首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The most potent foreign antigens for natural killer T cells (NKT cells) are α-linked glycolipids, whereas NKT cell self-reactivity involves weaker recognition of structurally distinct β-linked glycolipid antigens. Here we provide the mechanism for the autoreactivity of T cell antigen receptors (TCRs) on NKT cells to the mono- and tri-glycosylated β-linked agonists β-galactosylceramide (β-GalCer) and isoglobotrihexosylceramide (iGb3), respectively. In binding these disparate antigens, the NKT cell TCRs docked onto CD1d similarly, achieving this by flattening the conformation of the β-linked ligands regardless of the size of the glycosyl head group. Unexpectedly, the antigenicity of iGb3 was attributable to its terminal sugar group making compensatory interactions with CD1d. Thus, the NKT cell TCR molds the β-linked self ligands to resemble the conformation of foreign α-linked ligands, which shows that induced-fit molecular mimicry can underpin the self-reactivity of NKT cell TCRs to β-linked antigens.  相似文献   

2.
Summary:  Most T lymphocytes recognize peptide antigens bound to or presented by molecules encoded in the major histocompatibility complex (MHC). The CD1 family of antigen-presenting molecules is related to the MHC-encoded molecules, but CD1 proteins present lipid antigens, mostly glycolipids. Here we review T-lymphocyte recognition of glycolipids, with particular emphasis on the subpopulation known as natural killer T (NKT) cells. NKT cells influence many immune responses, they have a T-cell antigen receptor (TCR) that is restricted in diversity, and they share properties with cells of the innate immune system. NKT cells recognize antigens presented by CD1d with hexose sugars in α-linkage to lipids, although other, related antigens are known. The hydrophobic alkyl chains are buried in the CD1d groove, with the carbohydrate exposed for TCR recognition, together with the surface of the CD1d molecule. Therefore, understanding the biochemical basis for antigen recognition by NKT cells requires an understanding of how the trimolecular complex of CD1d, glycolipid, and the TCR is formed, which is in part a problem of carbohydrate recognition by the TCR. Recent investigations from our laboratories as well as studies from other groups have provided important information on the structural basis for NKT-cell specificity.  相似文献   

3.
Lang GA  Maltsev SD  Besra GS  Lang ML 《Immunology》2004,112(3):386-396
CD1 molecules are non-polymorphic major histocompatibility complex class I-related proteins that bind and present glycolipid antigens to T-cell antigen receptors (TCR) expressed by alphabeta T cells or natural killer-like T cells (NKT). Anti-metastatic properties of NKT cells reactive to the CD1d-binding antigen alpha-galactosylceramide (alpha-GalCer) are now being explored as a contributor to tumour cell killing. In this study, we tested the hypothesis that presentation of alpha-GalCer by murine CD1d (mCD1d) to mCD1d-restricted NKT cells was facilitated by plasma membrane glycolipid rafts. Confocal microscopy of mCD1d-transfected A20 B cells (A20mCD1d) demonstrated that mCD1d was raft-localized. This observation was confirmed by immunoblotting of raft fractions isolated on sucrose density gradients. Raft disruption by the cholesterol-binding agent nystatin, or short-chain ceramides, inhibited presentation of low concentrations of alpha-GalCer to NKT cells. Inhibition of antigen presentation was reversed by treatment of A20mCD1d cells with higher alpha-GalCer concentrations, or removal of raft-disrupting agents. These data indicate that partitioning of mCD1d into membrane rafts increases the capacity of antigen-presenting cells to present limiting quantities of glycolipid antigens, perhaps by stabilizing mCD1d/antigen structures on the plasma membrane and optimizing TCR engagement on NKT cells.  相似文献   

4.
CD1d-restricted natural killer T (NKT) cells are important for host defense against a variety of microbial pathogens. How and when these T cells become activated physiologically during infection remains unknown. Our data support a model in which NKT cells use a unique activation mechanism not requiring their recognition of microbial antigens. Instead, weak responses to CD1d-presented self antigens were amplified by interleukin 12 made by dendritic cells in response to microbial products, resulting in potent interferon-gamma secretion. NKT cells were among the first lymphocytes to respond during Salmonella typhimurium infection, and their activation in vivo also depended on interleukin 12 and CD1d recognition. We propose this mechanism of activation as a major pathway responsible for the rapid activation of NKT cells in different microbial infections.  相似文献   

5.
CD1d-restricted NKT cells are a novel T cell lineage with unusual features. They co-express some NK cell receptors and recognize glycolipid antigens through an invariant T cell receptor (TCR) in the context of CD1d molecules. Upon activation through the TCR, NKT cells produce large amounts of IFN-gamma and IL-4. It has been proposed that rapid cytokine output by activated NKT cells may induce bystander activation of other lymphoid lineages. The impact of CD1d-restricted NKT cell activation in the induction of B cell-mediated immune responses to infection is still unclear. We show here that CD1-restricted NKT cells contribute to malarial splenomegaly associated with expansion of the splenic B cell pool and enhance parasite-specific antibody formation in response to Plasmodium berghei infection. The increased B cell-mediated response correlates with the ability of NKT cells to promote Th2 immune responses. Additionally, antibody responses against the glycosylphosphatidylinositol (GPI)-anchored protein merozoite surface protein 1 (MSP-1) were found to be significantly lower in CD1(-/-) mice compared to wild-type animals. P. berghei-infected MHC class II (MHCII)(-/-) mice also generated antibodies against MSP-1, suggesting that antibody production against GPI-anchored antigens in response to malaria infection can arise from both MHCII-dependent and independent pathways.  相似文献   

6.
Manipulation of the immune response to specifically prevent autoaggression requires an understanding of the complex interactions that occur during the pathogenesis of autoimmunity. Much attention has been paid to conventional T lymphocytes recognizing peptide antigens presented by classical major histocompatibility complex (MHC) class I and II molecules, as key players in the destructive autoreactive process. A pivotal role for different types of regulatory T lymphocytes in modulating the development of disease is also well established. Lately, CD1d-restricted natural killer T (NKT) lymphocytes have been the subject of intense investigation because of their ability to regulate a diversity of immune responses. The non-classical antigen presenting molecule CD1d presents lipids and glycolipids to this highly specialized subset of T lymphocytes found in both humans and mice. From experimental models of autoimmunity, evidence is accumulating that NKT cells can protect from disease. One of the best studied is the murine type 1 diabetes model, the non-obese diabetic (NOD) mouse. While the NKT cell population was first recognized to be deficient in NOD mice, augmenting NKT cell activity has been shown to suppress the development of autoimmune disease in this strain. The mechanism by which CD1d-restricted T cells exert this function is still described incompletely, but investigations in NOD mice are starting to unravel specific effects of NKT cell regulation. This review focuses on the role of CD1d-restricted NKT cells in the control of autoimmune diabetes.  相似文献   

7.
The natural killer (NK) T-lymphocyte population consists of two subsets utilizing a diverse and restricted T-cell receptor (TCR) repertoire, respectively. Both populations have been shown to include autoreactive cells. NKT cells carrying restricted Valpha14(AV14S1)Jalpha281/Vbeta8.2(BV8S2A1 ) TCR have been shown to recognize alpha-galactosylceramide (alphaGalCer) presented in the context of murine CD1d. In this study we screened a set of murine CD1d-autoreactive T-cell hybridomas with diverse TCR for their reactivity with several glycosylated variants of ceramide, including alphaGalCer. These hybridomas showed a different pattern of reactivity to CD1d-expressing antigen-presenting cells (APC) and were not reactive with any of the tested variants of ceramide. A second set of hybridomas had been selected for expression of Valpha14 and Vbeta8.2 TCR chains. These cells responded to alphaGalCer presented on CD1d, but were only weakly reactive to syngeneic splenocytes or CD1d-transfected cells. Their fine specificity in the response to glycosylation variants of ceramide demonstrated a homogenous reactivity pattern, including reactivity to alpha-galactosylsphingosine, the variant of alphaGalCer with truncated fatty acyl chain. These findings underline the differences in ligand specificity between the two subsets of CD1d-restricted NKT cells, and demonstrate a similarity in reactivity among the hybridomas using the Valpha14-Jalpha281/Vbeta8.2 TCR.  相似文献   

8.
Natural killer T (NKT) cells respond to a variety of CD1d-restricted antigens (Ags), although the basis for Ag discrimination by the NKT cell receptor (TCR) is unclear. Here we have described NKT TCR fine specificity against several closely related Ags, termed altered glycolipid ligands (AGLs), which differentially stimulate NKT cells. The structures of five ternary complexes all revealed similar docking. Acyl chain modifications did not affect the interaction, but reduced NKT cell proliferation, indicating an affect on Ag processing or presentation. Conversely, truncation of the phytosphingosine chain caused an induced fit mode of TCR binding that affected TCR affinity. Modifications in the glycosyl head group had a direct impact on the TCR interaction and associated cellular response, with ligand potency reflecting the t(1/2) life of the interaction. Accordingly, we have provided a molecular basis for understanding how modifications in AGLs can result in striking alterations in the cellular response of NKT cells.  相似文献   

9.
Glycolipids presented by the major histocompatibility complex (MHC) class I homolog CD1d are recognized by natural killer T cells (NKT cells) characterized by either a semi-invariant T cell antigen receptor (TCR) repertoire (type I NKT cells or iNKT cells) or a relatively variable TCR repertoire (type II NKT cells). Here we describe the structure of a type II NKT cell TCR in complex with CD1d-lysosulfatide. Both TCR α-chains and TCR β-chains made contact with the CD1d molecule with a diagonal footprint, typical of MHC-TCR interactions, whereas the antigen was recognized exclusively with a single TCR chain, similar to the iNKT cell TCR. Type II NKT cell TCRs, therefore, recognize CD1d-sulfatide complexes by a distinct recognition mechanism characterized by the TCR-binding features of both iNKT cells and conventional peptide-reactive T cells.  相似文献   

10.
CD1d-restricted natural killer T (NKT) cells belong to the innate-like lymphocytes which respond rapidly to stress and infectious challenge. We have studied murine CD1d-restricted NKT cells in the early immune response to virulent Salmonella enterica serovar Typhimurium after oral infection. In the liver and spleen, neutrophil and macrophage numbers had increased several-fold by day 5 post-infection, while the frequency of B and T lymphocytes decreased. These cellular changes occurred independently of CD1d-restricted NKT cells, and further, CD1d-restricted T cells did not influence the bacterial load. However, in CD1d(+) mice NK1.1(+) T cells and invariant CD1d-restricted T cells were activated by the infection, as demonstrated by an increase in size, up-regulation of CD69 and production of IFN-gamma. The NK1.1 antigen was down-modulated on these cells during the course of infection, while TCR levels were unaffected. While dendritic cells (DC) up-regulated CD1d-levels upon 24 h of in vitro exposure to the bacteria, increased CD1d expression was not evident on DC in vivo during infection. Furthermore, in vitro re-stimulation of CD1d-restricted T cells isolated from infected mice demonstrated a significant skewing of the cytokine profile, with suppressed IL-4 and increased IFN-gamma production.  相似文献   

11.
The liver regulates lipid homeostasis and is enriched with natural killer T (NKT) cells that respond to lipid antigens. Optimal maturation and activation of NKT cells requires their interaction with lipid antigens that are presented by cluster of differentiation-1 (CD-1) molecules on antigen-presenting cells. Hepatocytes express CD1d and present lipid antigens to NKT cells. Depletion and dysregulation of hepatic NKT cells occurs in mice with fatty livers. Herein, we assess whether reduced CD1d content on steatotic hepatocytes contributes to fatty liver-associated NKT cell abnormalities. We show that despite expressing normal levels of CD1d mRNA, fatty hepatocytes from ob/ob mice have significantly less CD1d on their plasma membranes than normal hepatocytes. This has functional significance because ob/ob hepatocytes are less able to activate CD1d-restricted T-cell responses in vitro, and CD1d-reactive NKT cells are reduced in ob/ob livers. Events in the endoplasmic reticulum (ER) normally regulate CD1d trafficking to plasma membranes. Hepatic steatosis has been associated with ER stress. To determine if ER stress reduces CD-1 accumulation on hepatocytes, we evaluated hepatic ER stress in ob/ob mice and treated cultured hepatocytes and lean mice with tunicamycin to induce ER stress. Lipid accumulation and ER stress occurred in the livers of both ob/ob and tunicamycin-treated mice. Tunicamycin caused dose-dependent decreases in hepatocyte CD1d, inhibited hepatocyte activation of CD1d-restricted T-cell responses, depleted liver populations of CD1d-reactive NKT cells and promoted Th-1 polarization of hepatic cytokine production. In conclusion, ER stress-related decreases in hepatocyte CD1d contribute to NKT cell dysregulation in fatty livers.  相似文献   

12.
Type I natural killer T cells (NKT cells) are characterized by an invariant variable region 14-joining region 18 (V(α)14-J(α)18) T cell antigen receptor (TCR) α-chain and recognition of the glycolipid α-galactosylceramide (α-GalCer) restricted to the antigen-presenting molecule CD1d. Here we describe a population of α-GalCer-reactive NKT cells that expressed a canonical V(α)10-J(α)50 TCR α-chain, which showed a preference for α-glucosylceramide (α-GlcCer) and bacterial α-glucuronic acid-containing glycolipid antigens. Structurally, despite very limited TCRα sequence identity, the V(α)10 TCR-CD1d-α-GlcCer complex had a docking mode similar to that of type I TCR-CD1d-α-GalCer complexes, although differences at the antigen-binding interface accounted for the altered antigen specificity. Our findings provide new insight into the structural basis and evolution of glycolipid antigen recognition and have notable implications for the scope and immunological role of glycolipid-specific T cell responses.  相似文献   

13.
Natural killer T cells (NKT) can regulate innate and adaptive immune responses. Type I and type II NKT cell subsets recognize different lipid antigens presented by CD1d, an MHC class‐I‐like molecule. Most type I NKT cells express a semi‐invariant T‐cell receptor (TCR), but a major subset of type II NKT cells reactive to a self antigen sulphatide use an oligoclonal TCR. Whereas TCR‐α dominates CD1d‐lipid recognition by type I NKT cells, TCR‐α and TCR‐β contribute equally to CD1d‐lipid recognition by type II NKT cells. These variable modes of NKT cell recognition of lipid–CD1d complexes activate a host of cytokine‐dependent responses that can either exacerbate or protect from disease. Recent studies of chronic inflammatory and autoimmune diseases have led to a hypothesis that: (i) although type I NKT cells can promote pathogenic and regulatory responses, they are more frequently pathogenic, and (ii) type II NKT cells are predominantly inhibitory and protective from such responses and diseases. This review focuses on a further test of this hypothesis by the use of recently developed techniques, intravital imaging and mass cytometry, to analyse the molecular and cellular dynamics of type I and type II NKT cell antigen‐presenting cell motility, interaction, activation and immunoregulation that promote immune responses leading to health versus disease outcomes.  相似文献   

14.
Systemic lupus erythematosus is a systemic autoimmune disease characterized by inflammation in organs such as kidneys and presence of autoantibodies against nuclear antigens. We have previously shown that CD1d deficiency in BALB/c mice exacerbates lupus nephritis and autoantibody production induced by the hydrocarbon oil pristane. Here, we have tested the impact of activating CD1d-restricted natural killer T (NKT) cells on pristane-induced lupus-like autoimmunity in BALB/c and SJL mice. Repeated in vivo treatment of pristane-injected BALB/c mice with the NKT cell ligand alpha-galactosylceramide (alpha-GalCer) prior to the onset of florid disease suppressed proteinuria, in a manner that was dependent on CD1d and IL-4 expression. In sharp contrast, however, similar treatment of pristane-injected SJL mice with alpha-GalCer resulted in increased proteinuria. Consistent with these dichotomous effects of NKT cell activation on the development of lupus-like autoimmunity, NKT cells in BALB/c and SJL/J mice exhibited a mixed Th1/Th2 and a Th1-biased cytokine production profile, respectively. These findings demonstrate that NKT cell activation with alpha-GalCer suppresses or promotes pristane-induced lupus-like autoimmunity in mice, in a strain-dependent manner.  相似文献   

15.
Together with peptides, T lymphocytes respond to hydrophobic molecules, mostly lipids, presented by the non-classical CD1 family (CD1a–e). These molecules have evolved complex and diverse binding grooves in order to survey different cellular compartments for self and exogenous antigens, which are then presented for recognition to T-cell receptors (TCRs) on the surface of T cells. In particular, most CD1d-presented antigens are recognized by a population of lymphocytes denominated natural killer T (NKT) cells, characterized by a strong immunomodulatory potential. Among NKT cells, two major subsets (type I and type II NKT cells) have been described, based on their TCR repertoire and antigen specificity. Here we review recent structural and biochemical studies that have shed light on the molecular details of CD1d-mediated antigen recognition by type I and II NKT cells, which are in many aspects distinct from what has been observed for peptide major histocompatibility complex-reactive TCRs.  相似文献   

16.
Natural killer T cells (NKT cells) recognize glycolipid antigens presented by CD1d. These cells express an evolutionarily conserved, invariant T cell antigen receptor (TCR), but the forces that drive TCR conservation have remained uncertain. Here we show that NKT cells recognized diacylglycerol-containing glycolipids from Streptococcus pneumoniae, the leading cause of community-acquired pneumonia, and group B Streptococcus, which causes neonatal sepsis and meningitis. Furthermore, CD1d-dependent responses by NKT cells were required for activation and host protection. The glycolipid response was dependent on vaccenic acid, which is present in low concentrations in mammalian cells. Our results show how microbial lipids position the sugar for recognition by the invariant TCR and, most notably, extend the range of microbes recognized by this conserved TCR to several clinically important bacteria.  相似文献   

17.
Human invariant natural killer T (NKT) cell TCRs bind to CD1d via an "invariant" Vα24-Jα18 chain (iNKTα) paired to semi-invariant Vβ11 chains (iNKTβ). Single-amino acid variations at position 93 (p93) of iNKTα, immediately upstream of the "invariant" CDR3α region, have been reported in a substantial proportion of human iNKT-cell clones (4-30%). Although p93, a serine in most human iNKT-cell TCRs, makes no contact with CD1d, it could affect CD1d binding by altering the conformation of the crucial CDR3α loop. By generating recombinant refolded iNKT-cell TCRs, we show that natural single-nucleotide variations in iNKTα, translating to serine, threonine, asparagine or isoleucine at p93, exert a powerful effect on CD1d binding, with up to 28-fold differences in affinity between these variants. This effect was observed with CD1d loaded with either the artificial α-galactosylceramide antigens KRN7000 or OCH, or the endogenous glycolipid β-galactosylceramide, and its importance for autoreactive recognition of endogenous lipids was demonstrated by the binding of variant iNKT-cell TCR tetramers to cell surface expressed CD1d. The serine-containing variant showed the strongest CD1d binding, offering an explanation for its predominance in vivo. Complementary molecular dynamics modeling studies were consistent with an impact of p93 on the conformation of the CDR3α loop.  相似文献   

18.
The structural characteristics of the engagement of major histocompatibility complex (MHC) class II-restricted self antigens by autoreactive T cell antigen receptors (TCRs) is established, but how autoimmune TCRs interact with complexes of self peptide and MHC class I has been unclear. Here we examined how CD8(+) T cells kill human islet beta cells in type 1 diabetes via recognition of a human leukocyte antigen HLA-A*0201-restricted glucose-sensitive preproinsulin peptide by the autoreactive TCR 1E6. Rigid 'lock-and-key' binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHC class I-restricted TCRs. However, this interaction was extraordinarily weak because of limited contacts with MHC class I. TCR binding was highly peptide centric, dominated by two residues of the complementarity-determining region 3 (CDR3) loops that acted as an 'aromatic-cap' over the complex of peptide and MHC class I (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8(+) T cell-mediated autoreactivity.  相似文献   

19.
Using genetic and phenotypic analyses, we have analyzed the developmental pathway of mouse CD1d-restricted invariant NKT cells. We provide strong evidence that similar to conventional T cells, positive selection of NKT cells occurs during a CD4(+)CD8(+) stage. Later stages of NKT cell development involved the down-regulation of both TCR and CD4 levels and therefore diverge from conventional T cell development pathways. A unique and complete dependency for development on Fyn, a Src family kinase member, also distinguishes the NKT cell and conventional T cell populations.  相似文献   

20.
Human and murine natural T (NT) cells, also referred to as NK1.1+ or NK T cells, express TCR with homologous V regions (hAV24/BV11 and mAV14/BV8, respectively) and conserved “invariant” TCR AVAJ junctional sequences, suggesting recognition of closely related antigens. Murine NT cells recognize CD1-expressing cells and are activated in a CD1-restricted fashion by several synthetic α-glycosylceramides, such as α-GalCer. Here we studied the reactivity of human T cells against CD1d+ cells pulsed or not with α-GalCer and other related ceramides. CD1d-restricted recognition of α-GalCer was a general and specific feature of T cell clones expressing both BV11 and canonical AV24AJ18 TCR chains. Besides, human and murine NT cells showed the same reactivity patterns against a set of related glycosylceramides, suggesting a highly conserved mode of recognition of these antigens in humans and rodents. We also identified several AV24BV11 T cell clones self reactive against CD1+ cells of both hemopoietic and nonhemopoietic origin, suggesting the existence of distinct NT cell subsets differing by their ability to recognize self CD1d molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号