首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The amyloid-beta (Abeta) peptide has a central role in the neurodegeneration of Alzheimer disease (AD). Immunization of AD transgenic mice with Abeta(1-42) (Abeta(42)) peptide reduces both the spatial memory impairments and AD-like neuropathologic changes in these mice. Therapeutic immunization with Abeta in patients with AD was shown to be effective in reducing Abeta deposition, but studies were discontinued owing to the development of an autoimmune, cell-mediated meningoencephalitis. We hypothesized that gene vaccination could be used to generate an immune response to Abeta(42) that produced antibody response but avoided an adverse cell-mediated immune effect. OBJECTIVE: To develop an effective genetic immunization approach for treatment and prevention of AD without causing an autoimmune, cell-mediated meningoencephalitis. METHODS: Mice were vaccinated with a plasmid that encodes Abeta(42), administered by gene gun. The immune response of the mice to Abeta(42) was monitored by measurement of (1) antibody levels by enzyme-linked immunosorbent assay (ELISA) and Western blot and (2) Abeta(42)-specific T-cell response as measured by interferon-gamma enzyme-linked immunospot (ELISPOT) assay. RESULTS: Gene-gun delivery of the mouse Abeta(42) dimer gene induced significant humoral immune responses in BALB/c wild-type mice after 3 vaccinations in 10-day intervals. All 3 mice in the treated group showed significant humoral immune responses. The ELISPOT assay for interferon-gamma release with mouse Abeta(42) peptide and Abeta(9-18) showed no evident cytotoxic T-lymphocyte response. We further tested the responses of wild-type BALB/c mice to the monomer Abeta(42) gene vaccine. Western blot evaluation showed both human and mouse Abeta monomer gene vaccine elicited detectable humoral immune responses. We also introduced the human Abeta(42) monomer gene vaccine into AD double transgenic mice APPswe/PSEN1(A246E). Mice were vaccinated with plasmids that encode Abeta(1-42) and Abeta(1-16), or with plasmid without the Abeta gene. Treated mice showed significant humoral immune responses as demonstrated by ELISA and by Western blot. These mice also showed no significant cellular immune response as tested by ELISPOT. One of the treated mice was killed at 7 months of age for histological observations, and scattered amyloid plaques were noted in all layers of the cerebral cortex and in the hippocampus in both Abeta(42)- and control-vaccinated mice. No definite difference was discerned between the experimental and control animals. CONCLUSIONS: Gene-gun-administered genetic immunization with the Abeta(42) gene in wild-type BALB/c and AD transgenic mice can effectively elicit humoral immune responses without a significant T-cell-mediated immune response to the Abeta peptide. This immunotherapeutic approach could provide an alternative active immunization method for therapy and prevention of AD.  相似文献   

2.
Active and passive Abeta immunotherapy in Alzheimer's disease (AD)-like mouse models lowers cerebral amyloid-beta protein (Abeta) levels, especially if given early in the disease process, and improves cognitive deficits. In 2002, a Phase IIa clinical trial was halted due to meningoencephalitis in approximately 6% of the AD patients. It is hypothesized that the immunogen, full-length Abeta1-42, may have led to an autoimmune response. Currently, we are developing novel Abeta peptide immunogens for active immunization in amyloid precursor protein transgenic mice (APP Tg) to target Abeta B cell epitopes (within Abeta1-15) and avoid Abeta-specific T cell epitopes (Abeta16-42) so as to generate a safe and effective AD vaccine. Intranasal immunization with dendrimeric Abeta1-15 (16 copies of Abeta1-15 on a lysine core) or a tandem repeat of Abeta1-15 joined by 2 lysines and conjugated to an RGD motif with a mutated form of an E. coli-derived adjuvant generated robust Abeta titers in both wildtype and APP Tg mice. The Abeta antibodies recognized a B cell epitope within Abeta1-7, were mostly T-helper 2 associated immunoglobulin isotypes, bound human AD and APP Tg plaques, and detected Abeta oligomers. Splenic T cells reacted to the immunogens but not full-length Abeta. Six months of intranasal immunization (from 6-to-12 months of age) of J20 mice with each immunogen lowered insoluble Abeta42 by 50%, reduced plaque burden and gliosis, and increased Abeta in plasma. Interestingly, Abeta antibody generation was influenced by route of immunization. Transcutaneous immunization with dbeta1-15, but not full-length Abeta, led to high Abeta titers. In summary, our short Abeta immunogens induced robust titers of predominantly Th2 antibodies that were able to clear cerebral Abeta in the absence of Abeta-specific T cell reactivity, indicating the potential for a safer vaccine. We remain optimistic about the potential of such a vaccine for prevention and treatment of AD.  相似文献   

3.
Immunotherapy for Alzheimer’s disease (AD) is effective in improving cognitive function in transgenic mouse models of AD. Because the AN1792 [beta-amyloid (Aβ) 1-42] vaccine was halted because of T cell mediated meningoencephalitis, many scientists are searching for a novel vaccine to avoid the T cell mediated immune response caused by the Aβ1-42. Importantly, the time when the immunization is begun can influence the immune effect. In this study, an adenovirus vaccine was constructed containing 10 × Aβ3-10 repeats and gene adjuvant CpG DNA. Transgenic AD mice were immunized intranasally for 3 months. After 10 × Aβ3-10 vaccine immunization, high titers of anti-Aβ42 IgG1 predominant antibodies were induced. In spatial learning ability and probe tests, the 10 × Aβ3-10 immunized mice showed significantly improved memories compared to control mice. The 10 × Aβ3-10 vaccine resulted in a robust Th2 dominant humoral immune response and reduced learning deficits in AD mice. In addition, the 10 × Aβ3-10 vaccine might be more efficient if administered before Aβ aggregation at an early stage in the AD mouse brain. Thus, the adenovirus vector encoding 10 × Aβ3-10 is a promising vaccine for AD.  相似文献   

4.
Immunization with synthetic amyloid β-protein (Aβ) peptide has resulted in preventing and clearing Aβ deposits as well as improving cognitive function in transgenic mouse models of Alzheimer's disease (AD). But similar immunization studies in humans were halted due to the risk of inducing T cell-mediated meningoencephalitis. A safe and effective vaccine for AD requires not only therapeutic levels of anti-Aβ antibodies but also the prevention of an adverse T cell-mediated, proinflammatory autoimmune response. In this study, we developed a DNA vaccine, p(Aβ(3-10))(10)-IL-4, encoding ten tandem repeats of Aβ(3-10) fused with mouse cytokine interleukin-4 (IL-4) as a molecular adjuvant. Wild-type mice were injected intramuscularly with p(Aβ(3-10))(10)-IL-4 followed by in vivo electroporation. The p(Aβ(3-10))(10)-IL-4 vaccine elicited high titer anti-Aβ antibodies which bound to Aβ plaque in brain tissue from a ten-month-old APP/PS1 transgenic mouse. The antibody isotype was mainly IgG(1) and the IgG(1)/IgG(2a) ratio in the p(Aβ(3-10))(10)-IL-4 group was approximately eight times greater than that of the Aβ(42) group. Ex vivo cultured splenocytes isolated from mice immunized with p(Aβ(3-10))(10)-IL-4 exhibited a low IFN-γ response and a high IL-4 response compared with the control group. These results indicate that immunization with the p(Aβ(3-10))(10)-IL-4 vaccine induced effective anti-Aβ antibodies and elicited a Th2-polarized immune response that had a lower potential to cause an inflammatory T cell response. Thus, the DNA vaccine, p(Aβ(3-10))(10)-IL-4, may be a safe and efficient vaccine for AD.  相似文献   

5.
Effects of electroacupuncture (EA) on Th1/Th2 cell response were investigated in BALB/c mice immunized intraperitoneally with 2,4-dinitrophenylated keyhole limpet protein (DNP-KLH). Successive electroacupuncture stimulation on the ST36 acupoint was performed just after immunization. Serum levels of antigen-specific IgE and total IgE were significantly decreased compared with non-acupunctured controls. Production of the Th2-specific cytokines IL-4 and IL-13 in the anti-CD3 mAb-activated splenocytes was significantly suppressed in ST36 electroacupunctured mice compared with non-acupunctured mice. These results imply that successive electroacupuncture on ST36 can decrease the serum level of antigen-specific IgE and total IgE by suppression of the Th2 lineage development.  相似文献   

6.
OBJECTIVE: To demonstrate that in APPswe/PS1DeltaE9 transgenic mice, gene gun mediated Abeta42 gene vaccination elicits a high titer of anti-Abeta42 antibodies causal of a significant reduction of Abeta42 deposition in brain. METHODS: Gene gun immunization is conducted with transgenic mice using the Abeta42 gene in a bacterial plasmid with the pSP72-E3L-Abeta42 construct. Enzyme-linked immunoabsorbent assays (ELISA) and Western blots are used to monitor anti-Abeta42 antibody levels in serum and Abeta42 levels in brain tissues. Enzyme-linked immunospot (ELISPOT) assays are used for detection of peripheral blood T cells to release gamma-interferon. Immunofluorescence detection of Abeta42 plaques and quantification of amyloid burden of brain tissue were measured and sections were analyzed with Image J (NIH) software. RESULTS: Gene gun vaccination with the Abeta42 gene resulted in high titers of anti-Abeta42 antibody production of the Th2-type. Levels of Abeta42 in treated transgenic mouse brain were reduced by 60-77.5%. The Mann-Whitney U-test P=0.0286. INTERPRETATION: We have developed a gene gun mediated Abeta42 gene vaccination method that is efficient to break host Abeta42 tolerance without using adjuvant and induces a Th2 immune response. Abeta42 gene vaccination significantly reduces the Abeta42 burden of the brain in treated APPswe/PS1DeltaE9 transgenic mice with no overlap between treated and control mice.  相似文献   

7.
A single-chain fragment variable (scFv) antibody library displayed on phage was constructed using spleen cells from mice immunized with human amyloid-beta peptide (Abeta42). This first anti-Abeta42 scFv immune antibody library was selected against human Abeta42. A number of positive clones were obtained, and sequences of VH and Vkappa genes were analyzed using ExPASy and BLAST computer tools. This analysis revealed that only two unique clones with identical VH and Vkappa complementarity determining region (CDR) (except HCDR2) and identical germline genes were selected, indicating that oligoclonal immune response was occurring in Abeta42-immunized mice. Abeta42-specific scFv antibodies selected from this first immune anti-Abeta42 phage antibody library may be an important tool for the development of therapeutic molecules for Alzheimer's disease (AD).  相似文献   

8.
目的构建表达重复10次的Aβ3-10肽段的DNA疫苗,并探讨其对幼年APP/PS1转基因鼠脑内Aβ沉积的预防及对其延迟记忆障碍的作用。方法将该疫苗用体外电穿孔的方法肌肉免疫3月龄的APP/PS1双转基因鼠,并分别做行为学、Aβ抗体、脾细胞培养上清细胞因子、脑内Aβ沉积及星型胶质细胞测定。结果 p(Aβ3-10)10-MT和Aβ42组免疫一次后即产生抗体,并随着免疫次数增多而增加,类型主要为IgG1,IgG1/IgG2a明显高于Aβ42组。在Morris水迷宫中,p(Aβ3-10)10-MT和Aβ42组潜伏期明显减短,空间探索实验在平台象限所在时间均较pc DNA3.1组长。p(Aβ3-10)10-MT和Aβ42组脾细胞培养上清IL-4和IFN-γ均增高,而在p(Aβ3-10)10-MT组,IL-4较高,IFN-γ较低。免疫组化结果提示皮质和海马区老年斑沉积减少。结论 DNA疫苗p(Aβ3-10)10-MT免疫幼年APP/PS1双转基因鼠后能产生高滴度的抗体,免疫反应为Th2型,预防脑内Aβ的聚集的同时延缓了记忆障碍的发生与发展,避免了副反应的发生,有待成为预防阿尔茨海默病的有效疫苗。  相似文献   

9.
Active amyloid beta (Abeta) vaccination has been shown to be effective in clearing cerebral Abeta and improving cognitive function in mouse models of Alzheimer's disease (AD). The meningoencephalitis observed in AD vaccination trial was likely related to excessive T cell-mediated immunity caused by the immunogen Abeta(1-42). To avoid this toxicity, previous researchers have been using synthetic truncated Abeta derivatives that promote humoral immunity. In this study, we develop a novel adenovirus vaccine, which can express quadrivalent foldable Abeta(1-15) (4xAbeta(15)) and gene adjuvant GM-CSF in vivo. Importantly, the 4xAbeta(15) sequence includes an Abeta-specific B cell epitope but lacks the reported T cell epitope. The 4xAbeta(15) adenovirus vaccine induces an Abeta-specific IgG1 predominant humoral immune response, and reduces brain Abeta deposition and cognition deficits in Tg2576 mice. Detection of IL-4 and IFN-gamma in restimulated splenocytes shows a significant Th2-polarized immune response. Stimulation of splenocytes with 4xAbeta(15) peptides results in robust proliferative responses, whereas proliferation is absent after stimulation with full-length Abeta, which indicates that the 4xAbeta(15) adenovirus vaccine does not induce Abeta-specific T cellular immune response. Thus, our results raise the possibility that adenovirus vector encoding 4xAbeta(15) would be a promising candidate for future AD vaccination program.  相似文献   

10.
Amyloid-beta (Abeta) immunization efficiently reduces amyloid plaque load and memory impairment in transgenic mouse models of Alzheimer's disease (AD). Active Abeta immunization has also yielded favorable results in a subset of AD patients. However, a small percentage of patients developed severe aseptic meningoencephalitis associated with brain inflammation and infiltration of T-cells. We have shown that blocking the CD40-CD40 ligand (L) interaction mitigates Abeta-induced inflammatory responses and enhances Abeta clearance. Here, we utilized genetic and pharmacologic approaches to test whether CD40-CD40L blockade could enhance the efficacy of Abeta(1-42) immunization, while limiting potentially damaging inflammatory responses. We show that genetic or pharmacologic interruption of the CD40-CD40L interaction enhanced Abeta(1-42) immunization efficacy to reduce cerebral amyloidosis in the PSAPP and Tg2576 mouse models of AD. Potentially deleterious pro-inflammatory immune responses, cerebral amyloid angiopathy (CAA) and cerebral microhemorrhage were reduced or absent in these combined approaches. Pharmacologic blockade of CD40L decreased T-cell neurotoxicity to Abeta-producing neurons. Further reduction of cerebral amyloidosis in Abeta-immunized PSAPP mice completely deficient for CD40 occurred in the absence of Abeta immunoglobulin G (IgG) antibodies or efflux of Abeta from brain to blood, but was rather correlated with anti-inflammatory cytokine profiles and reduced plasma soluble CD40L. These results suggest CD40-CD40L blockade promotes anti-inflammatory cellular immune responses, likely resulting in promotion of microglial phagocytic activity and Abeta clearance without generation of neurotoxic Abeta-reactive T-cells. Thus, combined approaches of Abeta immunotherapy and CD40-CD40L blockade may provide for a safer and more effective Abeta vaccine.  相似文献   

11.
The M1 muscarinic receptor (M1 mAChR) is a therapeutic target in Alzheimer's disease (AD) and the M1-selective muscarinic agonists AF102B, AF150(S) and AF267B are cognitive enhancers and potential disease modifiers. Notably, AF267B decreased cerebrospinal fluid beta-amyloid (Abeta(40) and Abeta(42)) in rabbits, decreased brain Abeta levels in hypercholesterolemic rabbits and vascular Abeta(42) deposition from the cortex in cholinotoxin-treated rabbits. In triple transgenic AD mice, AF267B reduced cognitive deficits and decreased Abeta(42) and tau pathologies in the cortex and hippocampus (not amygdala), via M1 mAChR activation of protein kinase C and a disintegrin and metalloproteinase domain 17 (ADAM17 or TACE) and decreased beta-site amyloid precursor protein-cleaving enzyme 1 and glycogen synthase kinase 3beta, respectively. AF267B is the first reported low-molecular-weight therapy that targets the major AD hallmarks.  相似文献   

12.
Immunization with amyloid-beta (Abeta) peptide in mouse models of Alzheimer's disease has been reported to decrease cerebral Abeta levels and improve behavioral deficits. Several mechanisms have been proposed, including antibody-induced phagocytosis of Abeta by cerebral microglia and increased efflux of Abeta from the brain to the periphery. The latter mechanism was suggested in mice undergoing acute, passive transfer of an Abeta monoclonal antibody. Here, PSAPP transgenic mice were actively immunized by a single intraperitoneal injection of synthetic Abeta followed by chronic intranasal administration of Abeta with the mucosal adjuvant, Escherichia coli heat-labile enterotoxin, LT, twice weekly for 8 weeks. Serum from Abeta-immunized mice had an average of 240 microg/ml of anti-Abeta-specific antibodies; these antibodies had epitope(s) within Abeta1-15 and were of immunoglobulin (Ig) isotypes IgG2b, IgG2a, and IgG1. Immunization led to a 75% decrease in plaque number (P < 0.0001) and a 58% decrease in Abetax-42 levels (P < 0.026) in brain, and gliosis and neuritic dystrophy were diminished. No pathological effects of the immunization were observed in kidney, spleen, or snout. Serum Abeta levels increased 28-fold in immunized mice (53.06 ng/ml) compared to controls (1.87 ng/ml). Most of the Abeta in the serum of the immunized mice was bound to antibodies. We conclude that following active immunization, anti-Abeta antibodies sequester serum Abeta and may increase central nervous system to serum Abeta clearance.  相似文献   

13.
Alzheimer's disease is a neurodegenerative disease characterized by the formation of plaques composed of amyloid-beta (Abeta) peptide. Vaccination of transgenic models reduced Abeta deposition and protected these mice from memory deficits. However, Phase IIa clinical trials were halted prematurely. Since several investigators have suggested that the adjuvant QS-21 may have promoted the inflammatory response we investigated alternate adjuvants. Our results suggest that GM-CSF and IL-4 drive an attenuated Th2 response to immunization with A, including moderate antibody titers. These antibodies decreased plaque load in transgenic mice by as much as 43%. Total Abeta(40) and Abeta(42) levels were reduced in Abeta/GM-CSF/IL-4 animals, while plasma Abeta(40) and Abeta(42) were increased. Reductions in Abeta resulted in altered plaque morphology. Immunohistochemical analyses show fewer compact deposits composed primarily of Abeta(40) in treated mice, with a concomitant reduction in plaque-associated microgliosis. Thus, GM-CSF and IL-4 are effective adjuvants for Abeta immunotherapy.  相似文献   

14.
Progressive cerebral deposition of amyloid-beta (Abeta) peptide, an early and essential feature of Alzheimer's disease (AD), is accompanied by an inflammatory reaction marked by microgliosis, astrocytosis, and the release of proinflammatory cytokines. Mucosal administration of disease-implicated proteins can induce antigen-specific anti-inflammatory immune responses in mucosal lymphoid tissue which then act systemically. We hypothesized that chronic mucosal administration of Abeta peptide might induce an anti-inflammatory process in AD brain tissue that could beneficially affect the neuropathological findings. To test this hypothesis, we treated PDAPP mice, a transgenic line displaying numerous neuropathological features of AD, between the ages of approximately 5 and approximately 12 months with human Abeta synthetic peptide mucosally each week. We found significant decreases in the cerebral Abeta plaque burden and Abeta42 levels in mice treated intranasally with Abeta peptide versus controls treated with myelin basic protein or left untreated. This lower Abeta burden was associated with decreased local microglial and astrocytic activation, decreased neuritic dystrophy, serum anti-Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases cerebral Abeta deposition, suggesting a novel mucosal immunological approach for the treatment and prevention of AD.  相似文献   

15.
42 peptide aggregation and deposition is an important component of the neuropathology of Alzheimer's disease (AD). Gene-gun mediated gene vaccination targeting Aβ42 is a potential method to prevent and treat AD. APPswe/PS1ΔE9 transgenic (Tg) mice were immunized with an Aβ42 gene construct delivered by the gene gun. The vaccinated mice developed Th2 antibodies (IgG1) against Aβ42. The Aβ42 levels in brain were decreased by 41% and increased in plasma 43% in the vaccinated compared with control mice as assessed by ELISA analysis. Aβ42 plaque deposits in cerebral cortex and hippocampus were reduced by 51% and 52%, respectively, as shown by quantitative immunolabeling. Glial cell activation was also significantly attenuated in vaccinated compared with control mice. One rhesus monkey was vaccinated and developed anti-Aβ42 antibody. These new findings advance significantly our knowledge that gene-gun mediated Aβ42 gene immunization effectively induces a Th2 immune response and reduces the Aβ42 levels in brain in APPswe/PS1ΔE9 mice. Aβ42 gene vaccination may be safe and efficient immunotherapy for AD.  相似文献   

16.
Mutations in the amyloid precursor protein (APP) gene result in elevated production and deposition of the 42 amino acid beta-amyloid (Abeta1-42) peptide and early-onset Alzheimer's disease (AD). To accurately examine the effect of the APP FAD mutations in vivo, we introduced yeast artificial chromosomes (YACs) containing the entire genomic copy of human APP harboring FAD mutations into transgenic mice. Our current results demonstrate that mutant APP YAC transgenic mice exhibit many features characteristic of human AD, including regional deposition of Abeta with preferential deposition of Abeta1-42, extensive neuritic abnormalities as evidenced by staining with APP, ubiquitin, neurofilament, and hyperphosphorylated tau antibodies, increased markers of inflammation, and the overlapping deposition of Abeta with apolipoproteins E and J. Our results also suggest that APP YAC transgenic mice possess unique pathological attributes when compared to other transgenic mouse models of AD that may reflect the experimental design of each model.  相似文献   

17.
Human leukocytes express cannabinoid (CB) receptors, suggesting a role for both endogenous ligands and Delta 9-tetrahydrocannabinol (THC) as immune modulators. To evaluate this, human T cells were stimulated with allogeneic dendritic cells (DC) in the presence or absence of THC (0.625-5 microg/ml). THC suppressed T cell proliferation, inhibited the production of interferon-gamma and shifted the balance of T helper 1 (Th1)/T helper 2 (Th2) cytokines. Intracellular cytokine staining demonstrated that THC reduced both the percentage and mean fluorescence intensity of activated T cells capable of producing interferon-gamma, with variable effects on the number of T cells capable of producing interleukin-4. Exposure to THC also decreased steady-state levels of mRNA encoding for Th1 cytokines, while increasing mRNA levels for Th2 cytokines. The CB2 receptor antagonist, SR144528, abrogated the majority of these effects. We conclude that cannabinoids have the potential to regulate the activation and balance of human Th1/Th2 cells by a CB2 receptor-dependent pathway.  相似文献   

18.
One pathogenic characteristic of Alzheimer's disease (AD) is the formation of extracellular senile plaques with accumulated microglia. According to the amyloid hypothesis, the increase or accumulation of amyloid-beta (Abeta) peptides in the brain parenchyma is the primary event that influences AD pathology. Although the role of microglia in AD pathology has not been clarified, their involvement in Abeta clearance has been noted. High mobility group box protein-1 (HMGB1) is an abundant nonhistone chromosomal protein. We reported recently that HMGB1 was associated with senile plaques and the total protein level significantly increased in AD brain. In this study, diffuse HMGB1 immunoreactivity was observed around dying neurons in the kainic acid- and Abeta1-42 (Abeta42)-injected rat hippocampi. HMGB1 also colocalized with Abeta in the Abeta42-injected rats but not in transgenic mice, which show massive Abeta production without neuronal loss in their brains. Furthermore, coinjection of HMGB1 delayed the clearance of Abeta42 and accelerated neurodegeneration in Abeta42-injected rats. These results suggest that HMGB1 released from dying neurons may inhibit microglial Abeta42 clearance and enhance the neurotoxicity of Abeta42. HMGB1 may thus be another target in the investigation of a therapeutic strategy for AD.  相似文献   

19.
Amyloid-beta1-42 (Abeta1-42) is crucial to Alzheimer disease (AD) pathogenesis but the conformation of the toxic Abeta species remains uncertain. AD risk is increased by apolipoprotein E4 (apoE4) and decreased by apoE2 compared with the apoE3 isoform, but whether inheritance of apoE4 represents a gain of negative or a loss of protective function is also unresolved. Using hippocampal slices from apoE knockout (apoE-KO) and human apoE2, E3, and E4 targeted replacement (apoE-TR) mice, we found that oligomeric Abeta1-42 inhibited long-term potentiation (LTP) with a hierarchy of susceptibility mirroring clinical AD risk (apoE4-TR > apoE3-TR = apoE-KO > apoE2-TR), and that comparable doses of unaggregated Abeta1-42 did not affect LTP. These data provide a novel link among apoE isoform, Abeta1-42, and a functional cellular model of memory. In this model, apoE4 confers a gain of negative function synergistic with Abeta1-42, apoE2 is protective, and the apoE-Abeta interaction is specific to oligomeric Abeta1-42.  相似文献   

20.
This review discusses the molecular basis and current status of immunotherapeutic strategies for prevention and treatment of Alzheimer's disease (AD). From the molecular view-point AD belongs to the group of conformational diseases. In-vitro studies demonstrated that monoclonal antibodies could modulate the conformation of Abeta peptides with subsequent inhibition of amyloid fibrils formation and aggregation. The efficacy of this approach was then successfully proved in the murine models of AD using predominantly Abeta (42) peptide as immunogen. Immunisation of the young animals essentially prevented the development of beta-amyloid plaques formation and of concomittant neuropathology. Treatment of the older animals markedly reduced the pre-existing AD-like neuropathology. Immunisation was capable of preventing cognitive deficits in the young transgenic animals and improve the memory and behavioural disturbances in the older animals. Measurement of specific murine immunoglobulines in Abeta-vaccinated mice demonstrated a predominant IgG1 and IgG2b isotypes, suggesting a type 2 (T (H)2) T-helper cell immune response, which drives humoral immunity. The intensity of the immune response depended on transgenic animals genotype, dose, frequency and route of immunogen administration. The mechanism of antibodies action in transgenic animals consists of inducing conformational and solubility changes in Abeta peptides as well as their peripheral sink. Lymphocyte proliferation assays using Abeta peptides and splenocytes from vaccinated mice demonstrated that vaccine specifically stimulated T-cell epitopes present within the Abeta-peptide. Extensive quantitative morphological, histochemical and molecular analysis of brain tissue from several species of Abeta-immunised transgenic and non-transgenic animals showed no evidence of autoimmune reaction, complement activation or cross-reaction. No pathological changes were found in all other organs, including the kidney. Neuropathologic examination in a patient treated with vaccine revealed similar vaccination effects as in experimental animals. An aseptic meningo-encephalitis was reported in 5 % of patients included in a clinical trial in which a vaccine containing Abeta (42) peptide (AN1792) was administered intramuscularly. The causal relationship to the vaccine administration cannot be excluded since in transgenic mice a transient microglia activation was seen. However, this relatively infrequent although severe adverse effect points to a possible participation of some actually unknown risk factors in the treated patients. With regard to the rapid progress in biotechnology, especially in the vaccines technology, the development of efficacious and safe immunogens as well as of new vaccination techniques for immuntherapy of AD can be expected in the next future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号