首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
  1. The mechanism of release of calcitonin gene-related peptide (CGRP) from sensory nerves in response to skeletal muscle contraction was investigated in the rat hindlimb in vivo and in vitro.
  2. In the anaesthetized rat, sciatic nerve stimulation at 10 Hz for 1 min caused a hyperaemic response in the hindlimb. During the response, partial pressure of CO2 in the venous blood effluent from the hindlimb significantly increased from 43±3 to 73±8 mmHg, whereas a small decrease in pH and no appreciable change in partial pressure of O2 were observed.
  3. An intra-arterial bolus injection of NaHCO3 (titrated to pH 7.2 with HCl), which elevated PCO2 of the venous blood, caused a sustained increase in regional blood flow of the iliac artery. Capsaicin (0.33 μmol kg−1, i.a.) and a specific calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8–37), (100 nmol kg−1 min−1, i.v.) significantly suppressed the hyperaemic response to NaHCO3. Neither NDΩ-nitro-L-arginine methyl ester (1 μmol kg−1 min−1, i.v.) nor indomethacin (5 mg kg−1, i.v.) affected the response.
  4. The serum level of CGRP-like immunoreactivity in the venous blood was significantly increased by a bolus injection of NaHCO3 (pH=7.2) from 50±4 to 196±16 fmol ml−1.
  5. In the isolated hindlimb perfused with Krebs-Ringer solution, a bolus injection of NaHCO3 (pH=7.2) caused a decrease in perfusion pressure which was composed of two responses, i.e., an initial transient response and a slowly-developing long-lasting one. CGRP(8–37) significantly inhibited the latter response by 73%.
  6. These results suggest that CO2 liberated from exercising skeletal muscle activates capsaicin-sensitive perivascular sensory nerves locally, which results in the release of CGRP from their peripheral endings, and then the released peptide causes local vasodilatation.
  相似文献   

2.
  1. The influence of the sympathetic nervous system on intestinal fluid transport by the jejunum and ileum of the anaesthetized rat was investigated under basal conditions and during active secretion induced by intra-arterial infusion of vasoactive intestinal peptide (VIP).
  2. Intra-arterial infusion of noradrenaline (3, 10, 30 nmol min−1, i.a.) and i.v. injection of the selective α2-adrenoceptor agonist UK 14,304 (1 μmol kg−1, i.v.) increased the rate of basal fluid absorption. The effect of UK 14,304 was blocked by yohimbine (10 μmol kg−1, i.v). However, the selective α1-adrenoceptor agonist phenylephrine (5 μmol kg−1, i.v.) did not alter either the jejunal or ileal absorption rate.
  3. The α2-adrenoceptor antagonists yohimbine (0.3, 1.0, 3 and 10 μmol kg−1, i.v.) and rauwolscine (10 μmol kg−1, i.v.) decreased the basal absorption rate, while the α1-adrenoceptor antagonist prazosin (3 μmol kg−1, i.v.) was without effect. Intracerebroventricular injection of yohimbine (3 μmol kg−1) caused a significant antiabsorptive effect in the jejunum but not ileum.
  4. Peripheral chemical sympathectomy induced by pretreating animals with 6-hydroxydopamine (150 mg kg−1, i.p., total dose) induced a trend towards impaired absorption in the jejunum and ileum.
  5. The findings provide evidence that the sympathetic nervous system exerts tonic control on intestinal fluid transport and that the effect is mainly through peripheral α2-adrenoceptors.
  6. The subtype determination of α2-adrenoceptors in modulating intestinal fluid transport was assessed by determining the effects of α2-adrenoceptor agents on intestinal fluid secretion induced by i.a. infusion of VIP (0.8 μg min−1).
  7. Intravenous administration of UK 14,304 caused a dose-dependent reversal of the secretory phase of the VIP-induced response, but failed to restore fluid transport to the control level of net absorption. EC50 values were 0.17 μmol kg−1 in the jejunum and 0.22 μmol kg−1 in the ileum.
  8. The effect of UK 14,304 was blocked by the selective α2A/D antagonist BRL 44408 and the non-selective α2 antagonist yohimbine (each 10 μmol kg−1). The selective α2B/C antagonist ARC 239 (10 μmol kg−1) did not affect the antisecretory action of UK 14,304. It is suggested that the α2-adrenoceptors in the rat intestinal epithelium are the α2D or α2A-like subtype.
  相似文献   

3.
  1. The role of endogenous tachykinins on guinea-pig colonic propulsion was investigated by using potent and selective tachykinin NK1 and NK2 receptor antagonists. Colonic propulsion and contractions were determined by means of a balloon-catheter device, inserted into the rectum of guanethidine (68 μmol kg−1, s.c., 18 and 2 h before)-pretreated, urethane-anaesthetized guinea-pigs. Propulsion of the device (dynamic model) was determined by measuring the length of the catheter expelled during 60 min filling of the balloon (flow rate 5 μl  min−1).
  2. In control conditions the tachykinin NK1 receptor antagonist SR 140333 (1 μmol kg−1, i.v.) did not affect either colonic propulsion or the amplitude of contractions. The tachykinin NK2 receptor antagonists MEN 10627 and MEN 11420 (1 μmol kg−1, i.v.) increased colonic propulsion at 10 min (+120% and 150%, respectively) but at 60 min the effect was significant only for MEN 10627 (+84%). SR 48968 (1 μmol kg−1, i.v.) did not significantly enhance the colonic propulsion. None of these tachykinin NK2 receptor antagonists modified the amplitude of colonic contractions. In contrast, both atropine (6 μmol kg−1, i.v., plus infusion of 1.8 μmol h−1) and hexamethonium (55 μmol kg−1, i.v., plus infusion of 17 μmol h−1) abolished propulsion (81% and 87% inhibition, respectively) and decreased the amplitude of contractions (68% inhibition for either treatment).
  3. In atropine-treated animals (6 μmol kg−1, i.v., plus infusion of 1.8 μmol h−1), apamin (30 nmol kg−1, i.v.) restored colonic propulsion (+416%) and increased the amplitude of contractions (+367% as compared to atropine alone). Hexamethonium (55 μmol kg−1, i.v., plus infusion of 17 μmol h−1) abolished the apamin-induced, atropine-resistant colonic propulsion (97% inhibition) and reduced the amplitude of the atropine-resistant contractions (52% inhibition).
  4. The apamin-induced, atropine-resistant colonic propulsion was inhibited by SR 140333 (−69% at 1 μmol kg−1), SR 48968 (−78% at 1 μmol kg−1), MEN 11420 (−59% at 1 μmol kg−1) and MEN 10627 (−50% at 1 μmol kg−1), although the latter effect was not statistically significant. The combined administration of SR 140,333 and MEN 10,627 (1 μmol kg−1 for each antagonist) almost completely abolished colonic propulsion (90% inhibition). The amplitude of colonic contractions was also reduced by SR 140333 (−42%), SR 48968 (−29%), MEN 11420 (−45%) but not by MEN 10627 (−16%). The combined administration of SR 140333 and MEN 10,627 reduced the amplitude of contractions by 47%. SR 140603 (1 μmol kg−1, i.v.), the less potent enantiomer of SR 140333, was inactive.
  5. In control animals, apamin (30 nmol kg−1, i.v.) enhanced colonic propulsion (+84%) and increased the amplitude of contractions (+68%), as compared to the vehicle. Hexamethonium (55 μmol kg−1, i.v. plus infusion of 17 μmol h−1) inhibited propulsion (86% inhibition) and decreased the amplitude of contractions (49% inhibition). SR 140333, SR 48968, MEN 11420, MEN 10627, or the coadministration of SR 140333 and MEN 10627 had no effect.
  6. In a separate series of experiments, the mean amplitude of colonic contractions was also recorded under isovolumetric conditions through the balloon-catheter device kept in place at 75 mm from the anal sphincter (static model). In control conditions, neither SR 140333 nor MEN 11420 modified the amplitude of contractions. In atropine-pretreated guinea-pigs, SR 140333 and MEN 11420 (0.1–1 μmol kg−1) dose-dependently decreased the amplitude of contractions. In apamin- and atropine-pretreated animals, only the highest (1 μmol kg−1) dose of SR 140333 or MEN 11420 significantly decreased the amplitude of contractions. The inhibitory potency of atropine (0.3–1 μmol kg−1) was similar in apamin-pretreated animals and in controls.
  7. It was concluded that, in anaesthetized guinea-pigs, endogenous tachykinins, acting through both NK1 and NK2 receptors, act as non-cholinergic excitatory neurotransmitters in promoting an apamin-evoked reflex propulsive activity of the distal colon.
  相似文献   

4.
  1. We have developed and characterized a model of immediate hypersensitivity/inflammation of the urinary bladder in vivo induced by local application of ovalbumin (OA) in OA- sensitive female rats. Two parameters of the inflammatory response were assessed following OA challenge: plasma protein extravasation (PPE) and changes in smooth muscle reactivity. The former was estimated by measurement of Evans blue extravasation at 0.5, 2, 4, 8 and 24 h time point following in vivo challenge. Changes in reactivity were determined by measurement of isotonic tension responses of urinary bladder strips following OA challenge in vitro.
  2. Acute in vivo intravesical OA challenge (10 mg in 0.3 ml saline) in actively sensitized female Wistar rats caused a time-dependent PPE in the urinary bladder which was biphasic with peak responses at 2–4 and 24 h.
  3. The PPE response to acute OA challenge, above base-line, at 2 h was abolished by systemic capsaicin pretreatment (50 mg kg−1, s.c., 4 days before use) (P<0.05) whilst the response at 24 h was unaffected. The 2 h time point was then used for further studies.
  4. Degranulation of mast cells, achieved by pretreatment with compound 48/80 (5 mg kg−1, s.c. for 3 consecutive days), completely abolished the PPE response to OA challenge at the 2 h time point.
  5. The tachykinin NK1 receptor antagonist, SR 140333 (0.1 μmol kg−1, i.v.), abolished the 2 h PPE response whilst the tachykinin NK2 receptor antagonist MEN 11420 (0.1 μmol kg−1, i.v.) appeared to reduce the response by approximately 50% but this did not reach significance. The bradykinin B2 receptor antagonist, Hoe 140 (0.1 μmol kg−1, i.v.), similarly to SR 140333, blocked the 2 h PPE response to OA, whereas the selective B1 receptor antagonist B 9858 (0.1 μmol kg−1, i.v.) had no significant effect. Inhibition of cyclo-oxygenase (COX) achieved by pretreatment with the COX inhibitor dexketoprofen (5.3 μmol kg−1, i.v.) also blocked the PPE response, whilst the leukotriene receptor antagonist ONO 1078 (1 μmol kg−1, i.v.) significantly reduced PPE by about 80%.
  6. In the rat isolated urinary bladder OA (1 mg ml−1) challenge produced a biphasic response with a rapidly achieved maximal contraction followed by a sustained contraction for approximately 25 min. In vitro capsaicin pretreatment (10 μM for 15 min) significantly attenuated the duration of the sustained contraction whilst having no effect on the maximum contractile response achieved. In vivo pretreatment of animals with compound 48/80 significantly attenuated (42%) the maximum contractile response. Combination of both treatments almost completely abolished the response. In vitro treatment with Hoe 140 (1 μM) had no significant effect on the response to OA and neither did ONO 1078 (1 μM).
  7. These results show that both the early inflammatory response and alterations in smooth muscle reactivity to OA challenge in actively sensitized animals are dependent on mast cell degranulation and the activation of sensory C-fibres. Furthermore this model of allergic cystitis may be useful for investigating both the processes involved and potential novel therapies in the treatment of interstitial cystitis.
  相似文献   

5.
  1. Bradykinin and nitric oxide (NO) are potent hypotensive agents. In the present study, the role of K+-channels in the signalling pathways responsible for their hypotensive action was investigated in normotensive, anaesthetized rats. The rats were treated with ion-channel inhibitors before administration of bradykinin (2.8, 5.6, 28 and 56 nmol kg−1, i.v.) followed in some of the protocols by nitroprusside (1.1, 3.5, 7, 14, and 28 nmol kg−1, i.v.).
  2. No attenuation of the hypotensive response to bradykinin was detected for inhibitors of the Na-K-Cl-cotransporter (30 μmol kg−1 furosemide), the ATP-sensitive K+-channel (40 μmol kg−1 glibenclamide), high conductance Ca2+-activated K+-channel (180 μmol kg−1 tetraethylammonium, 54 μmol kg−1 tetrabutylammonium, 35 nmol kg−1 iberiotoxin, 35 nmol kg−1 charybdotoxin) or the low conductance Ca2+-activated K+-channel (74 nmol kg−1 apamin).
  3. However, the voltage-sensitive K+-channel (IA) inhibitor 4-aminopyridine (4.05–40.5 μmol kg−1) induced a concentration-dependent (P<0.0001) attenuation of the hypotensive response (P<0.0001). Bradykinin had no effect on heart rate in anaesthetized rats and this observation was not altered by pretreatment with 4-aminopyridine.
  4. 4-Aminopyridine (53 μmol kg−1) also significantly attenuated the hypotensive response to nitroprusside (P<0.0003) without altering the heart rate concentration-response curve. Of the two Ca2+-activated K+-channel inhibitors tested on nitroprusside-induced hypotension, tetrabutylammonium induced a slight attenuation (P<0.0101), whereas iberiotoxin had no effect.
  5. We therefore concluded that, although the acute hypotensive response to bradykinin in the normotensive rat is not mediated through nitric oxide synthesis, the hypotensive response to both agents was mediated through opening of voltage-sensitive K+-channels (IA), resulting in a decrease in peripheral vascular resistance.
  相似文献   

6.
  1. We have investigated the effect of nociceptin on the micturition reflex evoked by distension or topical application of capsaicin on the urinary bladder of urethane-anaesthetized rats.
  2. Nociceptin produced a dose-dependent (3–100 nmol kg−1 i.v.) transient suppression of the distension-evoked micturition reflex: its effect was not modified by guanethidine (68 μmol kg−1 s.c.) nor by bilateral cervical vagotomy, alone or in combination, and by naloxone (1.2 μmol kg−1 i.v.).
  3. Nociceptin (100 nmol/kg i.v.) slightly (about 30%) inhibited the contractions of the rat bladder produced by pre- or postganglionic electrical stimulation of the pelvic nerve.
  4. Nociceptin almost totally abolished the reflex component of the response to topical capsaicin (1 μg in 50 μl).
  5. In the rat isolated bladder, submaximal contractions produced by electrical field stimulation were slightly reduced (25±4% inhibition) by 1 μM nociceptin. Nociceptin did not affect the contraction of the rat bladder induced by acetylcholine (10 μM) or ATP (1 mM).
  6. These findings indicate that nociceptin exerts a naloxone-resistant suppression of the volume-evoked micturition reflex which involves inhibition of transmitter release from postganglionic bladder nerves. An inhibitory effect on bladder afferent nerves is also suggested.
  相似文献   

7.
  1. Ejaculatory problems and anorgasmia are well-known side-effects of the SSRI antidepressants, and a pharmacologically induced increase in serotonergic neurotransmission inhibits ejaculatory behaviour in the rat. In the present study the role of 5-HT1A and 5-HT1B receptors in the mediation of male rat ejaculatory behaviour was examined by use of selective agonists and antagonists acting at these 5-HT receptor subtypes.
  2. The 5-HT1A receptor agonist 8-OH-DPAT (0.25–4.00 μmol kg−1 s.c.) produced an expected facilitation of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the new selective 5-HT1A receptor antagonist (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5-carboxamide hydrogen (2R,3R) tartrate monohydrate (NAD-299) (1.0 μmol kg−1 s.c.). NAD-299 by itself (0.75–3.00 μmol kg−1 s.c.) did not affect the male rat ejaculatory behaviour.
  3. The 5-HT1B receptor agonist anpirtoline (0.25–4.00 μmol kg−1 s.c.) produced a dose-dependent inhibition of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the 5-HT1B receptor antagonist isamoltane (16 μmol kg−1 s.c.) as well as by the new and selective antagonist (R)-(+)-2-(3-morpholinomethyl-2H-chromene-8-yl)oxymethylmorpholino methansulphonate (NAS-181) (16 μmol kg−1 s.c.). Isamoltane (1.0–16.0 μmol kg−1 s.c.) and NAD-181 (1.0–16.0 μmol kg−1 s.c.) had no, or weakly facilitatory effects on the male rat ejaculatory behaviour. The non-selective 5-HT1 receptor antagonist (−)-pindolol (8 μmol kg−1 s.c.), did not antagonize the inhibition produced by anpirtoline.
  4. The present results demonstrate opposite effects, facilitation and inhibition, of male rat ejaculatory behaviour by stimulation of 5-HT1A and 5-HT1B receptors, respectively, suggesting that the SSRI-induced inhibition of male ejaculatory dysfunction is due to 5-HT1B receptor stimulation.
  相似文献   

8.
  1. This study was conducted to determine adrenomedullin (AM) action sites in the pulmonary vascular bed and the relation between its vasodilator effects and vascular tone. Moreover, an examination was made into whether calcitonin gene-related peptide (CGRP) receptors mediate pulmonary vasodilatations induced by AM. To this end, we directly measured internal diameter (i.d.) changes in small pulmonary arteries and veins (100–1100 μm i.d.) by use of an X-ray televison system on the in vivo cat lung.
  2. Under control (resting vascular tone) conditions, AM injections into the left main pulmonary artery caused dose-related i.d. increases in both small arteries and veins. The mean i.d. increase of the 100–1100 μm arteries (4±1, 11±2, and 17±2% with 0.01, 0.1, and 1 nmol kg−1 AM, respectively) was significantly larger than that for the veins (1±1, 5±2, and 7±2% with 0.01, 0.1 and 1 nmol kg−1 AM, respectively) whatever the injected dose of AM.
  3. When unilobar hypoxia (5% O2) had decreased the i.d. of the 100–1100 μm arteries and veins by 16±3 and 6±3%, respectively, AM (0.1 nmol kg−1) was able to induce significantly larger i.d. increases in the arteries (28±3%) and veins (11±3%) than those under control conditions.
  4. The AM-induced i.d. response pattern in the serially connected pulmonary arteries was quite different from that induced by CGRP; AM caused a greater increase in smaller vessels (100–500 μm) than in larger vessels (500–1100 μm). In the case of CGRP, a greater increase was observed in the larger vessels.
  5. CGRP8–37 (100 nmol kg−1, i.v., followed by a continuous infusion of 0.2 nmol kg−1 min−1) had no significant effect on the i.d. increase induced by AM (0.1 nmol kg−1) in any serial segments of the arteries and veins.
  6. The results indicate that, in the cat, AM induces greater vasodilatation in small pulmonary arteries and lesser vasodilatation in small veins, the maximum dilatation being in the more peripheral arterial segment (100–500 μm). The vasodilator effect of AM was enhanced when vascular tone was elevated. The data suggest that the AM-induced pulmonary vasodilatation is not mediated by CGRP receptors but by its own specific receptor.
  相似文献   

9.
  1. The selective 5-hydroxytryptamine reuptake inhibitor citalopram (10 and 20 mg kg−1, i.p.) significantly reduced food intake in male rats (CD-COBS) habituated to eat their daily food during a 4-h period.
  2. The 5-HT1A receptor antagonist WAY100635 (0.3 mg kg−1) administered systemically did not modify feeding but significantly potentiated the reduction in food intake caused by 10 mg kg−1 i.p. citalopram. The dose of 5 mg kg−1 i.p. citalopram was not active in animals pretreated with vehicle but significantly reduced feeding in animals pretreated with WAY100635.
  3. WAY100635 (0.1 μg 0.5 μl−1) injected into the dorsal raphe significantly potentiated the hypophagic effect of 10 mg kg−1 citalopram.
  4. WAY100635 (1.0 μg 0.5 μl−1) injected into the median raphe did not modify feeding or the hypophagic effect of 10 mg kg−1 citalopram.
  5. The 5-HT2B/2C receptor antagonist SB206553 (10 mg kg−1, p.o.) slightly reduced feeding by itself but partially antagonized the effect of WAY100635 administered systemically (0.3 mg kg−1, s.c.) or into the dorsal raphe (0.1 μg 0.5 μl−1) in combination with 10 mg kg−1 i.p. citalopram. The hypophagic effect of 10 mg kg−1 i.p. citalopram alone was not significantly modified by SB206553.
  6. Brain concentrations of citalopram and its metabolite desmethylcitalopram in rats pretreated with SB206553, WAY100635 and their combination were comparable to those of vehicle-pretreated rats, 90 min after citalopram injection.
  7. The hypophagic effect of citalopram was potentiated by blocking 5-HT1A receptors. Only the effect of the WAY100635/citalopram combination seemed to be partially mediated by central 5-HT2C receptors.
  相似文献   

10.
  1. The effects of risperidone on brain 5-hydroxytryptamine (5-HT) neuronal functions were investigated and compared with other antipsychotic drugs and selective receptor antagonists by use of single cell recording and microdialysis in the dorsal raphe nucleus (DRN).
  2. Administration of risperidone (25–400 μg kg−1, i.v.) dose-dependently decreased 5-HT cell firing in the DRN, similar to the antipsychotic drug clozapine (0.25–4.0 mg kg−1, i.v.), the putative antipsychotic drug amperozide (0.5–8.0 mg kg−1, i.v.) and the selective α1-adrenoceptor antagonist prazosin (50–400 μg kg−1, i.v.).
  3. The selective α2-adrenoceptor antagonist idazoxan (10–80 μg kg−1, i.v.), in contrast, increased the firing rate of 5-HT neurones in the DRN, whereas the D2 and 5-HT2A receptor antagonists raclopride (25–200 μg kg−1, i.v.) and MDL 100,907 (50–400 μg kg−1, i.v.), respectively, were without effect. Thus, the α1-adrenoceptor antagonistic action of the antipsychotic drugs might, at least partly, cause the decrease in DRN 5-HT cell firing.
  4. Pretreatment with the selective 5-HT1A receptor antagonist WAY 100,635 (5.0 μg kg−1, i.v.), a drug previously shown to antagonize effectively the inhibition of 5-HT cells induced by risperidone, failed to prevent the prazosin-induced decrease in 5-HT cell firing. This finding argues against the notion that α1-adrenoceptor antagonism is the sole mechanism underlying the inhibitory effect of risperidone on the DRN cells.
  5. The inhibitory effect of risperidone on 5-HT cell firing in the DRN was significantly attenuated in rats pretreated with the 5-HT depletor PCPA (p-chlorophenylalanine; 300 mg kg−1, i.p., day−1 for 3 consecutive days) in comparison with drug naive animals.
  6. Administration of risperidone (2.0 mg kg−1, s.c.) significantly enhanced 5-HT output in the DRN.
  7. Consequently, the reduction in 5-HT cell firing by risperidone appears to be related to increased availability of 5-HT in the somatodendritic region of the neurones leading to an enhanced 5-HT1A autoreceptor activation and, in turn, to inhibition of firing, and is probably only to a minor extent caused by its α1-adrenoceptor antagonistic action.
  相似文献   

11.
  1. The hypothesis of the existence of two CCKB receptor subsites, CCKB1 and CCKB2 corresponding probably to different coupling states of CCKB receptors, was studied by measuring grooming behaviour in rats.
  2. The B1 receptor agonist, BC197 (300 μg kg−1, i.p.) produced a 45–50% decrease in grooming activity, which was prevented by both the CCKB receptor antagonists CI-988 (20 μg kg−1 i.p.) and L-365,260 (200 μg kg−1, i.p.).
  3. In contrast, 3, 10 and 30 μg kg−1, i.p., of the potent B2 receptor agonist, BC264, enhanced grooming (150–190%). This effect was prevented by previous injection of 75 μg kg−1 of L-365,260 while higher doses (200 μg kg−1, i.p.) produced only a partial antagonism. Moreover, CI-988 (20 μg kg−1, i.p.), showed an opposite effect in potentiating the responses induced by BC264. However, 200 μg kg−1 of CI-988 tended to suppress the increase of grooming induced by BC264.
  4. The effects of BC264 were prevented by the D1 receptor (SCH 23390) and D2 receptor (sulpiride) antagonists, while those of BC197 were only antagonized by sulpiride, emphasizing the existence of a link between peptidergic (CCK) and dopaminergic systems.
  5. This study brings additional evidence for the existence of the two CCKB receptor subsites and suggests that particular attention should be focused on the selectivity of CCKB receptor agonists, notably to explain the fact that some compounds such as Boc-CCK4 induce anxiogenic-like effects while others, including BC264, are devoid of these effects.
  相似文献   

12.
  1. Changes in respiratory variables, arterial blood pressure and heart rate were studied in awake rats after injection of the opioid peptide [Lys7]dermorphin and its main metabolites, [1-5]dermorphin and [1-4]dermorphin.
  2. Fifteen minutes after injection, doses of [Lys7]dermorphin producing antinociception (i.c.v., 36–120 nmol; s.c., 0.12–4.7 μmol kg−1) significantly increased respiratory frequency and minute volume of rats breathing air or hypoxic inspirates. This respiratory stimulation was reversed to depression by the 5-HT receptor antagonist ritanserin (2 mg kg−1, s.c.), was blocked by naloxone (0.1 mg kg−1, s.c.), significantly reduced by the μ1 opioid receptor antagonist naloxonazine (10 mg kg−1, s.c., 24 h before) but unaffected by peripherally acting opioid antagonist naloxone methyl bromide (3 mg kg−1, s.c.). Forty five minutes after injection, doses of the peptide producing catalepsy (s.c., 8.3–14.2 μmol kg−1, i.c.v., 360 nmol) significantly reduced respiratory frequency and volume of rats breathing air and blocked the hypercapnic ventilator response of rats breathing from 4% to 10% CO2. I.c.v. administration of [1-5]dermorphin and [1-4]dermorphin (from 36 to 360 nmol) never stimulated respiration but significantly reduced basal and CO2-stimulated ventilation. Opioid respiratory depression was only antagonized by naloxone.
  3. In awake rats, [Lys7]dermorphin (0.1–1 mg kg−1, s.c.) decreased blood pressure. This hypotensive response was abolished by naloxone, reduced by naloxone methyl bromide and unaffected by naloxonazine.
  4. In conclusion, the present study indicates that analgesic doses of [Lys7]dermorphin stimulate respiration by activating central μ1 opioid receptors and this respiratory stimulation involves a forebrain 5-hydroxytryptaminergic excitatory pathway.
  相似文献   

13.
  1. A study was made of the effects of 5-carboxamidotryptamine (5-CT) on pressor responses induced in vivo by electrical stimulation of the sympathetic outflow from the spinal cord of pithed rats. All animals had been pretreated with atropine. Sympathetic stimulation (0.1, 0.5, 1 and 5 Hz) resulted in frequency-dependent increases in blood pressure. Intravenous infusion of 5-CT at doses of 0.01, 0.1 and 1 μg kg−1 min−1 reduced the pressor effects obtained by electrical stimulation. The inhibitory effect of 5-CT was significantly more pronounced at lower frequencies of stimulation. In the present study we characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-CT.
  2. The inhibition induced by 0.01 μg kg−1 min−1 of 5-CT on sympathetically-induced pressor responses was partially blocked after i.v. treatment with methiothepin (10  μg kg−1), WAY-100,635 (100 μg kg−1) or GR127935T (250 μg kg−1), but was not affected by cyanopindolol (100 μg kg−1).
  3. The selective 5-HT1A receptor agonist 8-OH-DPAT and the selective 5-HT1B/1D receptor agonists sumatriptan and L-694,247 inhibited the pressor response, whereas the 5-HT1B receptor agonists CGS-12066B and CP-93,129 and the 5-HT2C receptor agonist m-CPP did not modify the pressor symapthetic responses.
  4. The selective 5-HT1A receptor antagonist WAY-100,635 (100 μg kg−1) blocked the inhibition induced by 8-OH-DPAT and the selective 5-HT1B/1D receptor antagonist GR127935T (250 μg kg−1) abolished the inhibition induced either by L-694,247 or sumatriptan.
  5. None of the 5-HT receptor agonists used in our experiments modified the pressor responses induced by exogenous noradrenaline (NA).
  6. These results suggest that the presynaptic inhibitory action of 5-CT on the electrically-induced pressor response is mediated by both r-5-HT1D and 5-HT1A receptors.
  相似文献   

14.
  1. It has been suggested that the tachycardic response to 5-hydroxytryptamine (5-HT) in the spinal-transected cat is mediated by ‘5-HT1-like'' receptors since this effect, being mimicked by 5-carboxamidotryptamine (5-CT), is not modified by ketanserin or MDL 72222, but it is blocked by methiothepin, methysergide or mesulergine. The present study was set out to reanalyse this suggestion in terms of the IUPHAR 5-HT receptor classification schemes proposed in 1994 and 1996.
  2. Intravenous (i.v.) bolus injections of the tryptamine derivatives, 5-CT (0.01, 0.03, 0.1, 0.3, 1, 3, 10 and 30 μg kg−1), 5-HT (3, 10 and 30 μg kg−1) and 5-methoxytryptamine (3, 10 and 30 μg kg−1) as well as the atypical antipsychotic drug, clozapine (1000 and 3000 μg kg−1) resulted in dose-dependent increases in heart rate, with a rank order of agonist potency of 5-CT >> 5-HT > 5-methoxytryptamine >> clozapine.
  3. The tachycardic effects of 5-HT and 5-methoxytryptamine were dose-dependently antagonized by i.v. administration of lisuride (30 and 100 μg kg−1), ergotamine (100 and 300 μg kg−1) or mesulergine (100, 300 and 1000 μg kg−1); the highest doses of these antagonists used also blocked the tachycardic effects of 5-CT. Clozapine (1000 and 3000 μg kg−1) did not affect the 5-HT-induced tachycardia, but attenuated, with its highest dose, the responses to 5-methoxytryptamine and 5-CT. However, these doses of clozapine as well as the high doses of ergotamine (300 μg kg−1) and mesulergine (300 and 1000 μg kg−1) also attenuated the tachycardic effects of isoprenaline. In contrast, 5-HT-, 5-methoxytryptamine- and 5-CT-induced tachycardia were not significantly modified after i.v. administration of physiological saline (0.1 and 0.3 ml kg−1), the 5-HT1B/1D receptor antagonist, GR127935 (500 μg kg−1) or the 5-HT3/4 receptor antagonist, tropisetron (3000 μg kg−1).
  4. Intravenous injections of the 5-HT1 receptor agonists, sumatriptan (30, 100 and 300 μg kg−1) and indorenate (300 and 1000 μg kg−1) or the 5-HT4 receptor (partial) agonist cisapride (300 and 1000 μg kg−1) were devoid of effects on feline heart rate per se and failed to modify significantly 5-HT-induced tachycardic responses.
  5. Based upon the above rank order of agonist potency, the failure of sumatriptan, indorenate or cisapride to produce cardioacceleration and the blockade by a series of drugs showing high affinity for the cloned 5-ht7 receptor, the present results indicate that the 5-HT receptor mediating tachycardia in the cat is operationally similar to other putative 5-HT7 receptors mediating vascular and non-vascular responses (e.g. relaxation of the rabbit femoral vein, canine external carotid and coronary arteries, rat systemic vasculature and guinea-pig ileum). Since these responses represent functional correlates of the 5-ht7 gene product, the 5-HT7 receptor appellation is reinforced. Therefore, the present experimental model, which is not complicated by the presence of other 5-HT receptors, can be utilized to characterize and develop new drugs with potential agonist and antagonist properties at functional 5-HT7 receptors.
  相似文献   

15.
  1. The vasodilator effects of 5-hydroxytryptamine (5-HT) in the external carotid bed of anaesthetized dogs with intact sympathetic tone are mediated by prejunctional sympatho-inhibitory 5-HT1B/1D receptors and postjunctional 5-HT receptors. The prejunctional vasodilator mechanism is abolished after vagosympathectomy which results in the reversal of the vasodilator effect to vasoconstriction. The blockade of this vasoconstrictor effect of 5-HT with the 5-HT1B/1D receptor antagonist, GR 127935, unmasks a dose-dependent vasodilator effect of 5-HT, but not of sumatriptan. Therefore, the present study set out to analyse the pharmacological profile of this postjunctional vasodilator 5-HT receptor in the external carotid bed of vagosympathectomized dogs pretreated with GR 127935 (20 μg kg−1, i.v.).
  2. One-minute intracarotid (i.c.) infusions of 5-HT (0.330 μg min−1), 5-carboxamidotryptamine (5-CT; 0.010.3 μg min−1), 5-methoxytryptamine (1100 μg min−1) and lisuride (31000 μg min−1) resulted in dose-dependent increases in external carotid blood flow (without changes in blood pressure or heart rate) with a rank order of agonist potency of 5-CT>>5-HT⩾5-methoxytryptamine>lisuride, whereas cisapride (1001000 μg min−1, i.c.) was practically inactive. Interestingly, lisuride (mean dose of 85±7 μg kg−1, i.c.), but not cisapride (mean dose of 67±7 μg kg−1, i.c.), specifically abolished the responses induced by 5-HT, 5-CT and 5-methoxytryptamine, suggesting that a common site of action may be involved. In contrast, 1 min i.c. infusions of 8-OH-DPAT (33000 μg min−1) produced dose-dependent decreases, not increases, in external carotid blood flow and failed to antagonize (mean dose of 200±33 μg kg−1, i.c.) the agonist-induced vasodilator responses.
  3. The external carotid vasodilator responses to 5-HT, 5-CT and 5-methoxytryptamine were not modified by intravenous (i.v.) pretreatment with either saline, (±)-pindolol (4 mg kg−1) or ritanserin (100 μg kg−1) plus granisetron (300 μg kg−1), but were dose-dependently blocked by i.v. administration of methiothepin (10 and 30 μg kg−1, given after ritanserin plus granisetron), mesulergine (10 and 30 μg kg−1), metergoline (1 and 3 mg kg−1), methysergide (1 and 3 mg kg−1) or clozapine (0.3 and 1 mg kg−1). Nevertheless, the blockade of the above responses, not significant after treatment with the lower of the two doses of metergoline and mesulergine, was nonspecific after administration of the higher of the two doses of methysergide and clozapine.
  4. Based upon the above rank order of agonist potencies and the antagonism produced by a series of drugs showing high affinity for the cloned 5-ht7 receptor, our results indicate that the 5-HT receptor mediating external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs is operationally similar to the putative 5-HT7 receptor mediating relaxation of vascular and non-vascular smooth muscles (e.g. rabbit femoral vein, canine coronary artery, rat systemic vasculature and guinea-pig ileum) as well as tachycardia in the cat.
  相似文献   

16.
  1. Pharmacological studies have suggested that A3 receptors are present on central neurons. Recently this adenosine receptor subtype has been identified in the rat and its presence in the central nervous system has been confirmed.
  2. In this study we investigated the effects of acute intracerebroventricular (i.c.v.) injections of N6-2-(4-aminophenyl)-ethyladenosine (APNEA), a non-selective A3 adenosine receptor agonist, on arterial blood pressure (ABP) and heart rate (HR), after treatment with 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective antagonist of A1 adenosine receptors.
  3. Anaesthetized rats, after DPCPX (12 μg−1 kg i.c.v.), were treated with APNEA (0.4–4 μg kg−1 i.c.v.) resulting in a transitory and dose-dependent decrease in arterial blood pressure without a change in heart rate. APNEA also induced hypotensive responses after i.c.v. pretreatment with aminophylline, at a dose of 20 μg kg−1. In contrast, pretreatment 48 h before, with 4 μg kg−1 i.c.v. of pertussis toxin reduced the hypotensive effect induced by APNEA. Administration of APNEA at a higher dose (20 μg kg−1 i.c.v.), after DPCPX, induced a decrease in ABP of −66±5.4 mmHg and after 3 min a decrease in heart rate of −62±6.0 beats min−1. Transection of the spinal cord abolished this significant fall in ABP, but not the decrease of HR.
  4. These results suggest that a population of A3-receptors is present in the CNS, whose activation induces a decrease in blood pressure with no change of heart rate.
  相似文献   

17.
  1. A selection of novel compounds were shown to exhibit dopaminergic activity in vitro.
  2. 111Indium-labelled platelets were continuously monitored in the cerebral and pulmonary vasculature of anaesthetized rabbits. The effects of dopamine and selective dopamine receptor agonists on ADP and thrombin induced platelet accumulation were recorded.
  3. Pretreatment with dopamine (2 mg kg−1 min−1, i.v.) significantly reduced ADP (20 μg kg−1, i.v.) induced platelet accumulation in the pulmonary vasculature whereas lower doses had no effect.
  4. Dopamine (100 μg kg−1 min−1 intra-carotid, i.c.) potentiated thrombin (90 u kg−1, i.c.) induced platelet accumulation in the cerebral vasculature whereas higher doses (1–2 mg kg−1 min−1) inhibited accumulation.
  5. The selective dopamine receptor agonists tested did not significantly inhibit platelet accumulation induced by ADP or thrombin. Two of these selective agonists, at doses higher than the intended therapeutic doses, induced thrombocytopaenia and an associated increase in platelet accumulation in the lung in response to thrombin.
  6. These results extend previous in vitro studies regarding the dual actions of dopamine upon platelets and show for the first time the effects of selective dopamine receptor agonists upon platelet aggregation in vivo.
  相似文献   

18.
  1. Inhibition of NK3 receptor agonist-induced contraction in the rabbit isolated iris sphincter muscle was used to assess the in vitro functional activity of three 2-phenyl-4-quinolinecarboxamides, members of a novel class of potent and selective non-peptide NK3 receptor antagonists. In addition, an in vivo correlate of this in vitro response, namely NK3 receptor agonist-induced miosis in conscious rabbits, was characterized with some of these antagonists.
  2. In vitro senktide (succinyl-[Asp9,MePhe8]-substance P (6-11) and [MePhe7]-neurokinin B ([MePhe7]-NKB) were potent contractile agents in the rabbit iris sphincter muscle but exhibited quite different profiles. Senktide produced monophasic log concentration-effect curves with a mean pD2=9.03±0.06 and mean nH=1.2±0.02 (n=14). In contrast, [MePhe7]-NKB produced shallow log concentration-effect curves which often appeared biphasic (nH=0.54±0.04, n=8), preventing the accurate determination of pD2 values.
  3. The contractile responses to the NK3 receptor agonist senktide were antagonized in a surmountable and concentration-dependent manner by SB 223412 ((−)-(S)-N-(α-ethylbenzyl)-3-hydroxy-2-phenylquinoline-4-carboxamide; 3–30 nM, pA2=8.4, slope=1.8±0.3, n=4), SB 222200 ((−)-(S)-N-(α-ethylbenzyl)-3-methyl-2-phenylquinoline-4-carboxamide; 30–300 nM, pA2=7.9, slope=1.4±0.06, n=4) and SB 218795 ((−)-(R)-N-(α-methoxycarbonylbenzyl)-2-phenylquinoline-4-carboxamide; 0.3 and 3 μM apparent pKB=7.4±0.06, n=6).
  4. Contractile responses to the NK3 receptor agonist [MePhe7]-NKB in the rabbit iris sphincter muscle were unaffected by SB 218795 (0.3 and 3 μM, n=8). In contrast, SB 223412 (30 and 300 μM, n=4) and SB 222200 (0.3 and 3 μM, n=4) inhibited responses to low concentrations (⩽1 nM), to a greater extent than higher concentrations (>1 nM) of [MePhe7]-NKB. Furthermore, log concentration-effect curves to [MePhe7]-NKB became steeper and monophasic in the presence of each antagonist.
  5. SB 218795 (3 μM, n=4) had no effect on contractions induced by transmural nerve stimulation (2 Hz) or substance P, exemplifying the selectivity of this class of antagonist for functional NK3 receptors over NK1 receptors in the rabbit.
  6. In vivo, senktide (1, 10 and 25 μg i.v., i.e. 1.2, 11.9 and 29.7 nmol, respectively) induced concentration-dependent bilateral miosis in conscious rabbits (maximum pupillary constriction=4.25±0.25 mm; basal pupillary diameter 7.75±0.48 mm; n=4). The onset of miosis was within 2–5 min of application of senktide and responses lasted up to 30 min. Responses to two i.v. administrations of 25 μg senktide given 30 min apart revealed no evidence of tachyphylaxis. Topical administration of atropine (1%) to the eye enhanced pupillary responses to 25 μg senktide. This was probably due to the mydriatic effect of atropine since it significantly increased baseline pupillary diameter from 7.0±0.4 mm to 9.0±0.7 mm (n=4), thereby increasing the maximum capacity for miosis. Senktide-induced miosis was inhibited by SB 222200 (1 and 2 mg kg−1, i.v., i.e. 2.63 and 5.26 μmol kg−1; maximum inhibition 100%; n=3–4), SB 223412 (0.5 and 1 mg kg−1, i.v., i.e. 1.31 and 2.61 μmol kg−1; maximum inhibition 100%; n=3), SB 218795 (0.5 and 1 mg kg−1, i.v., i.e. 1.26 and 2.52 μmol kg−1; maximum inhibition 78%; n=3), and the structurally distinct NK3 receptor antagonist SR 142801 ((S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)propyl)-4-phenylepipiperidin-4-yl)-N-methylacetamide; 1.5 mg kg−1, i.v., i.e. 2.47 μmol kg−1, maximum inhibition 92%; n=3).
  7. Topical administration of senktide (25 μg; 29.7 nmol) to the eye induced unilateral miosis in the treated eye only. At this dose there was no significant difference (P<0.05) between pupillary constriction obtained by topical or i.v. senktide, and topically administered atropine had no significant effect on responses to topical senktide (n=4).
  8. [MePhe7]-NKB (125, 250 and 500 μg, i.v., i.e. 98.31, 196.62 and 393.24 nmol, respectively) also induced bilateral miosis in conscious rabbits (maximum pupillary constriction=4.13±0.30 mm; n=4), but in contrast to in vitro studies this agonist was approximately 100 fold less potent than senktide. [MePhe7]-NKB-induced miosis was inhibited by SB 222200 (5 mg kg−1, i.v., i.e. 13.14 μmol kg−1; maximum inhibition 69%; n=3).
  9. In summary, SB 223412, SB 222200 and SB 218795 are potent and selective antagonists of NK3 receptor-mediated contraction in the rabbit isolated iris sphincter muscle. In addition, NK3 receptor agonist-induced miosis in conscious rabbits is a good in vivo correlate of the in vitro rabbit iris sphincter muscle preparation and appears to be a useful model for characterizing the pharmacodynamic profile and efficacy of structurally distinct NK3 receptor antagonists, such as SB 222200, SB 223412, SB 218795 and SR 142801.
  相似文献   

19.
  1. Long-term treatment with β2-adrenoceptor agonists can lead to a decreased therapeutic efficacy of bronchodilatation in patients with obstructive pulmonary disease. In order to examine whether or not this is due to β-adrenoceptor desensitization, human bronchial muscle relaxation was studied in isolated bronchial rings after pretreatment with β2-adrenoceptor agonists. Additionally, the influence of pretreatment with dexamethasone on desensitization was studied.
  2. The effect of β2-agonist incubation alone and after coincubation with dexamethasone on density and affinity of β-adrenoceptors was investigated by radioligand binding experiments.
  3. In human isolated bronchi, isoprenaline induces a time- and concentration-dependent β-adrenoceptor desensitization as judged from maximal reduction in potency by a factor of 7 and reduction of 73±4% in efficacy of isoprenaline to relax human bronchial smooth muscle.
  4. After an incubation period of 60 min with 100 μmol l−1 terbutaline, a significant decline in its relaxing efficacy (81±8%) and potency (by a factor 5.5) occurred.
  5. Incubation with 30 μmol l−1 isoprenaline for 60 min did not impair the maximal effect of a subsequent aminophylline response but led to an increase in potency (factor 4.4).
  6. Coincubation of dexamethasone with isoprenaline (120 min; 30 μmol l−1) preserved the effect of isoprenaline on relaxation (129±15%).
  7. In radioligand binding experiments, pretreatment of lung tissue for 60 min with isoprenaline (30 μmol l−1) resulted in a decrease in β-adrenoceptor binding sites (Bmax) to 64±1.6% (P<0.05), while the antagonist affinity (KD) for [3H]-CGP-12177 remained unchanged.
  8. In contrast, radioligand binding studies on lung tissue pretreated with either dexamethasone (30 μmol l−1) or isoprenaline (30 μmol l−1) plus dexamethasone (30 μmol l−1) for 120 min did not lead to a significant change of Bmax (160±22.1% vs 142.3±28.7%) or KD (5.0 nmol l−1 vs 3.5 nmol l−1) compared to the controls.
  9. In conclusion, pretreatment of human bronchi with β-adrenoceptor agonists leads to functional desensitization and, in lung tissue, to down-regulation of β-adrenoceptors. This effect can be counteracted by additional administration of dexamethasone. Our model of desensitization has proved useful for the identification of mechanisms of β-adrenoceptor desensitization and could be relevant for the evaluation of therapeutic strategies to counteract undesirable effects of long-term β-adrenoceptor stimulation.
  相似文献   

20.
  1. Repaglinide, a novel compound with a nonsulphonylurea structure, is currently being clinically tested as a therapeutic agent. In the present study, the hypoglycaemic effects of repaglinide in rats and dogs were investigated.
  2. Whereas the R-enantiomer, AG-EE 624 ZW, showed only weak hypoglycaemic activity, the S-enantiomer, repaglinide, turned out to be a potent hypoglycaemic compound in rats after oral as well as after intravenous administration. Only 50% of the dose of repaglinide was needed to be equieffective with the racemic mixture AG-EE 388 ZW. The corresponding ED50 values calculated for the effects after 120 min p.a. (intravenous administration) were 3.4 μg kg−1 (repaglinide) and 6 μg kg−1 (AG-EE 388 ZW).
  3. When compared to glimepiride or glibenclamide, repaglinide displayed a 18 to 25 times higher potency in fasted rats. The ED50 values calculated for the effects after 120 min p.a. (oral administration) were 10 μg kg−1 (repaglinide), 182 μg kg−1 (glimepiride) and 255 μg kg−1 (glibenclamide).
  4. In glucose loaded rats (0.5, 1.0, 2.0 and 3.0 g kg−1 glucose, p.o.) repaglinide exerted a very strong antihyperglycaemic activity which was even more pronounced than under normoglycaemic conditions. So for a reduction in blood glucose of 1 mmol l−1, 10.3, 9.3, 7.0 8.4 and 7.2 μg kg−1 repaglinide were needed after glucose loads of 0.0, 0.5, 1.0, 2.0 and 3.0 g kg−1, respectively.
  5. In beagle dogs repaglinide again showed a pronounced hypoglycaemic effect (ED50 28.3 μg kg−1) which lasted for up to 24 h. However, insulin levels were only transiently increased.
  6. The in vivo data presented are well supported by recently published in vitro findings. From its activity profile, repaglinide appears to be a promising new therapeutic agent.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号