首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Mechanisms underlying human immunodeficiency virus-1 encephalopathy are not completely known; however, recent studies suggest that the viral protein gp41 may be neurotoxic via activation of inducible nitric oxide synthase (iNOS) in glial cells. In the present study, we investigated the NO-generating activity of primary human fetal astrocytes in response to gp41 and the relationship to microglial cell production of interleukin-1 (IL-1). Gp41 failed to trigger iNOS mRNA expression in highly enriched (>99%) astrocyte or microglial cell cultures. However, gp41-treated microglia released a factor(s) that triggered iNOS mRNA expression and NO production in astrocytes. Because IL-1 receptor antagonist protein blocked gp41-induced NO production, a pivotal role was suggested for microglial cell IL-1 production in astrocyte iNOS expression. Also, gp41 induced IL-1beta mRNA expression and IL-1 production in microglial cell but not astrocyte cultures. Using specific inhibitors, we found that gp41-induced IL-1beta production in microglia was mediated via a signaling pathway involving protein-tyrosine kinase. These data support the hypothesis that gp41 induces astrocyte NO production indirectly by triggering upregulation of microglial cell IL-1 expression.  相似文献   

7.
Astrocytes are important sources of proinflammatory mediators such as iNOS and TNFalpha in the diseased central nervous system. In previous studies, we showed that the cytokine IL-1 plays a critical role in the activation of human astrocytes to express TNFalpha and the inducible form of nitric oxide synthase (iNOS). In the present study, we have addressed the role of the MAP-kinase pathway in the signaling events leading to the induction of these genes. Treatment with SB203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), potently inhibited IL-1-mediated induction of iNOS and TNFalpha in cultures of human fetal astrocytes. In contrast, PD98059, an upstream inhibitor of the extracellular regulated kinase (ERK)1/2 pathway, had little or no effect. Interestingly, SB203580 reduced the mRNA expression for iNOS, TNFalpha, and IL-6, indicating inhibition prior to translation. Transfection of astrocytes with a dominant-negative Jun-NH(2)-terminal kinase (JNK) construct also reduced iNOS expression. Western blot analysis showed phosphorylated p38 and JNK in IL-1-activated astrocytes, and phosphorylated ERK in both resting and activated cells. Electrophoretic mobility shift assay (EMSA) showed that IL-1 induced NF-kappaB and AP-1 DNA complex formation in astrocytes, and that SB203580 inhibited AP-1 complex formation. Taken together, these results demonstrate the differential roles played by the three MAP kinases in human astrocyte inflammatory gene activation and point to a crucial function of p38 and JNK MAP kinases in IL-1-mediated astrocyte activation.  相似文献   

8.
9.
Several stimuli result in glial activation and induce nitric oxide (NO) production in microglial and astroglial cells. The bacterial endotoxin lipopolysaccharide (LPS) has been widely used to achieve glial activation in vitro, and several studies show that both microglial and, to a lesser extent, astroglial cell cultures produce NO after LPS treatment. However, NO production in endotoxin-treated astrocyte cultures is controversial. We characterized NO production in microglial, astroglial and mixed glial cell cultures treated with lipopolysaccharide, measured as nitrite accumulation in the culture media. We also identified the NO-producing cells by immunocytochemistry, using specific markers for the inducible NO synthase (iNOS) isoform, microglial and astroglial cells. Only microglial cells showed iNOS immunoreactivity. Thus, contaminating microglial cells were responsible for NO production in the secondary astrocyte cultures. We then analysed the effect of astrocytes on NO production by microglial cells using microglial-astroglial cocultures, and we observed that this production was clearly enhanced in the presence of astroglial cells. Soluble factors released by astrocytes did not appear to be directly responsible for such an effect, whereas nonsoluble factors present in the cell membrane of LPS-treated astrocytes could account, at least in part, for this enhancement.  相似文献   

10.
11.
Expression of inducible nitric oxide synthase (iNOS), which leads to the production of nitric oxide (NO), is stimulated by proinflammatory cytokines such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha). Here we report on the roles of nuclear factor-kappaB (NF-kappaB) and mitogen-activated protein (MAP) kinases in IL-1beta/TNF-alpha-induced iNOS expression in adult rat astroglia. Cytokine-induced increases in nitrite accumulation (an index of NO production) and iNOS expression were attenuated by inhibition of NF-kappaB with pyrrolidine dithiocarbamate (PDTC). Similar attenuation of these cytokine-induced responses was produced by inhibition of MAP kinase (MEK), the immediate upstream activator of Erk, using PD098,059. Combined treatment of astroglia with PDTC and PD098,059 completely abolished the cytokine-induced increases in iNOS expression and nitrite accumulation. By contrast, the selective p38 kinase inhibitor SB203,580 amplified the effects of IL-1beta/TNF-alpha on nitrite accumulation. In accordance with these findings, IL-1beta- and TNF-alpha-induced a time-dependent increase in Erk1/Erk2 activation. This cytokine action was completely abolished by PD098,059 but was not altered by PDTC. Finally, IL-1beta and TNF-alpha induced degradation of NF-kappaB's bound inhibitory protein, IkappaB-alpha, leading to translocation of NF-kappaB into the nucleus. IkappaB-alpha expression was not restored to control levels by inhibition of MEK. Furthermore, inhibition of MEK with PD098,059 did not alter IL-1beta- and TNF-alpha-induced expression of active NF-kappaB. The results demonstrate that autonomous Erk and NF-kappaB pathways mediate cytokine-induced increases in iNOS expression in astroglia.  相似文献   

12.
Ionizing radiation induces astrocyte gliosis through microglia activation   总被引:11,自引:0,他引:11  
  相似文献   

13.
Inflammatory activation of glial cells is associated with neuronal injury in several degenerative movement disorders of the basal ganglia, including manganese neurotoxicity. Manganese (Mn) potentiates the effects of inflammatory cytokines on nuclear factor-kappaB (NF-kappaB)-dependent expression of nitric oxide synthase 2 (NOS2) in astrocytes, but the signaling mechanisms underlying this effect have remained elusive. It was postulated in the present studies that direct stimulation of cGMP synthesis and activation of mitogen-activated protein (MAP) kinase signaling pathways underlies the capacity of Mn to augment NF-kappaB-dependent gene expression in astrocytes. Exposure of primary cortical astrocytes to a low concentration of Mn (10 microM) potentiated expression of NOS2 mRNA and protein along with production of NO in response to interferon-gamma (IFNgamma) and tumor necrosis factor-alpha (TNFalpha), which was prevented by overexpression of dominant negative IkappaB alpha. Mn also potentiated IFNgamma- and TNFalpha-induced phosphorylation of extracellular response kinase (ERK), p38, and JNK, as well as cytokine-induced activation of a fluorescent NF-kappaB reporter construct in transgenic astrocytes. Activation of ERK preceded that of NF-kappaB and was required for maximal activation of NO synthesis. Independently of IFNgamma/TNFalpha, Mn-stimulated synthesis of cGMP in astrocytes and inhibition of soluble guanylate cyclase (sGC) abolished the potentiating effect of Mn on MAP kinase phosphorylation, NF-kappaB activation, and production of NO. These data indicate that near-physiological concentrations of Mn potentiate cytokine-induced expression of NOS2 and production of NO in astrocytes via activation of sGC, which promotes ERK-dependent enhancement of NF-kappaB signaling.  相似文献   

14.
Proinflammatory mediators have been implicated in demyelinating disorders, including multiple sclerosis, whereas it has been proposed that the anti-inflammatory cytokines interleukin- (IL-) 4 and IL-10 participate in disease recovery. The present study analysed the effect of interferon-gamma (IFN-gamma) and bacterial endotoxin (lipopolysaccharide, LPS) on proliferation and survival of progenitors and differentiated oligodendrocytes. We also investigated the presence of receptors for IL-4 and IL-10 in oligodendroglial cells and explored a possible protective action of IL-4 and IL-10 in cultures following LPS/IFN-gamma. Finally, the role of endogenous nitric oxide (NO) on cell viability and the modulatory action of IL-4 and IL-10 on inducible nitric oxide synthase (iNOS) expression were also analysed. We report that LPS and/or IFN-gamma reduced proliferation and viability of oligodendroglial cells. Cell death, presumably by apoptosis as evidence by TUNEL and Annexin V binding, was observed following LPS/IFN-gamma, progenitors being more sensitive than differentiated cells. At both developmental stages, LPS/IFN-gamma-treated cultures expressed iNOS protein and released micromolar concentrations of NO. In progenitors, LPS/IFN-gamma-mediated cell damage was partially dependent on endogenous NO production, whereas NO was fundamental for cytotoxicity of differentiated oligodendrocytes. Both cell types expressed mRNA for IL-4 and IL-10 receptors and expression of IL-10 receptors at the protein level was also demonstrated. Treatment with either cytokine inhibited the expression of iNOS resulting from the proinflammatory stimulation. IL-10 was more effective than IL-4 in suppressing iNOS expression and, interestingly, IL-10 conferred protection against oligodendroglial death evoked by LPS/IFN-gamma. Our data raise the question of whether IL-10 may play a protective role in demyelinating diseases, not only downregulating the function of inflammatory cells but also promoting survival of progenitors and differentiated oligodendrocytes.  相似文献   

15.
16.
17.
It has been previously demonstrated that microglia and astrocytes produce micromolar amounts of nitric oxide in vitro. In this study, we demonstrate that primary rat oligodendrocytes can be stimulated to produce iNOS mRNA as detected by Northern blot and in situ hybridization analysis and a 131-kDa iNOS protein by Western blot analysis; protein was also detected in cells by single- and double-label immunohistochemistry for iNOS and the oligodendrocyte-specific marker CNPase. NO/NOS are produced as a consequence of activation of the gene encoding the inducible nitric oxide synthase as determined by inhibition with actinomycin D and cyclohexamide. The iNOS is functional, leading to calcium/calmodulin-independent NO production in these in vitro cultures. J. Neurosci. Res. 48:372–384, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
19.
In primary cultures of rat astroglial cells exposure to bacterial endotoxin lipopolysaccharide (LPS) causes induction of a Ca2+-independent form of the nitric oxide synthase (iNOS) enzyme. We have now cloned the mRNA encoding astroglial iNOS using a combination of cDNA library screening and polymerase chain reaction (PCR) amplification with degenerate oligonucleotides directed against conserved regions of all NOS enzymes. The sequence of astroglial iNOS cDNA is highly similar to the mouse macrophage sequence, having an overall homology of 92% at the DNA level and 93% at the protein level. As in other NOSs, canonical binding sites for redox cofactors are present. The 3′-untranslated region displays 4 consensus AU-pentamers, 2 polyadenylation sites, and terminates in a stretch of 17 adenosine residues. In situ hybridization studies with LPS-treated astrocyte cultures demonstrated the presence of iNOS mRNA in the majority of astroglial cells, identified by antibody staining to the glial fibrillary acidic protein (GFAP). PCR analysis showed that LPS stimulated synthesis of astrocyte iNOS mRNA, which was detected as early as 2 hr after exposure to LPS, peaked at 4 hr, and slowly declined over the next 20 hr. These results confirm that astrocytes can express iNOS and provide tools for the subsequent analysis of iNOS gene expression in rodent brain © 1994 Wiley-Liss, Inc.  相似文献   

20.
Reactive nitrogen intermediates, such as nitric oxide (NO), play an important role in host-defense and injury. Human astrocytes released abundant NO upon stimulation with the pro-inflammatory cytokine interleukin (IL)-1β, which was potentiated by interferon (IFN)-γ and tumor necrosis factor (TNF)-α. IL-1 receptor antagonist protein markedly attenuated astrocyte NO production. The anti-inflammatory cytokines IL-4 and IL-10 potently suppressed IL-1β plus IFN-γ-stimulated NO, while transforming growth factor-β preferentially inhibited IL-1β plus TNF-α-stimulated production of NO. These findings suggest that while IL-1 plays a key role in inducing astrocyte NO production, anti-inflammatory cytokines have the capacity to downregulate NO production by IL-1-stimulated astrocytes. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号