首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amygdala, long-term potentiation, and fear conditioning.   总被引:2,自引:0,他引:2  
Fear conditioning, during which emotional significance is attached to an initially biologically insignificant conditioned stimulus, when such neutral stimulus is paired with an aversive unconditioned stimulus, provides an experimental paradigm that is most commonly used to study fear learning. The amygdala, a sub-cortical nuclear group, is a brain structure critically important for fear conditioning. Recent studies indicate that both fear conditioning-induced neuronal plasticity and LTP at the amygdala synapses share common mechanisms of induction and expression. These findings provide the most direct evidence yet available that the mechanisms of LTP are recruited in the experimental animals during behavioral training and that such mechanisms might be utilized for memory storage.  相似文献   

2.
Pavlovian fear conditioning depends on synaptic plasticity at amygdala neurons. Here, we review recent electrophysiological, molecular and behavioral evidence suggesting the existence of a distributed neural circuitry regulating amygdala synaptic plasticity during fear learning. This circuitry, which involves projections from the midbrain periaqueductal gray region, can be linked to prediction error and expectation modulation of fear learning, as described by associative and computational learning models. It controls whether, and how much, fear learning occurs by signaling aversive events when they are unexpected. Functional neuroimaging and clinical studies indicate that this prediction circuit is recruited in humans during fear learning and contributes to exposure-based treatments for clinical anxiety. This aversive prediction error circuit might represent a conserved mechanism for regulating fear learning in mammals.  相似文献   

3.
Learning to associate neutral with aversive events in rodents is thought to depend on hippocampal and amygdala oscillations. In humans, oscillations underlying aversive learning are not well characterised, largely due to the technical difficulty of recording from these two structures. Here, we used high‐precision magnetoencephalography (MEG) during human discriminant delay threat conditioning. We constructed generative anatomical models relating neural activity with recorded magnetic fields at the single‐participant level, including the neocortex with or without the possibility of sources originating in the hippocampal and amygdalar structures. Models including neural activity in amygdala and hippocampus explained MEG data during threat conditioning better than exclusively neocortical models. We found that in both amygdala and hippocampus, theta oscillations during anticipation of an aversive event had lower power compared to safety, both during retrieval and extinction of aversive memories. At the same time, theta synchronisation between hippocampus and amygdala increased over repeated retrieval of aversive predictions, but not during safety. Our results suggest that high‐precision MEG is sensitive to neural activity of the human amygdala and hippocampus during threat conditioning and shed light on the oscillation‐mediated mechanisms underpinning retrieval and extinction of fear memories in humans.  相似文献   

4.
The amygdala and the cerebellum serve two distinctively different functions. The amygdala plays a role in the expression of emotional information, whereas the cerebellum is involved in the timing of discrete motor responses. Interaction between these two systems is the basis of the two‐stage theory of learning, according to which an encounter with a challenging event triggers fast classical conditioning of fear‐conditioned responses in the amygdala and slow conditioning of motor‐conditioned responses in the cerebellum. A third stage was hypothesised when an apparent interaction between amygdala and cerebellar associative plasticity was observed: an adaptive rate of cerebellum‐dependent motor‐conditioned responses was associated with a decrease in amygdala‐dependent fear‐conditioned responses, and was interpreted as extinction of amygdala‐related fear‐conditioned responses by the cerebellar output. To explore this hypothesis, we mimicked some components of classical eyeblink conditioning in anesthetised rats by applying an aversive periorbital pulse as an unconditioned stimulus and a train of pulses to the cerebellar output nuclei as a cerebellar neuronal‐conditioned response. The central amygdala multiple unit response to the periorbital pulse was measured with or without a preceding train to the cerebellar output nuclei. The results showed that activation of the cerebellar output nuclei prior to periorbital stimulation produced diverse patterns of inhibition of the amygdala response to the periorbital aversive stimulus, depending upon the nucleus stimulated, the laterality of the nucleus stimulated, and the stimulus interval used. These results provide a putative extinction mechanism of learned fear behavior, and could have implications for the treatment of pathologies involving abnormal fear responses by using motor training as therapy.  相似文献   

5.
Although the lateral and basal nuclei of the amygdala are believed to be essential for the acquisition of Pavlovian fear conditioning, studies using post-training manipulations of the amygdala in the inhibitory avoidance learning paradigm have recently called this view into question. We used the GABA(A) agonist muscimol to functionally inactivate these nuclei immediately after single-trial Pavlovian fear conditioning or single-trial inhibitory avoidance learning. Immediate post-training infusions of muscimol had no effect on Pavlovian conditioning but produced a dose-dependent effect on inhibitory avoidance. However, pre-training infusions dose-dependently disrupted Pavlovian conditioning. These findings indicate that the amygdala plays an essential role in the acquisition of Pavlovian fear conditioning and contributes to the modulation of memory consolidation of inhibitory avoidance but not of Pavlovian fear conditioning.  相似文献   

6.
In patients with post-traumatic stress disorder (PTSD), re-experiencing the trauma is often induced by external cues in the environment. The cues, which were emotionally neutral for the patients before the traumatic event, become fearful ones after the event. This phenomenon is considered to be associated with fear conditioning. The paradigm was set up so that the emotionality changes in the patients with PTSD would be reproduced, and the regional cerebral blood flow (rCBF) measured with positron emission tomography (PET) was compared during exposure to the same stimuli before and after acquisition of fear conditioning. Ten healthy male subjects were asked to look at some emotionally neutral photos, then to watch a video with fearful content that also contained images similar to that presented in the photos, and afterwards to look at the photos again. Five of the 10 subjects felt that the object in the photos was more fearful after watching the video than before, and they were considered to have acquired fear conditioning. In those five subjects, the rCBF in the right amygdala and the left posterior cingulate gyrus after acquisition of fear conditioning significantly increased relative to the rCBF before conditioning. Thus, these regions seem to have a critical role in fear conditioning.  相似文献   

7.
PURPOSE: The lateral nucleus of the amygdala is critical for fear conditioning, a paradigm of emotional learning, which requires recognition of an unconditioned stimulus as aversive and association of conditioned stimuli with an unconditioned stimulus. Some patients with temporal lobe epilepsy have amygdaloid damage associated with impaired emotional learning. Fear conditioning also is impaired at least in some animal models of epilepsy. We studied whether contextual or tone-cued fear conditioning is impaired in two status epilepticus models of epilepsy and whether impairment correlates with the extent of damage in the lateral nucleus of the amygdala. METHODS: We induced epilepsy in rats by either systemic kainic acid administration or electrical amygdala stimulation. Behavioral reactions in all phases of fear conditioning were analyzed from videotapes. Damage to the lateral nucleus of the amygdala was analyzed from thionin-stained sections both histologically and by volumetry. RESULTS: Immediate reflexive responses to unconditioned and conditioned stimuli were preserved, whereas the freezing response to an unconditioned stimulus was reduced. Contextual conditioning was severely impaired, whereas tone-cued conditioning was better preserved. The lateral nucleus pathology did not correlate with impaired fear conditioning. CONCLUSIONS: These data suggest that processing of complex contextual stimuli is severely affected in experimental epilepsy, whereas conditioning to simple cues is better preserved.  相似文献   

8.
Pavlovian fear conditioning has become an important model for investigating the neural substrates of learning and memory in rats, mice and humans. The hippocampus and amygdala are widely believed to be essential for fear conditioning to contexts and discrete cues, respectively. Indeed, this parsing of function within the fear circuit has been used to leverage fear conditioning as a behavioral assay of hippocampal and amygdala function, particularly in transgenic mouse models. Recent work, however, blurs the anatomical segregation of cue and context conditioning and challenges the necessity for the hippocampus and amygdala in fear learning. Moreover, nonassociative factors may influence the performance of fear responses under a variety of conditions. Caution must therefore be exercised when using fear conditioning as a behavioral assay for hippocampal- and amygdala-dependent learning.  相似文献   

9.
The cerebellum, amygdala and perirhinal cortex are involved in fear learning but the different roles that these three structures play in aversive learning are not well defined. Here we show that in adult rats amygdala or cerebellar vermis blockade causes amnesia when performed immediately, but not 1 h, after the recall of fear memories. Thus, the cerebellum, as well as the amygdala, influences long-term fear memories. These effects are long lasting, as they do not recover over time, even after a reminder shock administration. However, all of the subjects were able to form new fear memories in the absence of inactivation. By increasing the strength of conditioning, we observed that stronger fear memories are affected by the combined but not independent amygdala and cerebellar blockade. These results demonstrate that the cerebellum supports the memory processes even in the absence of a crucial site for emotions like the amygdala. Furthermore, they suggest that the amygdala is only one of the neural sites underlying long-term fear memories. Finally, the inactivation of the perirhinal cortex never alters retrieved fear traces, showing important differences between the amygdala, cerebellum and perirhinal cortex in emotional memories.  相似文献   

10.
The basolateral amygdala (BLA) is obligatory for fear learning. This learning is linked to BLA excitatory projection neurons whose activity is regulated by complex networks of inhibitory interneurons, dominated by parvalbumin (PV)-expressing GABAergic neurons. The roles of these GABAergic interneurons in learning to fear and learning not to fear, activity profiles of these interneurons across the course of fear learning, and whether or how these change across the course of learning all remain poorly understood. Here, we used PV cell-type-specific recording and manipulation approaches in male transgenic PV-Cre rats during pavlovian fear conditioning to address these issues. We show that activity of BLA PV neurons during the moments of aversive reinforcement controls fear learning about aversive events, but activity during moments of nonreinforcement does not control fear extinction learning. Furthermore, we show expectation-modulation of BLA PV neurons during fear learning, with greater activity to an unexpected than expected aversive unconditioned stimulus (US). This expectation-modulation was specifically because of BLA PV neuron sensitivity to aversive prediction error. Finally, we show that BLA PV neuron function in fear learning is conserved across these variations in prediction error. We suggest that aversive prediction-error modulation of PV neurons could enable BLA fear-learning circuits to retain selectivity for specific sensory features of aversive USs despite variations in the strength of US inputs, thereby permitting the rapid updating of fear associations when these sensory features change.SIGNIFICANCE STATEMENT The capacity to learn about sources of danger in the environment is essential for survival. This learning depends on complex microcircuitries of inhibitory interneurons in the basolateral amygdala. Here, we show that parvalbumin-positive GABAergic interneurons in the rat basolateral amygdala are important for fear learning during moments of danger, but not for extinction learning during moments of safety, and that the activity of these neurons is modulated by expectation of danger. This may enable fear-learning circuits to retain selectivity for specific aversive events across variations in expectation, permitting the rapid updating of learning when aversive events change.  相似文献   

11.
Impaired fear conditioning in Alzheimer's disease   总被引:6,自引:0,他引:6  
Classical conditioning of the fear response is a basic form of nondeclarative (nonconscious) memory that mediates both normal and pathological responses to aversive stimuli. Because fear conditioning critically depends on the amygdala, a medial temporal lobe structure that frequently undergoes significant pathological changes early in the course of Alzheimer's disease (AD), we hypothesized that fear conditioning would be impaired in patients with mild to moderate AD. We examined simple classical fear conditioning in a group of 10 patients with probable AD and 14 demographically matched, neurologically intact elderly controls. During conditioning, one stimulus (e.g. a green rectangle, the conditioned stimulus (CS+)), was paired with an aversive stimulus (a loud noise, the unconditioned stimulus (US)) using a partial reinforcement conditioning schedule. The opponent color (e.g. red rectangle), the CS-, was never paired with the US. The elderly controls acquired robust fear responses as demonstrated by their differential skin-conductance responses to the CS+ and CS-. In contrast, the AD group showed a marked impairment in conditioning, failing to exhibit significant conditioned fear responses. This failure to acquire conditioned responses could not be attributed to diminished responding by patients, relative to controls, to the aversive US. The results indicate that fear conditioning, an amygdala-dependent form of memory, is impaired in AD. These findings complement previous reports of impairments in declarative emotional memory in AD by demonstrating that a basic form of nondeclarative emotional memory is also impaired in AD.  相似文献   

12.
Greba Q  Gifkins A  Kokkinidis L 《Brain research》2001,899(1-2):218-226
Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.  相似文献   

13.
Extensive evidence implicates the amygdala as a major station for acquisition, extinction, and consolidation of emotional memories. Most of this work relies on fear-conditioning in rodents and imaging in humans. Few studies have explored coding of value in the primate amygdala, but the circuitry that underlies extinction and overnight retention remains largely unexplored. We developed a learning paradigm for nonhuman primates (macaca fascicularis) and recorded the activity of single neurons during the different stages of acquisition, extinction, and overnight consolidation of pleasant and aversive tone-odor associations. We find that many neurons become phase-locked to respiratory cycles in a stage-dependent manner, emphasizing the flexibility of amygdala neurons to represent the current state and change their spontaneous activity accordingly. We suggest that these changes can serve to increase neuronal sensitivity to an upcoming event and facilitate learning mechanisms. We further show formation of aversive-bias during the acquisition of associations and during overnight retention, in the sense that neurons preferentially code for the aversive conditioned stimuli, even if they initially homogenously represent value of the reinforcer. Our findings show flexible representations in the primate amygdala during the different cycles of learning and memory, and suggest selective potentiation of aversive information.  相似文献   

14.
The amygdala: vigilance and emotion   总被引:15,自引:0,他引:15  
Here we provide a review of the animal and human literature concerning the role of the amygdala in fear conditioning, considering its potential influence over autonomic and hormonal changes, motor behavior and attentional processes. A stimulus that predicts an aversive outcome will change neural transmission in the amygdala to produce the somatic, autonomic and endocrine signs of fear, as well as increased attention to that stimulus. It is now clear that the amygdala is also involved in learning about positively valenced stimuli as well as spatial and motor learning and this review strives to integrate this additional information. A review of available studies examining the human amygdala covers both lesion and electrical stimulation studies as well as the most recent functional neuroimaging studies. Where appropriate, we attempt to integrate basic information on normal amygdala function with our current understanding of psychiatric disorders, including pathological anxiety.  相似文献   

15.
A role for the nucleus accumbens (NAcc) and its dopamine (DA) innervation in fear and fear learning is supported by a large body of evidence, which has challenged the view that the NAcc is solely involved in mediating appetitive processes. Unfortunately, due to conflicting findings in the aversive conditioning literature the role of the NAcc in aversive conditioning remains unclear. This review focuses on the results of recent in vivo microdialysis studies that have examined the release of NAcc DA during Pavlovian aversive conditioning. In addition, we present additional new findings, which re-examine the involvement of NAcc DA in aversive conditioning. DA release was measured in the NAcc core using in vivo microdialysis during discrete cue Pavlovian aversive conditioning in four experiments. In all cases no change in DA levels was observed either during training or in response to the CS presentations despite robust behavioural evidence of discrete cue Pavlovian aversive conditioning. These findings contrast with some previous studies that show that primary and conditioned aversive stimuli increase DA release in the NAcc. We suggest that the inconsistencies in the literature might be due to procedural differences in the measurement of aversive conditioning, and the precise location of the probe in the NAcc region. Hence, rather than discount an involvement of NAcc DA in affective processes, we propose that functionally dissociable sub-regions of the NAcc may contribute to different aspects of Pavlovian aversive learning.  相似文献   

16.
The amygdala is considered to be a core component of the brain's fear system. Data from neuroimaging studies of normal volunteers and brain-damaged patients perceiving emotional facial expressions, and studies of conditioned freezing in rats, all suggest a specific role for the amygdala in aversive motivation. However, the amygdala may also be critical for emotional processing in positive or appetitive settings. Using an appetitive Pavlovian approach procedure we show a theoretically important dissociation in the effects of excitotoxic lesions of the central nucleus and basolateral area of the amygdala, in the rat. Whilst central nucleus lesions impair appetitive Pavlovian conditioning, basolateral lesions do not. Together with other data, these results not only support the hypothesis that the amygdala is critical for appetitive as well as aversive learning, but are also consistent with amygdala subsystems subserving distinct aspects of emotional learning. Lesions of the dorsal or ventral subiculum were without effect on autoshaping, indicating the lack of involvement of hippocampal processing in this form of emotional behaviour and emphasizing further the neural specificity of the effects seen following central amygdala lesions.  相似文献   

17.
Amygdala hyperfunction in phobic fear normalizes after exposure.   总被引:1,自引:0,他引:1  
BACKGROUND: The amygdala is implicated as a key brain structure in fear processing. Studies exploring this process using the paradigm of fear conditioning have implicated the amygdala in fear acquisition and in generating behavioral fear responses. As such, fear extinction could be expected to induce a reduction in amygdala activity. However, exposure in specific phobia has never been shown persistently to reduce amygdala activity. METHODS: By means of event-related functional magnetic resonance imaging, responses to phobia-related, general threat, and neutral pictures were measured before and 2 weeks after an intensive exposure session in 20 subjects with specific phobia for spiders and compared with healthy control subjects. RESULTS: Phobic subjects showed increased amygdala activity at baseline. This hyperactivity was significantly reduced 2 weeks after exposure therapy. Furthermore, a significant reduction of hyperactivity in anterior cingulate cortex and insula was found postexposure. CONCLUSIONS: To our knowledge, this is the first study demonstrating the effect of exposure on the amygdala in specific phobia. Our findings suggest that exposure therapy can have an effect on subcortical structures.  相似文献   

18.
Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D2 receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D2 receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D2 receptors in aversive emotionality, the D2 receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D1 receptors, D2 receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.  相似文献   

19.
The amygdala has been implicated in fundamental functions for the survival of the organism, such as fear and pain. In accord with this, several studies have shown increased amygdala activity during fear conditioning and the processing of fear-relevant material in human subjects. In contrast, functional neuroimaging studies of pain have shown a decreased amygdala activity. It has previously been proposed that the observed deactivations of the amygdala in these studies indicate a cognitive strategy to adapt to a distressful but in the experimental setting unavoidable painful event. In this positron emission tomography study, we show that a simple contextual manipulation, immediately preceding a painful stimulation, that increases the anticipated duration of the painful event leads to a decrease in amygdala activity and modulates the autonomic response during the noxious stimulation. On a behavioral level, 7 of the 10 subjects reported that they used coping strategies more intensely in this context. We suggest that the altered activity in the amygdala may be part of a mechanism to attenuate pain-related stress responses in a context that is perceived as being more aversive. The study also showed an increased activity in the rostral part of anterior cingulate cortex in the same context in which the amygdala activity decreased, further supporting the idea that this part of the cingulate cortex is involved in the modulation of emotional and pain networks.  相似文献   

20.
Many fears, phobias and rituals seem to arise from prepared phylogenetic mechanisms which favor old over new evolutionary dangers and affect the rules of aversive learning which govern the acquisition of fear. Recent developments in several forms of aversive learning (sensitization, conditioning, extinction, observational learning) can improve them as paradigms of the acquisition, spread and maintenance of normal and clinical fears. The most reliable treatment for phobias and rituals is exposure, whose effects closely parallel the habituation of normal defensive responses and the extinction of conditioned fear and avoidance in animals. Habituation during exposure is usually slow and step by step, and generalizes little, but once attained tends to endure. Conditioned fear extinction and fear habituation have similar courses and may depend on similar neural processes. To be reduced, avoidance has to be prevented or the safety intervals that it heralds must be given up. Some phobias may result less from enhanced acquisition than from insufficient exposure to attain habituation. Finally, the review discusses the limits of habituation and the instability of fear extinction in relation to the long-term efficacy of exposure therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号