首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reconstructions of the efferent innervation of the hamster (Mesocricetus auratus) cochlea were done during postnatal development. Efferent neurons were labeled via injections of biocytin and horseradish peroxidase into the crossed olivocochlear (OC) bundles using an in vitro brainstem technique. Such injections retrogradely labeled cell bodies in ventral periolivary regions of the superior olive consistent with their being medial OC neurons. Anterogradely labeled axons were traced to the cochlea, where they terminated on or below inner hair cells (IHCs) prior to postnatal day 5 (P5). After P5, labeled axons terminated on IHCs and outer hair cells (OHCs) and after P10, the majority of labeled axons terminated on the OHCs. In the electron microscope, small labeled terminals containing densely packed synaptic vesicles were found both adjacent to IHCs (axosomatic) as well as apposed to afferent and efferent fibers below IHCs prior to P5. By P10, large labeled terminals were axosomatic to OHCs and no longer found on IHCs. Consistent with previous reports, these data suggest that medial OC axons form part of an early primary innervation on and below IHCs before terminating on OHCs. This raises the possibility that OC neurons demonstrate a period of waiting below an intermediate target similar to that described in the development of thalamocortical projections. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Axons of olivocochlear neurons originate in the superior olivary complex and project to the cochlea. Along their course, medial olivocochlear axons give off branches to the cochlear nucleus. We labeled these branches with horseradish peroxidase and used electron microscopy to determine their target dendrites. Target dendrites were of two classes: “large” dendrites and “varicose” dendrites. Using serial sections, we reconstructed the dendrites and, in addition to the labeled olivocochlear input, we determined the synaptic profile of unlabeled inputs onto the dendrites. We classified the terminals on the basis of the shape and size of their synaptic vesicles. On large dendrites, the predominant type of unlabeled terminal had small round (SmRnd) vesicles. These terminals are likely to be excitatory, and some of them may originate from unlabeled medial olivocochlear branches. On varicose dendrites, the predominant type of terminal had pleomorphic vesicles. These terminals are likely to be inhibitory. They may be from descending inputs that arise in higher centers. A final type of terminal onto large dendrites exhibited signs of neuronal degeneration, possibly because the cell body of origin was damaged during the injection procedure. These terminals often had long, perforated synaptic densities and may originate from type II primary afferents. Thus, medial olivocochlear efferents and type II afferents, which both contact outer hair cells in the periphery, appear to synapse onto the same targets in the cochlear nucleus. In contrast, where examined, the target dendrites did not receive terminals with large vesicles from afferents that contact inner hair cells. Thus, target neurons appear to function in a neural circuit associated more closely with outer than with inner hair cells. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Fine structural characteristics of synapses in the spiral organ of Corti were examined, with reference to differences between inner and outer haircell systems, and to location of neurons of origin of efferent axons. Surgical interruption of crossed olivocochlear bundle, of vestibular nerve, of facial nerve, and excision of superior cervical ganglia were used to determine the pathways of efferent axons. Interruption of the vestibular nerve near the brainstem results in degeneration of all efferent terminals on outer hair cells. Mid-line lesions at, and caudal to, the facial colliculus result in degeneration of about half of these efferent terminals. Efferent synaptic bulbs to the inner hair-cell system are small, of the order of one micron, and form type 2 junctions with afferent dendrites. They tend to have more large dense-core vesicles (about 80 nm) than the large efferent terminals of the outer hair-cell system, and appear to be the terminals of axons in the habenula perforata, which exhibit varicosities laden with large dense core vesicles. The varicosities are unaffected by excision of the superior cervical ganglia. So far as our material can reveal, it appears that the varicosities in the habenula perforata do not survive vestibular root interruption, nor do the efferent processes in the internal spiral bundle or at the base of inner hair cells. Most interestingly, the afferent processes of the inner hair-cell system, as identified for example by their relation to pre-synaptic bodies in the inner hair cells, are subject to a trans-synaptic reaction after severance of the vestibular root. They undergo a dramatic cytological transformation, characterized by increase of volume, engorgement with microtubules, microfilaments, microvesicles of various sizes, and clusters of lysosomes. Thus, both the efferent and afferent terminals of the inner hair-cell system show marked cytological differences from the corresponding terminals of the outer hair cell system.  相似文献   

4.
Hair cells, the sensory cells of the organ of Corti, receive afferent innervation from the spiral ganglion neurons and efferent innervation from the superior olivary complex. The inner and outer hair cells are innervated by distinctive fiber systems. Our electron microscopical studies demonstrate, however, that inner hair cells, in addition to their own innervation, are also synaptically engaged with the fibers destined specifically to innervate outer hair cells, within both the afferent and efferent innervation. Serial sections of the afferent tunnel fibers (destined to innervate outer hair cells) in the apical turn demonstrate that, while crossing toward the tunnel of Corti, they receive en passant synapses from inner hair cells. Each inner hair cell (in a series of five in the apical turn) was innervated by two tunnel fibers, one on each side. We show here for the first time that, in the adult, the afferent tunnel fibers receive a ribbon synapse from inner hair cells and form reciprocal contacts on their spines. Vesiculated efferent fibers from the inner pillar bundle (which carries the innervation to outer hair cells) form triadic synapses with inner hair cells and their synaptic afferent dendrites; the vesiculated terminals of the lateral olivocochlear fibers from the inner spiral bundle synapse extensively on the afferent tunnel fibers, forming triadic synapses with both afferent tunnel fibers and their synaptic inner hair cells. This intense synaptic activity involving inner hair cells and both afferent and efferent tunnel fibers, at their crossroad, implies functional connections between both inner and outer hair cells in the process of hearing.  相似文献   

5.
Morphology of labeled efferent fibers in the guinea pig cochlea   总被引:4,自引:0,他引:4  
Efferent axons to the guinea pig cochlea were labeled by extracellular injections of horseradish peroxidase into the intraganglionic spiral bundle within the spiral ganglion. The terminal fibers formed by these axons were classified according to their patterns of termination within the basal turn of the cochlea. A class of terminal fibers designated "autonomic" forms a highly branched plexus in the osseous spiral lamina but does not enter the organ of Corti. The termination of single autonomics includes blood vessels as well as areas of the osseous spiral lamina not adjacent to blood vessels. Two major classes of efferent axons from the olivocochlear bundle enter the cochlea by way of the vestibulocochlear anastomosis and terminate either in areas near inner hair cells (IHC efferents) or onto outer hair cells (OHC efferents). The IHC efferents have thin axons throughout their course within the cochlea and can be divided into two subclasses. The most numerous subclass of IHC efferents (unidirectional) enters the inner spiral bundle and turns to spiral in only one direction for less than 1 mm and then forms a discrete termination including many en passant and terminal swellings that are within both the inner and tunnel spiral bundles. A less common subclass of IHC efferents (bidirectional) bifurcates upon entry into the inner spiral bundle to send branches both apically and basally. These terminal fibers take spiral courses that are greater than 1 mm in extent, often course in the tunnel spiral bundle for a large portion of the spiral, and form terminals throughout their extended spiral course. None of the IHC efferent fibers send branches to cross the tunnel to innervate the outer hair cells. A second major class of olivocochlear fibers, OHC efferent fibers, forms large boutons on the outer hair cells, and although they sometimes spiral beneath the IHCs for some length, they do not give off terminals to this region. The OHC efferent axons are thick and myelinated as they enter the cochlea, and they branch near the spiral ganglion to form several terminal fibers. Some of these terminal fibers are thin as they travel from the intraganglionic spiral bundle across the osseous spiral lamina to the organ of Corti, whereas others are thick and obviously myelinated as far peripheral as the habenula.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Antiserum raised against GABA coupled with glutaraldehyde to bovine serum albumin was applied to the guinea pig cochlea. Immunoreactivity was visualized as horseradish peroxidase reaction product in surface preparations of the organ of Corti using immunocytochemical techniques. Bright-field, differential interference contrast and video-enhanced contrast light microscopy were used. GABA-like immunoreactivity was found in axons and endings of efferent neurons in all turns of the cochlear spiral, but predominantly in the third turn and first half of the fourth turn. In these apical turns, immunoreactivity was seen in the efferent components: inner spiral bundle, tunnel spiral bundle, tunnel-crossing fibers, large nerve endings synapsing on outer hair cell bases, nerve endings high up on outer hair cells, nerve endings or varicosities close to outer hair cells, and outer spiral fibers. Some immunoreactive large nerve endings at outer hair cells were found in the apical half of the fourth turn. This study shows that axons and endings of efferent neurons in the organ of Corti of guinea pig contain GABA-like immunoreactivity with a distribution similar to that of GAD-like immunoreactivity as shown in a previous study. In both studies, many efferent nerve axons and endings were unstained, even in regions of maximal density of immunoreactivity in the apical turns. The evidence indicates that a subpopulation of efferent neurons projecting to the organ of Corti is GABAergic and very likely different from the lateral and the medial olivocochlear efferent systems.  相似文献   

7.
K S Cole  D Robertson 《Brain research》1992,575(2):223-230
The olivocochlear pathway in the developing rat was visualized in fixed material. The fluorescent carbocyanine dye 1,1'-Dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) was applied to the cut central axons of the olivocochlear neurones at the floor of the fourth ventricle, and the termination pattern within the cochlea was examined after dye diffusion. From the day of birth (P0) to postnatal day 2 (P2), efferent innervation of the cochlea was exclusively in the region of the inner hair cells. Between P2 and P11, progressive outgrowth of neuronal processes to the outer hair cell region occurred; possible connections with the outer hair cells were occasionally seen at P4 and approached the mature pattern by P6. The efferent innervation of the organ of Corti appeared to mature progressively from the cochlear base to the apex, with outgrowth to the outer hair cells occurring earlier in the basal turn of the cochlea than in the second and third cochlear turns. Numerous blind axonal endings were observed in the spiral lamina especially at early postnatal ages. These findings may be consistent with a sequential pattern of arrival of efferent axons at the organ of Corti and ongoing death of efferent neurones in the brainstem during this period of development.  相似文献   

8.
We have previously shown that perfusion of the gerbil cochlea with probe concentrations of 3H-D-aspartic acid (D-ASP) results in immediate, selective labeling of 50-60% of the efferent terminals under the inner hair cells, presumably by high-affinity uptake. The present study was undertaken to determine the origin of these endings. Twenty-four hours after cochlear perfusion with D-ASP, labeled neurons were observed in the ipsilateral, and to a much lesser extent in the contralateral, lateral superior olivary nucleus (LSO). The cells were small, primarily fusiform, and showed fewer synaptic contacts than other LSO cells. Combined transport of D-ASP and horseradish peroxidase indicated that all olivocochlear neurons within the LSO that projected to the injected cochlea were labeled by D-ASP. Labeled fibers coursed dorsally from the LSO, joined contralateral fibers that had passed under the floor of the fourth ventricle, and entered the VIIIth nerve root at its ventromedial edge. Adjacent to the ventral cochlear nucleus (VCN), densely labeled collateral fibers crossed the nerve root to enter the VCN. Labeled fibers and terminals were prominent in the central VCN. Neither retrograde transport of D-ASP by medial olivocochlear and vestibular efferents nor anterograde transport by VIIIth nerve afferents was observed. The D-ASP-labeled cells and fibers are clearly lateral olivocochlear efferents. Retrograde transport of D-ASP thus allows the cells, axons, and collaterals of the lateral olivocochlear system to be studied, morphologically, in isolation from other cells that project to the cochlea. Since the olivocochlear neurons are almost certainly cholinergic, retrograde amino acid transport does not necessarily identify the primary neurotransmitter of a neuron. Rather, it indicates the presence of selective uptake by the processes of that neuron at the site of amino acid injection. Retrograde labeling appears to be markedly enhanced by the use of metabolically inert compounds such as d-isomer amino acids.  相似文献   

9.
The auditory receptor epithelium of mammals receives efferent innervation from neurons within and surrounding the superior olivary complex of the brainstem (Warr [1975] J. Comp. Neurol. 161:159-181). Disruption of this pathway during early postnatal life, when olivocochlear axons are forming their final connections with auditory hair cells and nerve fibers, can lead to profound and permanent hearing impairments (Walsh et al. [1998] J. Neurosci. 18:3859-3869). Identification of the possible causes for this deterioration in auditory function requires a better understanding of the normal developmental interactions that occur between efferent axons and their target cells within the cochlea. To provide such information, we labeled developing efferent fibers at a constant location within the gerbil cochlea by using the fluorescent carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindo-carbocyanine perchlorate (DiI). The terminal arbors of these neurons were then reconstructed by using digital confocal microscopy. By postnatal day (P) 2, the efferent arbors associated with inner hair cells (IHCs) and outer hair cells (OHCs) displayed distinctly different morphologies closely resembling those described for adult animals (Brown [1987] J. Comp. Neurol. 260:605-619). Unlike their mature counterparts, however, P2 efferent axons frequently branched to contact both types of auditory hair cells. Unexpectedly, between P4 and P6, both IHC and OHC efferent axons produced additional branches that crossed the tunnel of Corti to invade the OHC zone. By P8, all of these supernumerary connections were eliminated, yielding completely segregated efferent pathways to IHCs and OHCs.  相似文献   

10.
GABA-like immunoreactivity in the squirrel monkey organ of corti   总被引:2,自引:0,他引:2  
The distribution of gamma-aminobutyric acid (GABA)-like immunoreactivity in the squirrel monkey organ of Corti was determined using an antiserum against GABA conjugated to bovine serum albumin. Immunoreactive labeling was seen in the region of the inner spiral bundle, the synaptic region below inner hair cells, in terminals contacting the basal part of outer hair cells, and in tunnel spiral fibers. Examples of each of these immunoreactive components could be observed in all cochlear turns. In the region of inner hair cells, immunoreactive labeling took the form of numerous small puncta randomly distributed below the base of the cells. In the region of outer hair cells, large globular immunoreactive structures reminiscent of terminal endings at the subnuclear level were observed. Since similar structures were seen at the base of outer hair cells in other cochleas processed for AChE, we conclude that GABA-like immunoreactivity was contained in efferent terminals which synapse on outer hair cells. These results strengthen previous evidence for the presence of GABA in the olivocochlear system of the mammalian cochlea.  相似文献   

11.
Congenital hypothyroidism induces developmental abnormalities in the auditory receptor, causing deafness due to a poor development of the outer hair cells (OHCs) and a lack of synaptogenesis between these cells and the olivocochlear axons. This efferent innervation is formed by two separate systems: the lateral system, which originates in the lateral superior olive (LSO) and reaches the inner hair cells; and the medial system, which originates in the ventral nucleus of the trapezoid body (VNTB) and innervates the OHCs. A previous study carried out in our laboratory showed that in congenitally hypothyroid animals, the neurons which give rise to the efferent system are normal in number and distribution, although smaller in size. The aim of the present work was to study the efferent fibers in the auditory receptor of hypothyroid animals, by means of stereotaxic injections of biotinylated dextran amine in the nuclei that give rise to the olivocochlear system: LSO and VNTB. In hypothyroid animals, injections in LSO gave rise to lateral olivocochlear fibers lacking their characteristic dense terminal arbors, while injections in the VNTB-labeled fibers terminating in the spiral bundle region, far from the OHCs with which they normally contact. In the latter case, only a small percentage of labeled fibers reached the OHCs area, giving off only two radial branches maximum. Because the number of neurons which develop into the efferent innervation was normal in hypothyroid animals, we conclude that medial fibers may contact a new target.  相似文献   

12.
The outer supporting cells in the apical turns of the guinea pig cochlea receive a dense innervation. Our previous study (Fechner et al. [1998] J. Comp. Neurol. 400:299-300) suggested that this innervation of the Deiters' and Hensen's supporting cells was not derived from efferent fibers of the olivocochlear bundle, but its origin has not been further specified. To test the hypothesis that the innervation was afferent in origin, we traced apical afferent fibers that were retrogradely labeled by extracellular injections of horseradish peroxidase. Labeled afferent fibers were of two types: type I fibers contacted inner hair cells, whereas type II fibers crossed the tunnel and contacted outer hair cells. Significantly, most of the type II fibers also formed branches to the outer supporting cells. Although a few olivocochlear efferent fibers formed such branches, counts indicated that the overwhelming majority of the branches were produced by type II afferent fibers. These branches were not produced by basal type II fibers. Apical type II fibers also differed from basal fibers by having shorter lengths, spiraling both apically and basally, and contacting all three rows of outer hair cells. These innervation differences suggest differences in the ways that information from outer hair cells is processed in the apex versus the base of the cochlea.  相似文献   

13.
It has been hypothesized that normal pruning of exuberant branching of afferent neurons in the developing cochlea is caused by the arrival of the olivocochlear efferent neurons and the resulting competition for synaptic sites on hair cells. This hypothesis was supported by a report that afferent innervation density on mature outer hair cells (OHCs) is elevated in animals deefferented at birth, before the olivocochlear system reaches the outer hair cell area (Pujol and Carlier [1982] Dev. Brain Res. 3:151-154). In the current study, this claim was evaluated quantitatively at the electron microscopic level in four cats that were de-efferented at birth and allowed to survive for 6-11 months. A semiserial section analysis of 156 OHCs from de-efferented and normal ears showed that, although de-efferentation essentially was complete in all four cases, the number and distribution of afferent terminals on OHCs was indistinguishable from normal, and the morphology of afferent synapses was normal in both the inner hair cell area and the OHC area. Thus, the postnatal presence of an efferent system is not required for the normal development of cochlear afferent innervation, and the synaptic competition hypothesis is not supported.  相似文献   

14.
We provide, for the first time, ultrastructural evidence for the differentiation of reciprocal synapses between afferent dendrites of spiral ganglion neurons and inner hair cells. Cochlear synaptogenesis of inner hair cells in the mouse occurs in two phases: before and after the onset of hearing at 9-10 postnatal (PN) days. In the first phase, inner hair cells acquire afferent innervation (1-5 PN). Reciprocal synapses form around 9-10 PN on spinous processes emitted by inner hair cells into the dendritic terminals, predominantly in conjunction with ribbon afferent synapses. During the second phase, which lasts up to 14 PN, synaptogenesis is led by the olivocochlear fibers of the lateral bundle, which induce the formation of compound and spinous synapses. The afferent dendrites themselves also develop recurrent presynaptic spines or form mounds of synaptic vesicles apposed directly across inner hair cell ribbon synapses. Thus, in the adult 2-month mouse, afferent dendrites of spiral ganglion neurons are not only postsynaptic but also presynaptic to inner hair cells, providing a synaptic loop for an immediate feedback response. Reciprocal synapses, together with triadic, converging, and serial synapses, are an integral part of the afferent ribbon synapse complex. We define the neuronal circuitry of the inner hair cell and propose that these minicircuits form synaptic trains that provide the neurological basis for local cochlear encoding of the initial acoustic signals.  相似文献   

15.
Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into medial and lateral parts. Utricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrastriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. Most afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have previously been classified into four types based on hair bundle morphology (Lewis and Li: Brain Res. 83:35–50, 1975). Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely contacted Type B and Type C hair cells, particularly on the outer rows of the medial striola. Afferents supplying more central striolar regions innervated fewer Type B and larger numbers of Type E and Type F hair cells. Striolar afferents with thin parent axons largely supplied Type E hair cells with bulbed kinocilia in the innermost striolar rows. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The relationship between the cholinergic expression, morphological development, and target cell innervation of olivocochlear (OC) efferent neurons was investigated in the postnatal hamster. Similar to what was found in previous studies, tracer injections into the contralateral cochlea labeled cells bodies retrogradely in periolivary regions and labeled cell bodies only rarely in the lateral superior olive (LSO). Few morphological differences were found among cell bodies labeled between postnatal day 1 (P1) and P30. Tracer injections into the crossed OC bundles within the brainstem anterogradely labeled terminals below the inner hair cells of the cochlea prior to P5 and labeled terminals below outer hair cells after P5, consistent with a period of transient innervation, as hypothesized previously. Within the superior olive, choline acetyltransferase (ChAT) was expressed differentially. In periolivary regions, ChAT was expressed as early as P0. ChAT-immunoreactive cell bodies in periolivary regions were similar morphologically to retrogradely labeled OC neurons. In contrast, within the LSO, ChAT was not expressed until after P2. Consistent with a medial OC projection to the cochlea at early postnatal ages, ChAT immunoreactivity was detected below inner hair cells as early as P2 but was not detected below outer hair cells until after P6. Our results suggest that medial OC neurons not only provide transient connections to inner hair cells but also may express ChAT when they are below inner hair cells. Furthermore, these results raise the possibility that OC neurons may be capable of acetylcholine synthesis and release prior to or simultaneous with their innervation of the cochlea. J. Comp. Neurol. 397:281–295, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Perfusion of the gerbil cochlea with micromolar quantities of 3H-gamma-aminobutyric acid (GABA) results in rapid, selective labeling of 50-60% of the olivocochlear (OC) efferent terminals on afferent dendrites beneath the inner hair cells, and all of the efferent terminals beneath the outer hair cells. In order to identify the neurons from which these GABA-accumulating terminals originate, the cell bodies were localized by using retrograde transport of 3H-nipecotic acid, a metabolically inert GABA analog. With survival times of 6-30 hours after cochlear injection, myelinated OC efferent fibers and cell bodies were well labeled, with the greatest number being labeled at 12-18 hours. All of the labeled neurons belonged to the medial OC system, and no lateral OC neurons were labeled. It is concluded that the GABA-accumulating endings in the gerbil cochlea arise from medial OC neurons, and therefore that medial OC efferent neurons in this species project to both inner and outer hair cell regions.  相似文献   

18.
Calcitonin gene-related peptide (CGRP)-like immunoreactive (CGRP-IR) nerve terminals in the organ of Corti of rats were studied by light and electron microscopy. Surface preparation of the organ of Corti were immunostained using anti-CGRP antiserum for avidin-biotin immunohistochemistry. Dense CGRP-IR fiber bundles were observed by light microscopy in the inner spiral bundles, tunnel spiral bundles and outer spiral bundles. Electron microscopic analysis indicated that CGRP-IR fibers belong to efferent nerves. In the inner spiral bundles, the CGRP-IR fibers showed a direct contact mainly with non-immunoreactive afferent fibers. Some CGRP-IR nerve endings in the inner spiral bundles formed contacts directly with inner hair cells. In the outer spiral bundles, CGRP-IR fibers formed synaptic contacts exclusively with the outer hair cells. It should be noted that the number of synapses of CGRP nerve endings with outer hair cells varied depending upon the sub-row: a falling gradient in number occurred along the inner-outer axis. Our results suggest that CGRP acts as an efferent neuromodulator in the organ of Corti.  相似文献   

19.
Ultrastructural investigation of the γ-aminobutyric acid (GABA) component of the inner spiral bundle in adolescent mice revealed a pathway of glutamic acid decarboxylase (GAD)-positive and -negative fibers and vesiculated endings that contact inner hair cells and their afferents through a complex of axosomatic and axodendritic synapses. Ultrastructural details were investigated by using conventional electron microscopy. Several synaptic arrangements were observed: Main axosomatic synapses form between vesiculated endings and individual or adjoining inner hair cells (interreceptor synapses). Spinous synapses form on long, spinelike processes that protrude from inner hair cells to reach distant efferent endings. The efferent endings associate with inner hair cells and their synaptic afferents through compound synapses—serial, “converging,” and triadic—otherwise characteristic of sensory relay nuclei. Serial synapses form by the sequential presynaptic alignment of the efferent→receptor→afferent components. Converging synapses result from the simultaneous apposition of a receptor ribbon synapse and a presynaptic efferent terminal on a recipient afferent dendrite. Triadic synapses comprise a vesiculated efferent ending in contact with an inner hair cell and with its synaptic afferent. Additionally, efferent endings may form simple axodendritic and axoaxonal synapses with GAD-negative vesiculated endings. The combination of different synaptic arrangements leads to short chains of compound synapses. It is assumed that these synaptic patterns seen in the adolescent mouse represent adult synaptology. The patterns of synaptic connectivity suggest an integrative role for the GABA/GAD lateral efferent system, and imply its involvement in the pre- and postsynaptic modulation of auditory signals. J. Comp. Neurol. 377:423–442, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
Using a fluorescent avidin-biotin technique, we have immunolocalized the GABA synthesizing enzyme, glutamate decarboxylase, in postnatal developing and adult rat organs of Corti. At birth, the glutamate decarboxylase-like immunoreactivity is already present in the basal turn below the inner hair cells, i.e. within lateral olivocochlear efferent fibers of the inner spiral bundle. In the apical turn, the inner spiral bundle displays an immunoreactivity as early as postnatal day 3. Only the outer hair cells of the upper second turn and apex receive fibers immunostained for glutamate decarboxylase that most probably belong to the medial olivocochlear efferent innervation. They first appear at this level at postnatal day 15. Within these two regions of the organ of Corti, the glutamate decarboxylase-like immunoreactivity reaches an adult-like pattern at postnatal days 17-18. These results strengthen the hypothesis that GABA is a putative neurotransmitter that could be used by subpopulations of the two olivocochlear innervations. They also suggest that GABA either plays a neurotrophic function or participates in the regulation of the first cochlear potentials at the level of lateral efferent synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号