotonergic (5-HT) agonists into the central nucleus of the amygdala (AMG) on the hypothalamo-pituitary-adrenal (HPA) axis have been studied in intact male rats and in animals with 6-hydroxydopamine (6-OHDA) or 5, 7-dihydroxytryptamine (5,7-DHT) neurotoxic lesions in the paraventricular nucleus of the hypothalamus (PVN). In intact animals, the administration of phenylephrine, an alpha1 adrenergic agonist or 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT) a 5-HT(1A) agonist caused depletion of median eminence corticotropin releasing hormone and a rise in serum adrenocorticotrophic hormone (ACTH) and corticosterone (CS) levels. Isoproterenol a beta agonist was more effective than phenylephrine and a 5-HT(1B) agonist CP-93, 129 was less effective than 8-OH-DPAT on the adrenocortical activity. The 6-OHDA or 5,7-DHT hypothalamic lesions prevented the stimulatory effects of phenylephrine and 8-OH-DPAT, respectively, which where injected into the AMG, on serum ACTH and CS levels. In view of our previous studies on the effects of the adrenergic and 5-HT antagonists in the AMG and the present data, it is suggested that norepinephrine and 5-HT play an important role in the stimulatory effect of the AMG on the HPA axis. These effects depend on the presence of these excitatory neurotransmitters in the PVN.  相似文献   

19.
Rat pups were injected intracisternally (i.c.) or intraperitoneally (i.p.) with 5,7-dihydroxytryptamine (5,7-DHT) or saline and challenged 2 and 14 weeks later with the 5-HT precursor 5-hydroxytryptophan (5-HTP), which evokes behavioral supersensitivity in adult rats, 5,7-DHT induced transient postinjection convulsions in rats injected i.c. but not i.p. Rats with either type of 5,7-DHT lesions displayed supersensitive behavioral responses to 5-HTP. However, rats lesioned by i.p. injections exhibited significantly greater shaking behavior (+1445%) in response to 5-HTP than their i.c. counterparts, who instead showed more forepaw myoclonus (+250%) and head weaving (+270%), the core features of the 5-HT syndrome. Differences in 5-HT syndrome behaviors were already present 2 weeks after lesioning, whereas the difference in shaking behavior was not. After 14 weeks, 5-HT was selectively depleted (-43 to -92%) in hippocampus, spinal cord, and frontal cortex, and differences between i.c. and i.p. 5,7-DHT routes were insignificant except in frontal cortex. Brainstem 5-HT concentrations were significantly increased (+35%) after i.p. 5,7-DHT injections in contrast to reduction (-89%) after i.c. 5,7-DHT; 5-hydroxyindole acetic acid/5-hydroxytryptamine (5-HIAA/5-HT) ratios were decreased (-20%) with either route. These data suggest that brainstem 5-HT hyperinnervation following i.p. 5,7-DHT injection modifies the functional consequences of injury in abating the 5-HT syndrome, but does not result in complete recovery since shaking behavior is enhanced. Loss of presynaptically mediated autoregulation or receptor dysregulation may play a major role in behavioral supersensitivity induced by 5-HTP in rats with 5,7-DHT lesions. To the extent that the 5-HT syndrome is mediated by 5-HT1A receptors and shaking behavior by 5-HT2 sites, differential responses to injury of 5-HT1A and 5-HT2 receptors may contribute to these behavioral differences.  相似文献   

20.
Bland ST  Schmid MJ  Watkins LR  Maier SF 《Neuroreport》2004,15(17):2637-2641
Uncontrollable, but not controllable, stress produces a persistent potentiation of morphine-induced nucleus accumbens dopamine (DA) efflux and morphine-induced medial prefrontal cortex serotonin (5-HT) efflux. Here we investigate medial prefrontal cortex 5-HT mediation of this potentiation. Male Sprague-Dawley rats received bilateral medial prefrontal cortex microinjections of the neurotoxin 5,7-dihydroxytriptamine (5,7-DHT, 8 microg/microl/side), which selectively depleted medial prefrontal cortex 5-HT, or vehicle (Sham), and cannula implantation in the nucleus accumbens shell. After 2 weeks, rats received either uncontrollable stress or no stress. Microdialysis and morphine (3 mg/kg) treatment were performed the following day. Morphine produced an enhanced increase in DA in the Stress-Sham group that was completely blocked by 5,7-DHT lesions, suggesting that 5-HT in the medial prefrontal cortex mediates this potentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号