首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
ABT-594 ((R)-5-(2-azetidinylmethoxy)-2-chloropyridine) represents a novel class of broad-spectrum analgesics whose primary mechanism of action is activation of the neuronal nicotinic acetylcholine receptors. The present study characterized the effects of ABT-594 in a rat chemotherapy-induced neuropathic pain model, where it attenuated mechanical allodynia with an ED50 = 40 nmol/kg (i.p.). This anti-allodynic effect was not blocked by systemic (i.p.) pretreatment with naloxone but was blocked completely with mecamylamine. Pretreatment with chlorisondamine (0.2-5 micromol/kg, i.p.) only partially blocked the effects of ABT-594 at the higher doses tested. In contrast, central (i.c.v.) pretreatment with chlorisondamine completely blocked ABT-594's anti-allodynic effect. Taken together, the data demonstrate that ABT-594 has a potent anti-allodynic effect in the rat vincristine model and that, in addition to its strong central site of action, ABT-594's effects are partially mediated by peripheral nicotinic acetylcholine receptors in this animal model of chemotherapy-induced neuropathic pain.  相似文献   

2.
We examined the analgesic and anti-allodynic effects of morphine and U-50,488H (trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]-cyclohexyl)-benzeneacetamide methanesulfonate salt), a selective kappa-opioid receptor agonist, and the development of tolerance to their effects in neuropathic pain model mice induced by sciatic nerve ligation (SNL). In the tail-pinch method, morphine at 10 mg/kg, s.c. produced a weak analgesic effect in SNL mice; however, U-50,488H at 5 mg/kg, s.c. produced an analgesic effect equipotent to that in normal mice. In contrast, morphine produced an adequate analgesic effect when given either intracerebroventricularly (i.c.v.) or intrathecally (i.t.), but U-50,488H only produced analgesia when given i.t. Repeated administration of morphine (either i.c.v. or i.t.) or U-50,488H (either s.c. or i.t.), did not induce tolerance to the effect. In the static allodynia test with an application of von Frey filaments, both compounds given s.c. suppressed the allodynic effect, but in the dynamic allodynia test involving lightly stroking the plantar surface with a cotton bud, only U-50,488H produced an anti-allodynic effect. Repeated administrations of both compounds did not develop tolerance to these anti-allodynic effects. Thus, U-50,488H was found to be a highly effective at blocking hyperalgesia and allodynia in nerve injury, and these findings suggest that kappa-opioid receptor agonists are attractive pharmacological targets for the control of patients with neuropathic pain.  相似文献   

3.
The selective mGlu5 antagonists, MPEP, 2-methyl-6-phenylethynyl-pyridine, and SIB1893, (E)-6-methyl-2-styryl-pyridine, have been evaluated as antiepileptic drugs in DBA/2 mice and lethargic mice. Clonic seizures induced by the selective mGlu5 agonist, (R,S)-2-chloro-5-hydroxyphenylglycine (CHPG), 3 micromol intracerebroventricularly (i.c.v.), are potently suppressed by both compounds (MPEP, ED(50)=0.42 [0.28-0.62] mg/kg intraperitoneally (i.p.); SIB 1893 ED(50)=0.19 [0.11-0.33] mg/kg i.p. ). Clonic seizures induced by the mGlu1,5 agonist, 3, 5-dihydroxyphenylglycine (DHPG), 1.5 micromol i.c.v., are less potently suppressed by both compounds (MPEP, ED(50)=22 [13-38] mg/kg i.p., 110 [67-180] nmol i.c.v.; SIB1893, ED(50)=31 [18-54] mg/kg i.p. , 95 [82-110] nmol i.c.v.). Sound-induced seizures in DBA/2 mice are suppressed at 15 min by MPEP and SIB 1893 (MPEP ED(50) clonic seizures=18 [10-32] mg/kg i.p., 93 [69-125] nmol i.c.v.; tonic seizures=6.1 [4.5-8.3] mg/kg i.p., 46 [26-80] nmol i.c.v.; SIB 1893 ED(50) clonic seizures=27 [17-44] mg/kg i.p., 825 [615-1108] nmol i. c.v., tonic seizures=5.4 [3.4-8.6] mg/kg i.p., 194 [113-332] nmol i. c.v.). The ED(50) for MPEP for impaired rotarod performance is 128 [83-193] mg/kg i.p., at 15 min, i.e. a therapeutic index for sound-induced seizures of 5-20. In lethargic mice (lh/lh), a genetic absence model, MPEP, 50 mg/kg i.p., caused a marked reduction in the incidence of spontaneous spike-and-wave discharges. These selective antagonists of mGlu5 block seizures due to activation of mGlu5 at very low systemic doses. At rather higher doses they block convulsive and non-convulsive primary generalised seizures.  相似文献   

4.
Neuropeptide FF (NPFF) and its analog 1DMe ([D-Tyr(1),(NMe)Phe(3)]NPFF) have been shown to reverse or potentiate morphine analgesia in rat depending on the supraspinal or spinal site of injection. The properties, in the mouse tail-flick test, of 1DMe and its related compound Nic-1DMe (Nicotinoyl-Pro-1DMe) were investigated after their local (i.c.v. and i.t.) and systemic administration. Whereas Nic-1DMe and 1DMe exhibit the same affinity and selectivity towards NPFF(1) and NPFF(2) receptors, Nic-1DMe, in contrast to 1DMe, is unable to inhibit morphine-induced analgesia after i.c.v. and i.p. administration. Conversely, after i.t. and i.p. administration, both neuropeptide FF analogs could potentiate morphine analgesia. Differences in disposition parameters between 1DMe and Nic-1DMe are evidenced, suggesting that the two neuropeptide FF analogs could stimulate differentially supraspinal neuropeptide FF receptors. The predominant activation of spinal neuronal pathways by Nic-1DMe could explain the selective pro-opioid action of this compound after i.t., i.c.v. and i.p. administration.  相似文献   

5.
The acute intrathecal (i.t.) injection of 50, 100, 200, 250 and 300 nmol of oxymetazoline produced dose-dependent antinociception in rats assessed by tail flick and paw pressure tests. Significant antinociception was observed with all doses of oxymetazoline except 50 nmol in the paw pressure test. The ED50 values for i.t. oxymetazoline in the tail flick and paw pressure tests were 120 nmol (95% CI: 76-178 nmol) and 148 nmol (95% CI: 120-186 nmol), respectively. Oxymetazoline had a long duration of action; a single i.t. dose of 100 nmol significantly elevated tail flick latency and paw pressure threshold for 8 h. The alpha-adrenoceptor antagonist phentolamine, given i.t. 1 h after oxymetazoline, attenuated the antinociceptive effect in a dose-dependent manner. Phentolamine (50 micrograms i.t.) produced almost complete antagonism in the tail flick and paw pressure tests. These data indicate that oxymetazoline produces long lasting antinociception in the rat following i.t. injection, and that the effect is mediated by alpha-adrenoceptors in the spinal cord.  相似文献   

6.
The intrathecal (i.t.) injection of 100 nmol of oxymetazoline to male, Sprague-Dawley rats significantly increased tail flick latency and paw pressure threshold for 10 h as compared to i.t. saline-treated rats. Oxymetazoline-induced antinociception was accompanied by a 2 degree C decrease in rectal temperature and a delayed but mild sedative effect. Intrathecal phentolamine (50 micrograms), injected 8 h after i.t. oxymetazoline, completely reversed the analgesic and hypothermic effects but did not affect sedation. The intravenous injection of oxymetazoline (100 nmol) had no effect in the paw pressure test and virtually no effect in the tail flick test. Co-injection of i.t. morphine and i.t. oxymetazoline in a molar ratio of 1:28 resulted in significant potentiation of their antinociceptive effects as determined by isobolographic analysis. For i.t. morphine alone, the ED50 and 95% confidence interval (95% CI) was 3.8 nmol (2.8-5.6) in the tail flick test and 7.7 nmol (5.4-12.8) in the paw pressure test. In the combination, the ED50 (95% CI) of i.t. morphine was 0.7 nmol (0.6-0.8) in the tail flick test and 1.2 nmol (1.1-1.4) in the paw pressure test, corresponding to an approximate 6-fold increase in potency. The data indicate that: (1) the antinociceptive and hypothermic effects of i.t. oxymetazoline at 8 h are mediated by spinal alpha-adrenoceptors; (2) peripheral sites, and probably supraspinal sites, do not contribute to i.t. oxymetazoline-induced antinociception [corrected]; and (3) oxymetazoline potentiates the analgesic effects of morphine in the spinal cord of the naive rat.  相似文献   

7.
The aim of the present study was to investigate the effects of myricitrin, a flavonoid with anti-inflammatory and antinociceptive action, upon persistent neuropathic and inflammatory pain. The neuropathic pain was caused by a partial ligation (2/3) of the sciatic nerve and the inflammatory pain was induced by an intraplantar (i.pl.) injection of 20 microL of complete Freund's adjuvant (CFA) in adult Swiss mice (25-35 g). Seven days after sciatic nerve constriction and 24 h after CFA i.pl. injection, mouse pain threshold was evaluated through tactile allodynia, using Von Frey Hair (VFH) filaments. Further analyses performed in CFA-injected mice were paw edema measurement, leukocytes infiltration, morphological changes and myeloperoxidase (MPO) enzyme activity. The intraperitoneal (i.p.) treatment with myricitrin (30 mg/kg) significantly decreased the paw withdrawal response in persistent neuropathic and inflammatory pain and decreased mouse paw edema. CFA injection increased 4-fold MPO activity and 27-fold the number of neutrophils in the mouse paw after 24 h. Myricitrin strongly reduced MPO activity, returning to basal levels; however, it did not reduce neutrophils migration. In addition, myricitrin treatment decreased morphological alterations to the epidermis and dermis papilar of mouse paw. Together these results indicate that myricitrin produces pronounced anti-allodynic and anti-edematogenic effects in two models of chronic pain in mice. Considering that few drugs are currently available for the treatment of chronic pain, the present results indicate that myricitrin might be potentially interesting in the development of new clinically relevant drugs for the management of this disorder.  相似文献   

8.
The intrathecal (i.t.) administration of glutamate (10-100 nmol) caused dose-related hyperalgesia (mean ED50 of 35 nmol) when assessed in the thermal behaviour model of nociception, the hot-plate test maintained at 50 degrees C. The i.p., i.t. or intracerebroventricular (i.c.v.) injection of the nitric oxide synthase inhibitors, L-NOARG and L-NAME, did not induce any detectable effect per se, but instead, produced dose-related inhibition of glutamate-induced hyperalgesia. D-NAME, the inactive enantiomer of L-NAME, had no effect. The i.c.v. or i.t. administration of L-NIO caused graded attenuation of glutamate-induced hyperalgesia. L-arginine (3.4 mmol kg(-1), i.p.), but not D-arginine (3.4 mmol kg(-1), i.p.) significantly potentiated glutamate (10 nmol)-induced hyperalgesia, an action that was prevented by L-NOARG (137 nmol kg(-1)). The co-injection of S-nitroso-N-acetyl-D,L-penicillamine (SNAP) (0.22 micromol) or 8-bromo-cGMP (22.5 nmol) with glutamate (10 nmol), via either i.t. or i.c.v. routes, also significantly enhanced glutamate-induced hyperalgesia. The guanylate cyclase inhibitors LY 83583 (0.1-1.0 nmol) or ODQ (30-300 pmol) co-administered with glutamate, dose-dependently antagonised the glutamate-induced hyperalgesia. Collectively, these results demonstrate that the i.t. injection of glutamate into the spinal cord of mice produces dose-related hyperalgesia an effect that was largely mediated by the L-arginine-nitric oxide-cGMP pathway from both spinal and supraspinal sites.  相似文献   

9.
We have previously demonstrated that gabapentin supraspinally activates the descending noradrenergic system to alleviate neuropathic pain. In this study, we investigated whether pregabalin, an antiepileptic and analgesic drug that is also designed as a structural analogue of gamma-aminobutyric acid (GABA), exhibits supraspinal analgesic effects similar to those of gabapentin involving the descending noradrenergic system. Both systemically (intraperitoneally; i.p.) and locally (intracerebroventricularly or intrathecally; i.c.v. or i.t.) injected pregabalin reduced thermal and mechanical hypersensitivity in a murine chronic pain model that was prepared by partial ligation of the sciatic nerve (the Seltzer model), suggesting that pregabalin acts at both supraspinal and spinal loci. The supraspinal analgesic action of pregabalin was observed only after peripheral nerve injury, and pregabalin (i.p. and i.c.v.) did not affect acute thermal and mechanical nociception. Depletion of spinal noradrenaline (NA) or pharmacological blockade of spinal alpha(2)-adrenoceptors with yohimbine (i.p. or i.t.), but not alpha(1)-adrenoceptors with prazosin (i.p.), reduced the analgesic effects of pregabalin (i.p. or i.c.v.) on thermal and mechanical hypersensitivity. Moreover, i.c.v.-administered pregabalin dose-dependently increased the spinal 4-hydroxy-3-methoxyphenylglycol (MHPG) content and the MHPG/NA ratio only in mice with neuropathic pain, whereas the concentrations of NA, serotonin, 5-hydroxyindoleacetic acid and dopamine were unchanged, demonstrating that supraspinal pregabalin accelerated the spinal turnover of NA. Together, these results indicate that pregabalin supraspinally activates the descending noradrenergic pain inhibitory system coupled with spinal alpha(2)-adrenoceptors to ameliorate neuropathic pain.  相似文献   

10.
Vasoconstrictor responsiveness of tail arteries from endotoxaemic rats   总被引:1,自引:0,他引:1  
This study investigated the anti-allodynic and anti-oedematogenic effects of the hexanic extract, lignan-rich fraction and purified lignans from a plant used in the traditional medicine, Phyllanthus amarus, in the inflammatory and neuropathic models of nociception. The hexanic extract inhibited the allodynia and the oedema induced by the intraplantar injection of complete Freund's adjuvant (CFA). The inhibition observed was 76 +/- 7% (ipsilateral paw), 64 +/- 7% (contralateral paw), and 41 +/- 2% (oedema). Otherwise, the lignan-rich fraction or the pure lignans did not affect CFA-induced allodynia. Administered chronically, the lignan fraction reduced CFA-induced paw oedema (39 +/- 9%). When evaluated in the model of neuropathic pain caused by partial ligation of sciatic nerve, the hexanic extract inhibited the mechanical allodynia (77 +/- 7%), with a similar efficacy to the gabapentin (71 +/- 10%). The anti-allodynic effects of hexanic extract of P. amarus seem not to be associated with the impairment of motor co-ordination or with the development of tolerance. Finally, the treatment with hexanic extract inhibited the increase of myeloperoxidase activity, either following intraplantar injection of CFA or after sciatic nerve injury. It is concluded that, apart from its anti-inflammatory actions, which are probably linked to the presence of lignans, another as yet unidentified active principle(s) present in the hexanic extract of P. amarus produces pronounced anti-allodynia in two models of inflammatory and neuropathic pain. Considering that few drugs are currently available for the treatment of chronic pain, especially of the neuropathic type, the present results may have clinical relevance and open new possibilities for the development of new anti-allodynic drugs.  相似文献   

11.
Non-competitive antagonists of the N-methyl-D-aspartate (NMDA) receptor have been evaluated as anticonvulsants against sound-induced seizures in DBA/2 mice. The ED50 values for protection against sound-induced clonic seizures 15 min following the intracerebroventricular (i.c.v.) and intraperitoneal (i.p.) administration are: MK-801, ED50 = 0.5 nmol (i.c.v.); 0.14 mumol/kg (i.p.); phencyclidine, ED50 = 14 nmol (i.c.v.); 1.9 mumol/kg (i.p.); dextrorphan, ED50 = 35 nmol (i.c.v.); 18.5 mumol/kg (i.p.); tiletamine, ED50 = 40 nmol (i.c.v.); 5.6 mumol/kg (i.p.); SKF-10047, ED50 = 50 nmol (i.c.v.); 23.5 mumol/kg (i.p.); dextromethorphan, ED50 = 70 nmol (i.c.v.); 28.0 mumol/kg (i.p.); ketamine, ED50 = 110 nmol (i.c.v.); 15.5 mumol/kg (i.p.). The anticonvulsant effects of ketamine and tiletamine are of short duration (10-30 min), whereas the anticonvulsant effects of MK-801 and dextromethorphan last for 45 min or longer. The effects of phencyclidine, SKF-10047 and dextrorphan are of intermediate duration. Mild to moderate behavioural excitation is associated with the anticonvulsant activity of all the non-competitive NMDA antagonists. For MK-801, phencyclidine, dextrorphan, SKF-10047 and ketamine there is a close correlation between their relative anticonvulsant potencies and their potencies for displacing [3H]MK-801. The anticonvulsant effect is likely to be primarily mediated via NMDA antagonism at the PCP/MK-801 site.  相似文献   

12.
We investigated the effects of 2-(4-hydroxybenzoyl)amino-2-methylpropionic acid (M43068), a novel analgesic agent, in rat models of acute and neuropathic pain. Oral M43068 (10-100 mg/kg) suppressed only the late phase of formalin-induced nociceptive behaviors. In the neuropathic pain model, oral M43068 (10-100 mg/kg) suppressed mechanical allodynia in the nerve-injured paw without affecting normal thresholds. On the other hand, i.v. M43068 (30 mg/kg) mainly suppressed the Abeta-fiber-mediated response with the Neurometer. I.c.v. pretreatment with the alpha1-adrenoceptor antagonist, prazosin, or i.p. pretreatment with the gamma-aminobutyric acid (GABA)B receptor antagonist, saclofen, abolished the M43068-induced antinociception. However, oral M43068 (30-300 mg/kg) had no influence on blood pressure and motor function, unlike the alpha1-adrenoceptor and the GABAB receptor agonists. These data indicate that M43068 shows antinociceptive and anti-allodynic effects with reduced risks of side effects. It is suggested that the descending noradrenergic system is involved in the analgesic effects of M43068.  相似文献   

13.
Buprenorphine is a potent opioid analgesic clinically used to treat moderate to severe pain. The present study assessed its analgesic efficacy in a broad range of rodent models of acute and chronic pain. In the phenylquinone writhing, hot plate, and tail flick mouse models of acute pain, full analgesic efficacy was obtained (ED50 values: 0.0084-0.16 mg/kg i.v.). Full analgesic efficacy was also obtained in yeast- and formalin-induced inflammatory pain (ED50 values: 0.0024-0.025 mg/kg i.v., rats and mice) and in mustard-oil-induced spontaneous pain, referred allodynia, and referred hyperalgesia in mice (ED50 values: 0.018-0.025 mg/kg i.v.). Buprenorphine strongly inhibited mechanical and cold allodynia in mononeuropathic rats, as well as mechanical hyperalgesia and cold allodynia in polyneuropathic rats (ED50 values: 0.055 and 0.036 mg/kg i.v. and 0.129 and 0.038 mg/kg i.p., respectively). It is concluded that buprenorphine shows a broad analgesic profile and offers the opportunity to treat different pain conditions, including neuropathic pain.  相似文献   

14.
We studied spinal analgesic and antiallodynic effects of endomorphin-1 and endomorphin-2 administered i.t. in comparison with Tyr-D-Ala-Gly-MePhe-Gly-ol (DAMGO) or morphine, during acute, inflammatory and neuropathic pain in rats chronically implanted with intrathecal cannulas. Endomorphin-1 and endomorphin-2 (2.5, 5, 10 microg i.t.) increased the tail-flick latency and, to the lesser extent, the paw pressure latency. The range of potencies in both those models of acute pain was as follows: DAMGO > morphine = endomorphin-1 > endomorphin-2. In a model of inflammatory pain, the number of formalin-induced flinching episodes was decreased by endomorphin-1. The effect of endomorphin-2 was much less pronounced. Both DAMGO and morphine significantly inhibited the pain-related behavior evoked by formalin. In a neuropathic pain model (sciatic nerve crushing in rats), endomorphin-1 and -2 (5 microg i.t.) had a statistically significant effect on the tail-flick latency and on the cold-water tail flick latency. Morphine, 5 microg, was found to be ineffective. Endomorphin-1 and -2 (2.5 and 5 microg i.t.) dose-dependently antagonized allodynia. Those effects of endomorphins were antagonized in acute (30 microg), inflammatory (30 microg) and neuropathic pain models (60 microg) by cyprodime, a selective mu-opioid receptor antagonist. In conclusion, our results show a strong analgesic action of endomorphins at the spinal cord level. The most interesting finding is a strong, stronger than in the case of morphine, antiallodynic effect of endomorphins in rats subjected to sciatic nerve crushing, which suggests a possible use of these compounds in a very difficult therapy of neuropathic pain.  相似文献   

15.
It has been suggested that the endogenous opioid peptides, methionine and leucine enkephalin, participate only in naloxone-facilitated antinociceptive responses. To reassess this proposal, analgesic effects resulting from complete inhibition of enkephalin metabolism by intracerebroventricular (i.c.v.) administration of the mixed inhibitor RB 38A (R,S)HONHCOCH2CH(CH2 phi)CONHCH(CH2 phi)COOH) were compared to the effects of morphine (i.c.v.) in various assays commonly used to select analgesics: mouse hot plate-test, tail flick test with mice and rats, electrical stimulation of the tail (TES), paw pressure test with rats, and phenylbenzoquinone-induced writhing test with mice. The ED50s of morphine vs. ED50s of RB 38A in the writhing, hot plate (jumping) and tail flick tests with mice were 0.24 nmol vs. 38 nmol, 1 nmol vs. 36 nmol and 3.2 nmol vs. 285 nmol, respectively. RB 38A (ED30 153 nmol) was only 15 times less active in the tail flick test with rats than morphine and only halve as active in the paw pressure test. Noxious TES in rat was very sensitive to the inhibitory action of endogenous opioids protected by RB 38A, particularly the post-vocalization response which was also shown to be alleviated by antidepressants. All the analgesic effects observed were reversed by naloxone. This first direct evidence of analgesia resulting from peptidase inhibition, in the tail flick test with mice and rats, hot plate (paw lick) and TES shows that the pain suppressive effects of endogenous opioid peptides are not restricted to naloxone-facilitated noxious stimuli but occur more generally, in all morphine-sensitive tests. The differential effects of RB 38A in the various assays is likely to be related to the amount of enkephalins released and to the efficiency of peptidase inactivation in particular brain regions implicated in the control of a given nociceptive input. This mechanism could account for the reduction in side-effects compared to those of morphine following chronic administration of RB 38A.  相似文献   

16.
Tyr-D-Ala-Phe-Leu-Arg psi (CH(2)NH) Arg-NH(2) (SK-9709) is a dynorphin derivative in which the peptide bond was replaced with a psi (CH(2)NH) bond. In the present study, the antinociceptive effects of SK-9709 were determined in an acetic acid-induced writhing test and a hot-plate test. In the acetic acid-induced writhing test, significant antinociceptive effects were observed after subcutaneous (s.c.), intracerebroventricular (i.c.v.) and intrathecal (i.t.) injection of SK-9709, with maximal effects at 120, 30 and 15 min, respectively. The antinociceptive effects were dose-dependent and ED(50) values (range of 95% confidence limits) after s.c., i.c.v. and i.t. injection were 1.36 (0.61 - 3.02) micromol kg(-1), 2.11 (1.18 - 3.79) and 0.79 (0.61 - 1.03) nmol per mouse, respectively. The effects of SK-9709 (s.c., i.c.v. and i.t.) were reversed by the opioid receptor antagonist naloxone (1.36 micromol kg(-1), s.c.). The effects of SK-9709 (s.c.) were also reversed by the selective mu-opioid receptor antagonist beta-funaltrexamine (4.7 nmol per mouse, i.c.v.), and kappa-opioid receptor antagonist nor-binaltorphimine (4.9 nmol per mouse, i.t.). In the hot-plate test, the antinociceptive effect of SK-9709 (s.c., i.c.v. and i.t.) was also dose-dependent with the maximal peak effect at 120, 15 and 15 min similarly to the acetic acid-induced writhing test. The antinociceptive effects were dose-dependent and ED(50) values (range of 95% confidence limits) after s.c., i.c.v. and i.t. injection were 39.1 (5.4 - 283.0) micromol kg(-1), 6.5 (4.0 - 10.7) and 7.4 (5.0 - 11.0) nmol per mouse, respectively. These findings indicated that systemically administered SK-9709 produced long-lasting antinociceptive effects and these effects were mediated by both supra-spinal mu- and spinal kappa-opioid receptors.  相似文献   

17.
In spite of prominent progress in basic pain research, neuropathic pain remains a significant medical problem, because it is often poorly relieved by conventional analgesics. Thus this situation encourages us to make more sophisticated efforts toward the discovery of new analgesics. We previously showed that i.t. administration of acromelic acid-A (ACRO-A), a Japanese mushroom poison, provoked prominent tactile pain (allodynia) at an extremely low dose of 1 fg/mouse. In the present study we synthesized ACRO-A analogues (2S,3R,4R)-3-carboxymethyl-4-phenoxypyrrolidine-2-carboxylic acid (POPA-2) and (2S,3R,4R)-3-carboxymethyl-4-(phenylthio)pyrrolidine-2-carboxylic acid (PSPA-1) chemically and examined their ability to induce allodynia in conscious mice. Whereas POPA-2 induced allodynia at extremely low doses from 1 to 100 fg/mouse, similar to ACRO-A, PSPA-1 did not induce allodynia; rather, it inhibited the ACRO-A-induced allodynia with an ID(50) value (95% confidence limits) of 2.19 fg/mouse (0.04-31.8 fg/mouse). Furthermore, PSPA-1 relieved neuropathic pain produced by L5 spinal nerve transection on day 7 after the operation in a dose-dependent manner from 1 to 100 pg/mouse. In contrast, it did not affect thermal or mechanical nociception or inflammatory pain. PSPA-1 reduced the increase in neuronal nitric oxide synthase activity in the spinal cord of neuropathic pain mice assessed by NADPH-diaphorase histochemistry and blocked the allodynia induced by N-methyl-d-aspartate. These results demonstrate that PSPA-1 may represent a novel class of anti-allodynic agents for neuropathic pain acting by blocking the glutamate-nitric oxide pathway.  相似文献   

18.
Positive modulation of the neuronal nicotinic acetylcholine receptor (nAChR) α4β2 subtype by selective positive allosteric modulator NS-9283 has shown to potentiate the nAChR agonist ABT-594-induced anti-allodynic activity in preclinical neuropathic pain. To determine whether this benefit can be extended beyond neuropathic pain, the present study examined the analgesic activity and adverse effect profile of co-administered NS-9283 and ABT-594 in a variety of preclinical models in rats. The effect of the combined therapy on drug-induced brain activities was also determined using pharmacological magnetic resonance imaging. In carrageenan-induced thermal hyperalgesia, co-administration of NS-9283 (3.5 μmol/kg, i.p.) induced a 6-fold leftward shift of the dose–response of ABT-594 (ED50 = 26 vs. 160 nmol/kg, i.p.). In the paw skin incision model of post-operative pain, co-administration of NS-9283 similarly induced a 6-fold leftward shift of ABT-594 (ED50 = 26 vs. 153 nmol/kg). In monoiodo-acetate induced knee joint pain, co-administration of NS-9283 enhanced the potency of ABT-594 by 5-fold (ED50 = 1.0 vs. 4.6 nmol/kg). In pharmacological MRI, co-administration of NS-9283 was shown to lead to a leftward shift of ABT-594 dose–response for cortical activation. ABT-594 induced CNS-related adverse effects were not exacerbated in presence of an efficacious dose of NS-9283 (3.5 μmol/kg). Acute challenge of NS-9283 produced no cross sensitization in nicotine-conditioned animals. These results demonstrate that selective positive allosteric modulation at the α4β2 nAChR potentiates nAChR agonist-induced analgesic activity across neuropathic and nociceptive preclinical pain models without potentiating ABT-594-mediated adverse effects, suggesting that selective positive modulation of α4β2 nAChR by PAM may represent a novel analgesic approach.  相似文献   

19.

BACKGROUND AND PURPOSE

Cannabinoid CB2 receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory and neuropathic pain. However, mechanisms underlying CB2-mediated analgesic effects remain largely unknown. The present study was conducted to elucidate the CB2 receptor expression in ‘pain relevant’ tissues and the potential sites of action of CB2 agonism in rats.

EXPERIMENTAL APPROACH

Expression of cannabinoid receptor mRNA was evaluated by quantitative RT-PCR in dorsal root ganglia (DRGs), spinal cords, paws and several brain regions of sham, chronic inflammatory pain (CFA) and neuropathic pain (spinal nerve ligation, SNL) rats. The sites of CB2 mediated antinociception were evaluated in vivo following intra-DRG, intrathecal (i.t.) or intraplantar (i.paw) administration of potent CB2-selective agonists A-836339 and AM1241.

KEY RESULTS

CB2 receptor gene expression was significantly up-regulated in DRGs (SNL and CFA), spinal cords (SNL) or paws (CFA) ipsilateral to injury under inflammatory and neuropathic pain conditions. Systemic A-836339 and AM1241 produced dose-dependent efficacy in both inflammatory and neuropathic pain models. Local administration of CB2 agonists also produced significant analgesic effects in SNL (intra-DRG and i.t.) and CFA (intra-DRG) pain models. In contrast to A-836339, i.paw administration of AM-1241 dose-relatedly reversed the CFA-induced thermal hyperalgesia, suggesting that different mechanisms may be contributing to its in vivo properties.

CONCLUSIONS AND IMPLICATIONS

These results demonstrate that both DRG and spinal cord are important sites contributing to CB2 receptor-mediated analgesia and that the changes in CB2 receptor expression play a crucial role for the sites of action in regulating pain perception.  相似文献   

20.
Experiments were designed to address whether the pentacyclic triterpene tormentic acid isolated from the stem bark of the plant Vochysia divergens exerts oral anti-allodynic properties in two models of chronic pain in mice: neuropathic pain caused by partial ligation of the sciatic nerve and inflammatory pain produced by intraplantar injection of Complete Freund's Adjuvant. Oral administration of tormentic acid (30 mg/kg) twice a day for several consecutive days produced time-dependent and pronounced anti-allodynia effect in both ispsilateral and contralateral paws after plantar injection of Complete Freund's Adjuvant. The inhibition observed was 82+/-9% and 100+/-11%, respectively. Interestingly, tormentic acid did not inhibit paw oedema formation following Complete Freund's Adjuvant plantar injection. Tormentic acid (30 mg/kg, p.o.) and gabapentin (70 mg/kg, p.o.), given twice a day, inhibited markedly the neuropathic allodynia induced by partial ligation of the sciatic nerve, with inhibition of 91+/-19% and 71+/-16%, respectively. The anti-allodynic action of tormentic acid was not associated with impairment of the motor activity of the animals. Together, the present results indicate that tormentic acid or its derivatives might be of potential interest in the development of new clinically relevant drugs for the management of persistent neuropathic and inflammatory allodynia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号