首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Breast cancer is the most commonly diagnosed cancer among US women; there is therefore great interest in developing preventive and treatment strategies for this disease. Because breast cancer incidence is much lower in countries where women consume high levels of soy, bioactive compounds in this food source have been studied for their effects on breast cancer. Genistein, found at high levels in soybeans and soy foods, is a controversial candidate breast cancer preventive phytochemical whose effects on breast cells are complex. To understand more clearly the molecular mechanisms underlying the effects of genistein on breast cancer cells, we used a DNA oligo microarray approach to examine the global gene expression patterns in MCF-7 breast cancer cells at both physiologic (1 or 5 microM) and pharmacologic (25 microM) genistein concentrations. Microarray analyses were performed on MCF-7 cells after 48 h of either vehicle or 1, 5, or 25 microM genistein treatment. We found that genistein altered the expression of genes belonging to a wide range of pathways, including estrogen- and p53-mediated pathways. At 1 and 5 microM, genistein elicited an expression pattern suggestive of increased mitogenic activity, confirming the proliferative response to genistein observed in cultured MCF-7 cells, while at 25 microM genistein effected a pattern that likely contributes to increased apoptosis, decreased proliferation and decreased total cell number, also consistent with cell culture results. These findings provide evidence for a molecular signature of genistein's effects in MCF-7 cells and lay the foundation for elucidating the mechanisms of genistein's biological impact in breast cancer cells.  相似文献   

2.
Significant emphasis is being placed on combination chemotherapy of cancer using cytotoxic agents and naturally occurring chemopreventive agents, having different mechanisms of action with non-overlapping toxicity. In this regard, here we assessed whether a cancer preventive agent silibinin synergizes the therapeutic potential of doxorubicin (Dox), cisplatin or carboplatin, the chemotherapeutic drugs, in both estrogen-dependent and -independent human breast carcinoma, MCF-7 and MDA-MB468 cells, respectively. When tested alone, each of the four agents showed growth inhibition in both the cell lines in a dose- and a time-dependent manner. Based on their growth inhibitory effects, several combinations of silibinin (25-100 microM) with Dox (10-75 nM), cisplatin (0.2-2 microg/ml) or carboplatin (2-20 microg/ml) were next assessed for their synergistic, additive and/or antagonistic efficacy towards cell growth inhibition and apoptotic death. The strongest synergistic effects for cell growth inhibition [combination index (CI) 0.35 for MCF-7 and 0.45 for MDA-MB468 cells] were evident at a silibinin dose of 100 microM plus 25 nM Dox, in both the cell lines. Most of the CIs for other combinations of these three drugs with silibinin also suggested strong synergistic effects for cell growth inhibition in both MCF-7 and MDA-MB468 cells. In quantitative apoptosis studies, combination of silibinin with Dox resulted in much stronger apoptotic death compared to each agent alone in both cell lines. In case of silibinin combination with cisplatin, it showed no additional apoptotic effect in either cell line. Similarly, silibinin plus carboplatin combination showed stronger apoptotic effect only in MCF-7 cells. Together, these results suggest a possible synergism between silibinin and conventional cytotoxic agents for breast cancer treatment, and warrant further in vivo studies in pre-clinical breast cancer models.  相似文献   

3.
4.
5.
With an approach to enhance the efficacy of chemotherapy agents against breast cancer treatment, here, we investigated the anti-cancer effects of grape seed extract (GSE) and doxorubicin (Dox), either alone or in combination, in estrogen receptor-positive MCF-7 and receptor-negative MDA-MB468 human breast carcinoma cells. GSE (25-200 micro g/ml) treatment of cells resulted in 16-72% growth inhibition and 9-33% cell death, in a dose- and a time-dependent manner. In other studies, Dox (10-100 nM) treatment showed 23-96% growth inhibition and 10-55% cell death. Based on these results, several combinations of GSE (25-100 micro g/ml) with Dox (10-75 nM) were next assessed for their synergistic, additive and/or antagonistic efficacy towards cell growth inhibition and death. In both MCF-7 and MDA-MB468 cells, a combination of 100 micro g/ml GSE with 25-75 nM Dox treatment for 48 h showed a strong synergistic effect [combination index (CI) < 0.5] in cell growth inhibition, but mostly an additive effect (CI approximately 1) in cell death. In cell-cycle progression studies, GSE plus Dox combination resulted in a moderate increase in G1 arrest in MCF-7 cells compared to each agent alone. GSE plus Dox combination showed a very strong and significant G1 arrest in MDA-MB468 cells when compared with Dox alone, however, it was less than that observed with GSE alone. In quantitative apoptosis studies, GSE and Dox alone and in combination showed comparable apoptotic death of MCF-7 cells, however, a combination of the two was inhibitory to Dox induced apoptosis in MDA-MB468 cells. This was further confirmed in another estrogen receptor-negative MDA-MB231 cell line, in which GSE and Dox combination strongly inhibited cell growth but did not show any increase in apoptotic cell death caused by Dox. Together, these results suggest a strong possibility of synergistic efficacy of GSE and Dox combination for breast cancer treatment, independent of estrogen receptor status of the cancer cell.  相似文献   

6.
Wang HL  Kurtz A 《Oncogene》2000,19(20):2455-2460
Mammary derived growth inhibitor (MDGI) is a member of the family of cytoplasmic fatty acid binding proteins (FABPs), which bind hydrophobic ligands such as fatty acids, retinoids, eicosanoids and prostaglandines. MDGI and an 11 amino acid MDGI-derived conserved C-terminal peptide (P108) inhibits growth of normal mammary epithelial cells in tissue and organ culture, but fails to inhibit proliferation of many breast cancer cell lines in vitro. Here, the effects of peptide P108 on tumor growth of MCF-7, MDA-MB468 and MDA-MB231 human breast cancer cell lines in nude mice were tested. To deliver P108 into tumors, a novel peptide production system was applied for expression and secretion of small bioactive peptides in mammalian cells. Functional differentiation was observed in MCF-7 and MDA-MB468 cells upon P108 expression. In addition, EGF-dependent colony formation in soft agar by MDA-MB468 cells was inhibited by secreted P108. Tumor growth in athymic nude mice was suppressed in all three cell lines tested. Furthermore, P108 expressed by MCF-7/P108 cells caused paracrine tumor growth inhibition of MDA-MB231 cells. These results indicate that breast cancer inhibition by P108 is independent of binding to hydrophobic ligands and is perhaps mediated by interference with EGF-dependent signaling pathways.  相似文献   

7.
S 12363 is a new highly potent vinca alkaloid derivative characterized by the grafting of an a-aminophosphonate, bioisoster of the valine, at the C23 position of O4-deacetyl vinblastine. Using a cell image processor Samba 200 (System for Analytical Microscopic Biomedical Applications), we have studied the effect of S 12363 on cell proliferation of four mammary (MXT, MCF-7, T47-D and MDA-MB231) and two melanoma (HBL and DRD 3) tumor cell lines, and on cell cycle kinetic parameters on human T47-D and HBL tumor cell lines. S 12363 significantly inhibited the growth of these 6 tumor cell lines in a time- and concentration-dependent manner. Three concentrations were tested for 24, 48, 72 and 96 hours incubation times. The human breast T47-D, MCF-7 and melanoma DRD3 and HBL tumor cells were the most sensitive to S 12363. This compound was effective at all doses tested (0.1, 1 and 10 ng/ml) after at least a 24 hour incubation period. The murine MXT and human MDA-MB231 tumor cells were about 10 fold less sensitive than the other cell lines. S 12363 disturbed the cell cycle of T47-D and HBL cell lines and induced a significant accumulation of cells in the G2 + M phases to the detriment of the G0 + G1 phases. The antitumor activity of S 12363 was confirmed in vivo on 2 disseminated murine tumor models, i.e. P388 leukemia implanted subcutaneously and M5076 reticulum-cell sarcoma inoculated intraperitoneally. S 12363 was at least as active as reference compounds vinblastine or vincristine with active doses 5 to 20 times lower.  相似文献   

8.
9.
The potent mitogenic activity of insulin-like growth factor I (IGF-I) on breast epithelium is inhibited by retinoic acid in oestrogen receptor-positive (ER+) breast cancer cell lines. We studied and compared the effects of N-(4-hydroxyphenyl)-retinamide (4-HPR) in terms of growth inhibition and modulation of the IGF-I system in ER+ (MCF-7) and oestrogen receptor-negative (ER-) (MDA-MB231) breast cancer cell lines. Treatment with 1-10 microM 4-HPR for up to 96 h induced a dose- and time-dependent inhibition of proliferation in both breast cancer cell lines. Induction of apoptosis was much more evident in MCF-7 than in MDA-MB231 cells (30-40% compared with 0-5% respectively at 5 microM for 48 h). Exogenous human recombinant IGF-I (hr-IGF-I)-stimulated cell proliferation was abolished by 1 microM 4-HPR in MCF-7 cells. Immunoreactive IGF-I-like protein concentration in conditioned medium was reduced by 38% in MCF-7 and by 90% in MDA-MB231 cell lines following treatment for 48 h with 5 microM 4-HPR. Western ligand blot analysis showed a reduction of IGF-binding protein 4 (BP4) and BP5 by 67% and 87%, respectively, in MCF-7, whereas IGF-BP4 and -BP1 were reduced by approximately 20% in MDA-MB231 cells. Exposure to 5 microM 4-HPR for 48 h inhibited [125I]IGF-I binding and Scatchard analysis revealed a decrease of more than 50% in maximum binding capacity (Bmax) and a reduced receptor number/cell in both cancer cell lines. Steady-state type I IGF-receptor mRNA levels were reduced by approximately 30% in both tumour cell lines. We conclude that 4-HPR induces a significant down-regulation of the IGF-I system in both ER+ (MCF-7) and ER- (MDA-MB231) breast cancer cell lines. These findings suggest that, in our model, interference with the ER signalling pathway is not the only mechanism of breast cancer growth inhibition by 4-HPR.  相似文献   

10.
The goal of this study was to investigate the differential sensitivity of estrogen receptor (ER) positive MCF-7 and ER negative MDA-MB 231 breast cancer cells to phorbol myristate acetate (PMA)-dependent growth arrest. MCF-7 cells were growth arrested by 80% while MDA-MB 231 cells were arrested by 20% in response to seven days of treatment with 10 nM PMA. Coincident with the increased sensitivity of MCF-7 cells to be growth arrested by the protein kinase C (PKC) activator PMA, PMA induced 9-fold higher levels of the cyclin dependent kinase (Cdk) inhibitor p21(WAF1/GIP1) in MCF-7 compared to MDA-MB 231 cells. A comparison of the PKC isoforms expressed in MCF-7 versus MDA-MB 231 cells showed that only the PMA-sensitive PKC delta and eta isoforms were expressed at markedly (> or =10-fold) elevated levels in MCF7 versus MDA-MB 231 cells. These results suggested that the differential sensitivity to growth arrest and induction of p2l(WAFl/CIPl) could reflect, at least in part, increased expression of PMA-dependent PKC isoforms delta and/or eta. Direct evidence to support this hypothesis was provided by the ability of transient transfections into MCF-7 cells of constitutively active PKC delta but not of PKC's eta or alpha or epsilon to enhance p21(WAFl/CIP1) promoter activity. These results suggest that PKC delta plays a fundamental role in the regulation of growth in estrogen receptor positive breast cancer cells.  相似文献   

11.
Interest has been increasingly focused on all-trans-retinoic acid (tRA) and 13-cis-retinoic acid (13cRA) in cancer chemoprevention and treatment. We have examined the in vitro effects of these 2 retinoic acids (RAs) on human breast-cancer cell lines MCF-7 and ZR-75.1 (both estrogen-receptor-positive, ER+) and MDA-MB-231 (estrogen-receptor-negative, ER), in terms of inhibition of proliferation and induction of apoptosis. Both retinoic acids exerted an evident dose-dependent growth inhibition, although in the ER cell line the anti-proliferative effect was obtained only with the highest concentration used; the anti-proliferative activity of tRA was more evident than 13cRA on all 3 tested cell lines. tRA and 13cRA induced apoptosis in MCF-7 and MDA-MB-231 cell lines, but not in ZR-75.1. The apoptotic phenomenon was clearly time-dependent, and in our experience it was not related to the arrest in a specific phase of cell cycle. After treatment with RAs the levels of bcl-2 were reduced in MCF-7, while in ZR-75.1 and in MDA-MB-231 no treatment-related modifications were observed. An analysis of estrogen-receptor status, used as a marker of differentiation, demonstrated that after treatment with RAs the levels of estrogen receptor (ER) decreased in ZR-75.1 only. Our study indicates that the anti-proliferative effects of RAs are sustained by induction of apoptosis in MCF-7 and MDA-MB-231 cells, while in ZR-75.1 cells an induction of differentiation without apoptosis was the prevalent mechanism of growth inhibition. Our results encourage further studies on in vivo effects of these retinoids in breast cancer.Int. J. Cancer 70:619–627. © 1997 Wiley-Liss Inc.  相似文献   

12.
The lipid composition of five human breast cancer cell lines (MCF-7, T47D, ZR-75-1, SKBR3 and MDA-MB231) was assessed by proton magnetic resonance spectroscopy (MRS) in whole cells and membrane-enriched fractions. The proportions of the three main lipid resonances in 1D spectra were different for each cell line. These resonances included mobile methyl and methylene functions from fatty acids of triglycerides and phospholipids and N-trimethyl from choline of phospholipids. T47D and ZR-75-1 cells presented a high methylene/methyl ratio (6.02 +/- 0.35 and 6.28 +/- 0.90). This ratio was significantly lower for SKBR3, MCF-7 and MDA-MB231 cells (2.76 +/- 0.22, 2.27 +/- 0.57 and 1.39 +/- 0.39). The N-trimethyl/methyl ratio was high for MDA-MB231 and SKBR3 cells (1.38 +/- 0.54 and 0.86 +/- 0.32), but lower for MCF-7, T47D and ZR-75-1 cells (0.49 +/- 0.11, 0.16 +/- 0.07 and 0.07 +/- 0.03). 2D COSY spectra confirmed these different proportions in mobile lipids. From 1D spectra obtained on membrane preparations, T47D and ZR-75-1 were the only cell lines to retain a signal from mobile methylene functions. These differences might be related to the heterogeneity found for several parameters of these cells (tumorigenicity, growth rate, hormone receptors); an extended number of cases from fresh samples might enable clinical correlations.  相似文献   

13.
An important role for WNT-5A is implicated in a variety of tumors, including breast carcinoma. We previously showed that WNT-5A signaling inhibits migration and metastasis of breast cancer cells, and that patients with primary breast cancer in which WNT-5A was expressed have a better prognosis. Despite the fact that RhoGTPase Cdc42 is commonly associated with increased cell migration, we here show that recombinant WNT-5A activates the Cdc42 in breast cancer cells (lines MDA-MB468 and MDA-MB231) in a time-dependent manner. Activation of Cdc42 was also observed in MDA-MB468 cells that were stably transfected with a WNT-5A plasmid (MDA-MB468-5A). In all situations, increased Cdc42 activity was accompanied by decreased migration and invasion of the breast cancer cells. To explore these findings further we also investigated the effect of WNT-5A signaling on ERK1/2 activity. Apart from an initial Ca2+-dependent rWNT-5A-induced activation of ERK1/2, Cdc42 activity was inversely correlated with ERK1/2 activity in both rWNT-5A-stimulated parental MDA-MB468 and MDA-MB468-5A cells. We also demonstrated increased ERK1/2 activity in MDA-MB468-5A cells following siRNA knockdown of Cdc42. Consistent with these results, breast cancer cells transfected with constitutively active Cdc42 exhibited reduced ERK1/2 activity, migration and invasion, whereas cells transfected with dominant negative Cdc42 had increased ERK1/2 activity in response to rWNT-5A. To gain information on how ERK1/2 can mediate its effect on breast cancer cell migration and invasion, we next investigated and demonstrated that WNT-5A signaling and constitutively active Cdc42 both decreased matrix metalloproteinase 9 (MMP9) activity. These data indicate an essential role of Cdc42 and ERK1/2 signaling and MMP9 activity in WNT-5A-impaired breast cancer cells.  相似文献   

14.
Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention.  相似文献   

15.
Indole-3-carbinol (I3C), a dietary chemopreventive compound, induces cell death in human breast cancer cells by modulating activities of Src and epidermal growth factor receptor (EGFR). The effect of I3C on NF-kappaB, constitutively activated in breast cancer cells, was investigated. Nuclear extracts of MDA-MB-468, MDA-MB-231 and HBL100 cells contained all of the Rel proteins with similar expression patterns in the latter two. The level of NF-kappaB-regulated reporter gene expression was in the order HBL100 < MDA-MB-468 < MDA-MB-231. Upstream inhibition, using PI3K, EGFR or IKKbeta inhibitors, resulted in cell-specific effects on expression of the NF-kappaB-regulated reporter gene and endogenous genes Bcl-xL, IkappaBalpha and IL-6, as well as on cell viability. The expression patterns of Rel and several NF-kappaB-regulated genes and the response to LY249002 in MDA-MB-468 cells contrasted with those in other cells. I3C induced NF-kappaB-regulated reporter gene expression at 12 h in MDA-MB-468 cells. Conversely, it was reduced at 24 h in HBL100 cells. I3C treatment for 6 h alone or in combination with TNFalpha induced NF-kappaB-regulated reporter gene expression, detected 5 h later, in MDA-MB-468, but not HBL100 cells. I3C induced NF-kappaB p65/p50 DNA binding at 6.5 h, preceded by association of IKKbeta with the Src/EGFR complex and increased phospho-IkappaBalpha in MDA-MB468 cells. TNFalpha increased I3C-induced apoptosis in MDA-MB-468 and MDA-MB-231 cells. It also induced apoptosis, enhanced by I3C, in HBL100 cells. Hence, regulation of constitutive NF-kappaB was cell-specific. I3C influenced the NF-kappaB pathway in a cell-specific manner, which was not related to apoptosis. However, the combination of I3C and TNFalpha increased apoptosis in all cell lines.  相似文献   

16.
A combination of retinoic acid (RA) and human recombinant DNA-derived interferon-gamma (Hu-IFN-gamma) was tested with respect to the growth inhibitory action on several human mammary carcinoma cell lines (ZR-75.1, 734-B, MCF-7, and BT-20), a human lung carcinoma cell line (CCL-185), and a human laryngeal carcinoma cell line (HEP-2). The mammary carcinoma cell lines were all sensitive to Hu-IFN-gamma, and 2 of them (ZR-75.1 and 734-B) were also affected by RA. The combination of both substances led to a pronounced synergistic amplification of growth inhibition in ZR-75.1 and 734-B cells. RA also increased the antiproliferative activity of Hu-IFN-gamma in the RA-resistant BT-20 cells and to a less pronounced degree in MCF-7 cells. In contrast to these findings, no synergistic effects were observed between Hu-IFN-gamma and RA in CCL-185 and HEP-2 cells. Human recombinant DNA-derived interferon-alpha 2 amplified the action of RA only in BT-20 cells, but it did not act synergistically with RA in the other cell lines tested.  相似文献   

17.
Germline mutations of the tumour suppressor gene BRCA1 are involved in the predisposition and development of breast cancer and account for 20-45% of all hereditary cases. There is an increasing evidence that these tumours are characterised by a specific phenotype and pattern of gene expression. We have hypothesised that differences in chemosensitivity might parallel molecular heterogeneity of hereditary and sporadic breast tumours. To this end, we have investigated the chemosensitivity of the BRCA1-defective HCC1937 breast cancer cell line, and the BRCA1-competent MCF-7 (hormone-sensitive) and MDA-MB231 (hormone-insensitive) breast cancer cell lines using the MTT assay. The 50% inhibitory concentration (IC(50)) for the individual compounds were derived by interpolate plot analysis of the logarithmic scalar concentration curve after a 48 h exposure. HCC1937 cells were significantly (P<0.005) more sensitive to cisplatin (CDDP) (IC(50) : 30-40 microM) compared with MCF-7 (IC(50) : 60-70 microM) and MDA-MB231 (IC(50) : 90-100 microM) cells. On the other hand, BRCA1-defective breast cancer cells were significantly less sensitive to doxorubicin (Dox) (IC(50) : 45-50 microM) compared with MCF-7 (IC(50) : 1-5 microM) and MDA-MB231 (IC(50) : 5-10 microM) (P<0.02), as well as to paclitaxel (Tax) (IC(50) : >2 microM for HCC1937, 0.1-0.2 microM for MCF-7 and 0.01-0.02 microM for MDA-MB231) (P<0.001). Full-length BRCA1 cDNA transfection of BRCA1-defective HCC1937 cells led to the reconstituted expression of BRCA1 protein in HCC1937/(WT)BRCA1-derived cell clone, but did not reduce tumour cell growth in soft agar. BRCA1 reconstitution reverted the hypersensitivity to CDDP (P<0.02), and restored the sensitivity to Dox (P<0.05) and Tax (P<0.001), compared with parental HCC1937 cells. Taken together, our findings suggest a specific chemosensitivity profile of BRCA1-defective cells in vitro, which is dependent on BRCA1 protein expression, and suggest prospective preclinical and clinical investigation for the development of tailored therapeutical approaches in this setting.  相似文献   

18.
genistein多途径抑制乳腺癌细胞生长和侵袭   总被引:4,自引:0,他引:4  
目的 研究genistein在乳腺癌细胞生长和侵袭中的作用。方法 应用体外细胞培养和体内乳腺癌细胞移植裸鼠模型以及酶谱分析、Northen和Western blot方法。结果 在体外实验中,genistein不仅具有抑制乳腺癌细胞生长的作用,还具有抑制乳腺癌细胞侵袭的功能,这种抑制功能是伴genistein能明显抑制蛋白金属酶MMP-9的表达和增加组织金属蛋白酶抑制剂TIMP1的表达。genist  相似文献   

19.
Mai Z  Blackburn GL  Zhou JR 《Carcinogenesis》2007,28(6):1217-1223
The objective of this work was to determine the interactive effects between soy bioactive components and tamoxifen (TAM) on prevention of estrogen-dependent breast cancer (BRCA). We initially investigated the effects of soy isoflavone genistein and TAM on the growth and cell cycle progression of estrogen-dependent MCF-7 human BRCA cells, and on the expression of ERalpha, pS2 and EGFR genes in vitro. Genistein or TAM alone inhibited the growth of MCF-7 cells in part via G(1) phase arrest, but their combinations showed suggestive antagonistic effects. We further evaluated the effects of bioactive soy components and TAM on the growth inhibition of MCF-7 tumors in a clinically relevant breast tumor model. TAM and bioactive soy components, genistein and soy phytochemical concentrate (SPC), delayed the growth of MCF-7 tumors. The combination of TAM with genistein or SPC, especially at the lower dose of TAM, had synergistic effects on delaying the growth of MCF-7 tumors. Biomarker determination suggests that the combination of TAM and soy components may synergistically delay the growth of MCF-7 tumors via their combined effects on induction of tumor cell apoptosis and inhibition of tumor cell proliferation. In addition, genistein and TAM combination synergistically delayed the growth of breast tumor via decreased estrogen level and activity, and down-regulation of EGFR expression. The results from our studies suggest that further investigations may be warranted to determine if the combination of TAM and bioactive soy components may be used for prevention and/or treatment of estrogen-dependent BRCA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号