首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  1. A1 adenosine receptor agonists with reduced intrinsic activity may be therapeutically useful as result of an increased selectivity of action. In this study the tissue selectivity of three 8-alkylamino substituted analogues of N6-cyclopentyladenosine (CPA) was investigated for haemodynamic and anti-lipolytic effects using an integrated pharmacokinetic-pharmacodynamic approach.
  2. Chronically instrumented male Wistar rats received intravenous infusions of 4.0 mg kg−1 8-methylaminoCPA (8MCPA), 12.0 mg kg−1 8-ethylaminoCPA (8ECPA), 20.0 mg kg−1 8-butylaminoCPA (8BCPA) or vehicle during 15 min. During experimentation, serial arterial blood samples were drawn for the determination of agonist concentrations and plasma non-esterified fatty acid (NEFA) levels. Blood pressure and heart rate were monitored continuously. In addition to the CPA analogues, each rat received a rapid bolus infusion of CPA to determine the maximal effects of the full agonist.
  3. The concentration-time profiles of the CPA analogues could be described by a bi-exponential function. Values for clearance, volume of distribution at steady state and elimination half-life were 44±5, 48±6 and 39±2 ml min−1 kg−1, 0.97±0.09, 0.84±0.10 and 1.05±0.07 1 kg−1 and 25±2, 28±2 and 40±2 min for 8MCPA, 8ECPA and 8BCPA, respectively (mean±s.e.mean, n=6–8).
  4. Different models were used to derive the concentration-effect relationships for heart rate and NEFA, yielding estimates of potency (EC50) and instrinsic activity (Emax) for both effects of the compounds in vivo. On heart rate the compounds acted as partial agonists, with Emax values of −173±14, −131±11 and −71±6 beats min−1 for 8MCPA, 8ECPA and 8BCPA, respectively. These Emax values were significantly lower than the maximal effect of CPA (−208±8 beats min−1). With regard to the anti-lipolytic effect all three compounds were full agonists and lowered NEFA levels to the same extent as CPA (69%). The estimated Emax values were 63±5, 63±4 and 68±2%, respectively.
  5. Furthermore, the compounds were more potent in causing anti-lipolytic than cardiovascular effects. The EC50 values for the NEFA and heart rate lowering effects were 37±15, 68±22 and 659±108 ng ml−1 and 164±22, 341±76 and 975±190 ng ml−1 for 8MCPA, 8ECPA and 8BCPA, respectively (mean±s.e.mean, n=6–8).
  6. This study demonstrates that partial agonists for the A1 adenosine receptor have increased selectivity of action in vivo. The 8-alkylamino analogues of CPA may be useful anti-lipolytics with less pronounced haemodynamic side effects.
  相似文献   

2.

Aim:

To define the effect of adenosine A1 receptor (A1R) on delta opioid receptor (DOR)-mediated signal transduction.

Methods:

CHO cells stably expressing HA-tagged A1R and DOR-CFP fusion protein were used. The localization of receptors was observed using confocal microscope. DOR-mediated inhibition of adenylyl cyclase was measured using cyclic AMP assay. Western blots were employed to detect the phosphorylation of Akt and the DOR. The effect of A1R agonist N6-cyclohexyladenosine (CHA) on DOR down-regulation was assessed using radioligand binding assay.

Results:

CHA 1 μmol/L time-dependently attenuated DOR agonist [D-Pen2,5]enkephalin (DPDPE)-induced inhibition of intracellular cAMP accumulation with a t1/2=2.56 (2.09–3.31) h. Pretreatment with 1 μmol/L CHA for 24 h caused a right shift of the dose-response curve of DPDPE-mediated inhibition of cAMP accumulation, with a significant increase in EC50 but no change in Emax. Pretreatment with 1 μmol/L CHA for 1 h also induced a significant attenuation of DPDPE-stimulated phosphorylation of Akt. Moreover, CHA time-dependently phosphorylated DOR (Ser363), and this effect was inhibited by A1R antagonist 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) but not by DOR antagonist naloxone. However, CHA failed to produce the down-regulation of DOR, as neither receptor affinity (Kd) nor receptor density (Bmax) of DOR showed significant change after chronic CHA exposure.

Conclusion:

Activation of A1R by its agonist caused heterologous desensitization of DOR-mediated inhibition of intracellular cAMP accumulation and phosphorylation of Akt. Activation of A1R by its agonist also induced heterologous phosphorylation but not down-regulation of DOR.  相似文献   

3.
  1. The effects of adenosine receptor agonists upon phenylephrine-stimulated contractility and [3H]-cyclic adenosine monophosphate ([3H]-cyclic AMP) accumulation in the cauda epididymis of the guinea-pig were investigated. The α1-adrenoceptor agonist, phenylephrine elicited concentration dependent contractile responses from preparations of epididymis. In the absence or presence of the L-type Ca2+ channel blocker, nifedipine (10 μM) the non-selective adenosine receptor agonist, 5′-N-ethylcarboxamido-adenosine (NECA, 1 μM) shifted phenylephrine concentration-response curves to the left (4 and 5 fold respectively). Following the incubation of preparations with pertussis toxin (200 ng ml−1 24 h) NECA shifted phenylephrine concentration-response curves to the right (5.7±0.9 fold).
  2. In the presence of phenylephrine (1 μM), NECA and the A1 adenosine receptor selective agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) elicited concentration-responses dependent contractions from preparations of epididymis (pEC50 values 8.18±0.19, 7.79±0.29 and 8.15±0.43 respectively). The A3 adenosine receptor agonists N6-iodobenzyl-5′-N-methyl-carboxamido adenosine (IBMECA) and N6-2-(4-aminophenyl) ethyladenosine (APNEA) mimicked this effect (but only at concentrations greater than 10 μM). In the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 30 nM) CPA concentration-response curves were shifted, in parallel to the right (apparent pKB 8.75±0.88) and the maximal response to NECA was reduced.
  3. In the presence of DPCPX (100 nM) the adenosine agonist NECA and the A2A adenosine receptor selective agonist, CGS 21680 (2-p-(2-carboxyethyl)-phenethylamino-N-ethylcarboxamido adenosine), but not CPA, inhibited phenylephrine (20 μM) stimulated contractions (pIC50 7.15±0.48). This effect of NECA was blocked by xanthine amine congener (XAC, 1 μM) and the A2A adenosine receptor-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 30 nM).
  4. (S)-ENBA (in the absence and presence of ZM 241385, 100 nM), but not NECA or CPA inhibited the forskolin (30 μM)-stimulated accumulation of [3H]-cyclic AMP in preparations of the epididymis of the guinea-pig (by 17±6% of control). In the presence of DPCPX (100 nM) NECA and CGS 21680, but not (S)-ENBA, increased the accumulation of [3H]-cyclic AMP in preparations of epididymis (pEC50 values 5.35±0.35 and 6.42±0.40 respectively), the NECA-induced elevation of [3H]-cyclic AMP was antagonised by XAC (apparent pKB 6.88±0.88) and also by the A2A adenosine receptor antagonist, ZM 241385 (apparent pKB 8.60± 0.76).
  5. These studies are consistent with the action of stable adenosine analogues at post-junctional A1 and A2 adenosine receptors in the epididymis of the guinea-pig. A1 Adenosine receptors potentiate α1-adrenoceptor contractility, an effect blocked by pertussis toxin, but which may not be dependent upon an inhibition of adenylyl cyclase. The epididymis of the guinea-pig also contains A2 adenosine receptors, possibly of the A2A subtype, which both inhibit contractility and also stimulate adenylyl cyclase.
  相似文献   

4.
  1. Optimization of myocardial energy substrate metabolism improves the recovery of mechanical function of the post-ischaemic heart. This study investigated the role of KATP-channels in the regulation of the metabolic and mechanical function of the aerobic and post-ischaemic heart by measuring the effects of the selective KATP-channel activator, cromakalim, and the effects of the KATP-channel antagonist, glibenclamide, in rat fatty acid perfused, working hearts in vitro. The role of KATP channels in the cardioprotective actions of the adenosine A1-receptor agonist, N6-cyclohexyladenosine (CHA) was also investigated.
  2. Myocardial glucose metabolism, mechanical function and efficiency were measured simultaneously in hearts perfused with modified Krebs-Henseleit solution containing 2.5 mM Ca2+, 11 mM glucose, 1.2 mM palmitate and 100 mu l−1 insulin, and paced at 300 beats min−1. Rates of glycolysis and glucose oxidation were measured from the quantitative production of 3H2O and 14CO2, respectively, from [5-3H/U-14C]-glucose.
  3. In hearts perfused under aerobic conditions, cromakalim (10 μM), CHA (0.5 μM) or glibenclamide (30 μM) had no effect on mechanical function. Cromakalim did not affect glycolysis or glucose oxidation, whereas glibenclamide significantly increased rates of glycolysis and proton production. CHA significantly reduced rates of glycolysis and proton production but had no effect on glucose oxidation. Glibenclamide did not alter CHA-induced inhibition of glycolysis and proton production.
  4. In hearts reperfused for 30 min following 30 min of ischaemia, left ventricular minute work (LV work) recovered to 24% of aerobic baseline values. Cromakalim (10 μM), administered 5 min before ischaemia, had no significant effect on mechanical recovery or glucose metabolism. CHA (0.5 μM) significantly increased the recovery of LV work to 67% of aerobic baseline values and also significantly inhibited rates of glycolysis and proton production. Glibenclamide (30 μM) significantly depressed the recovery of mechanical function to <1% of aerobic baseline values and stimulated glycolysis and proton production.
  5. Despite the deleterious actions of glibenclamide per se in post-ischaemic hearts, the beneficial effects of CHA (0.5 μM) on the recovery of mechanical function and proton production were not affected by glibenclamide.
  6. The data indicate that the cardioprotective mechanism of adenosine A1-receptor stimulation does not involve the activation of KATP-channels. Furthermore, in rat fatty acid perfused, working hearts, stimulation of KATP-channels is not cardioprotective and has no significant effects on myocardial glucose metabolism.
  相似文献   

5.

BACKGROUND AND PURPOSE

Adenosine may be generated by hydrolysis of extracellular nucleotides by ectonucleotidases, including ectonucleoside triphosphate diphosphohydrolase 1 (CD39), ecto-5′-nucleotidase (CD73), nucleotide pyrophosphatase phosphodiesterase 1 (NPP-1) and tissue non-specific alkaline phosphatase (TNAP). Previous work from our laboratory has uncovered a critical role for adenosine A1 receptors (A1R) in osteoclastogenesis; blockade or deletion of these receptors diminishes osteoclast differentiation. Interestingly, selective A1R agonists neither affect basal osteoclastogenesis nor do they reverse A1R antagonist-mediated inhibition of osteoclastogenesis. In this study, we determined whether ectonucleotidase-mediated adenosine production was required for A1R antagonist-mediated inhibition, and, when we saw no effect, determined whether A1R was constitutively activated and the antagonist was acting as an inverse agonist to diminish osteoclast differentiation.

EXPERIMENTAL APPROACH

Osteoclast formation derived from wild-type, CD39 knockout (KO), CD73 KO, NPP-1 KO and TNAP KO mice was examined by tartrate-resistant acid phosphatase staining of receptor activator of NF-κB ligand–macrophage colony-stimulating factor-stimulated osteoclasts and osteoclast gene expression (Ctsk, Acp5, MMP-9 and NFATc1). Intracellular cAMP concentration was determined by elisa.

KEY RESULTS

Rolofylline inhibited osteoclast formation in a dose-dependent manner (IC50 = 20–70 nM) in mice lacking all four of these phosphatases, although baseline osteoclast formation was significantly less in precursors from CD73 KO mice. Rolofylline (1 μM) stimulates cAMP production in bone marrow macrophages by 10.23 ± 0.89-fold.

CONCLUSIONS AND IMPLICATIONS

Based on these findings, we hypothesize that the A1R is constitutively activated in osteoclast precursors, thereby diminishing basal AC activity, and that A1R antagonists act as inverse agonists to release A1R-mediated inhibition of basal AC activity and permit osteoclast differentiation. The constitutive activity of A1R promotes osteoclast formation and down-regulation of this activity blocks osteoclast formation.  相似文献   

6.
A solid-phase extraction procedure has been developed for the isolation of the adenosine A1 receptor agonist N6-cyclopentyladenosine from rat blood. The biological samples were spiked with N6-cyclopentyladenosine and the analogue N6-cyclohexladenosine (internal standard), diluted with sodium hydroxide, loaded onto disposable cartridges with subsequent desorption with methanol and analysis by HPLC. The performance of columns pre-packed with different C18-bonded silica phases or with a polymeric reversed-phase sorbent (Oasis HLB) was assessed. The highest extraction efficiencies (recovery rates>83.3%) for the two N6-alkyl substituted adenosines were achieved by the Oasis HLB cartridges. In addition, the polymeric sorbent provided reproducible recoveries (relative standard deviation<4.8%), whereas large variations (relative standard deviation values, 9–16.3%) in the extraction yields were observed using the conventional silica-based C18 cartridges. The described sample preparation method is rapid, simple, selective and it is suitable for pharmacokinetic studies.  相似文献   

7.
熊杰  黄俊华 《药学学报》1998,33(3):175-179
为进一步研究对羟吡啶甲基腺苷(HPMA)受体作用特点,用离体大鼠前列腺端输精管,比较了它与A1受体特异性激动剂环己烷基腺苷(CHA)作用异同。结果表明,HPMA有非A1受体样突触后抑制作用,能剂量依赖性地降低外源性PE,NE,ACh引起的输精管收缩反应;在场刺激下它优先作用于突触前;高剂量的HPMA(10-5mol·L-1)不仅可完全抑制场刺激引起的输精管收缩反应,同时还使组织对外源性ACh的反应性降低,是突触前抑制和突触后抑制的共同结果。提示HPMA在大鼠输精管同时具有突触前A1受体和突触后非A1受体作用。  相似文献   

8.

Background and Purpose

Pulmonary arterial hypertension (PAH) is characterized by enhanced pulmonary vascular resistance, right ventricular hypertrophy and increased right ventricular systolic pressure. Here, we investigated the effects of a N-acylhydrazone derivative, 3,4-dimethoxyphenyl-N-methyl-benzoylhydrazide (LASSBio-1359), on monocrotaline (MCT)-induced pulmonary hypertension in rats.

Experimental Approach

PAH was induced in male Wistar rats by a single i.p. injection of MCT (60 mg·kg−1) and 2 weeks later, oral LASSBio-1359 (50 mg·kg−1) or vehicle was given once daily for 14 days. Echocardiography was used to measure cardiac function and pulmonary artery dimensions, with histological assay of vascular collagen. Studies of binding to human recombinant adenosine receptors (A1, A2A, A3) and of docking with A2A receptors were also performed.

Key Results

MCT administration induced changes in vascular and ventricular structure and function, characteristic of PAH. These changes were reversed by treatment with LASSBio-1359. MCT also induced endothelial dysfunction in pulmonary artery, as measured by diminished relaxation of pre-contracted arterial rings, and this dysfunction was reversed by LASSBio-1359. In pulmonary artery rings from normal Wistar rats, LASSBio-1359 induced relaxation, which was decreased by the adenosine A2A receptor antagonist, ZM 241385. In adenosine receptor binding studies, LASSBio-1359 showed most affinity for the A2A receptor and in the docking analyses, binding modes of LASSBio-1359 and the A2A receptor agonist, CGS21680, were very similar.

Conclusion and Implications

In rats with MCT-induced PAH, structural and functional changes in heart and pulmonary artery were reversed by treatment with oral LASSBio-1359, most probably through the activation of adenosine A2A receptors.  相似文献   

9.
The activation of the human A(3) adenosine receptor (AR) by a wide range of N(6)-substituted adenosine derivatives was studied in intact CHO cells stably expressing this receptor. Selectivity of binding at rat and human ARs was also determined. Among N(6)-alkyl substitutions, small N(6)-alkyl groups were associated with selectivity for human A(3)ARs vs. rat A(3)ARs, and multiple points of branching were associated with decreased hA(3)AR efficacy. N(6)-Cycloalkyl-substituted adenosines were full (/=6 carbons) hA(3)AR agonists. N(6)-(endo-Norbornyl)adenosine 13 was the most selective for both rat and human A(1)ARs. Numerous N(6)-arylmethyl analogues, including substituted benzyl, tended to be more potent in binding to A(1) and A(3) vs. A(2A)ARs (with variable degrees of partial to full A(3)AR agonisms). A chloro substituent decreased the efficacy depending on its position on the benzyl ring. The A(3)AR affinity and efficacy of N(6)-arylethyl adenosines depended highly on stereochemistry, steric bulk, and ring constraints. Stereoselectivity of binding was demonstrated for N(6)-(R-1-phenylethyl)adenosine vs. N(6)-(S-1-phenylethyl)adenosine, as well as for the N(6)-(1-phenyl-2-pentyl)adenosine, at the rat, but not human A(3)AR. Interestingly, DPMA, a potent agonist for the A(2A)AR (K(i)=4nM), was demonstrated to be a moderately potent antagonist for the human A(3)AR (K(i)=106nM). N(6)-[(1S,2R)-2-Phenyl-1-cyclopropyl]adenosine 48 was 1100-fold more potent in binding to human (K(i)=0.63nM) than rat A(3)ARs. Dual acting A(1)/A(3) agonists (N(6)-3-chlorobenzyl- 29, N(6)-(S-1-phenylethyl)- 39, and 2-chloro-N(6)-(R-phenylisopropyl)adenosine 53) might be useful for cardioprotection.  相似文献   

10.
  1. Pharmacological studies have suggested that A3 receptors are present on central neurons. Recently this adenosine receptor subtype has been identified in the rat and its presence in the central nervous system has been confirmed.
  2. In this study we investigated the effects of acute intracerebroventricular (i.c.v.) injections of N6-2-(4-aminophenyl)-ethyladenosine (APNEA), a non-selective A3 adenosine receptor agonist, on arterial blood pressure (ABP) and heart rate (HR), after treatment with 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective antagonist of A1 adenosine receptors.
  3. Anaesthetized rats, after DPCPX (12 μg−1 kg i.c.v.), were treated with APNEA (0.4–4 μg kg−1 i.c.v.) resulting in a transitory and dose-dependent decrease in arterial blood pressure without a change in heart rate. APNEA also induced hypotensive responses after i.c.v. pretreatment with aminophylline, at a dose of 20 μg kg−1. In contrast, pretreatment 48 h before, with 4 μg kg−1 i.c.v. of pertussis toxin reduced the hypotensive effect induced by APNEA. Administration of APNEA at a higher dose (20 μg kg−1 i.c.v.), after DPCPX, induced a decrease in ABP of −66±5.4 mmHg and after 3 min a decrease in heart rate of −62±6.0 beats min−1. Transection of the spinal cord abolished this significant fall in ABP, but not the decrease of HR.
  4. These results suggest that a population of A3-receptors is present in the CNS, whose activation induces a decrease in blood pressure with no change of heart rate.
  相似文献   

11.
A chiral column high-performance liquid chromatographic method was developed for the assessment of the enantiomeric purity of the stereoisomers of N6-phenylisopropyladenosine (PIA). The observed chiral purity of R-PIA was greater than 99.90%, whereas S-PIA was found to contain 4.4% of the R-enantiomer. In radioligand binding studies, the observed affinity of S-PIA for the adenosine A1 receptor (IC50 240 nM) could entirely be attributed to its content of R-PIA (IC50 7.8 nM). Calculation of a theoretical IC50 of pure S-PIA for the A2 receptor yielded a value of 6700 nM, which was 35-fold higher than for R-PIA (190 nM). Concludingly, the utilization of enantiomeric impure S-PIA in the definition of adenosine receptor subclasses is questionable. Correspondence to: R. Mathôt at the above address(–)-N6-(R-phenylisopropyl)adenosine is referred to in literature as L-PIA, I-PIA, (–)-PIA and R-PIA. The abbreviation R-PIA is commonly used  相似文献   

12.
Human A3 adenosine receptor (A3AR) agonists have been shown to play important roles in several physiological and pathological processes, including growth inhibition of human cancer cells. On this line, we recently found that a novel adenosine analog, 2-chloro-N6-(3-iodobenzyl)-4'-thioadenosine-5'-N-methyluronamide (thio-Cl-IB-MECA) was a potent human A3AR agonist, and is superior to a known agonist Cl-IB-MECA [Jeong LS, Jin DZ, Kim HO, Shin DH, Moon HR, Gunaga P, et al. J Med Chem 2003;46:3775]. Here, we report that a novel A3AR agonist, thio-Cl-IB-MECA inhibited the growth of human promyelocytic leukemia HL-60 cells by arresting cell cycle and induction of apoptosis. Thio-Cl-IB-MECA induced the cell cycle arrest of G0/G1 in the early time and at lower concentration (up to 25 microM). At higher concentration (50 microM), the apoptotic cell deaths were manifested by observation of the increase of sub-G0 phase of cell cycle distribution, DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage. In addition, the down-regulation of checkpoint protein cyclin D1 and c-myc by thio-Cl-IB-MECA was well correlated with the arrest of cell cycle transition of G1 to S phase. Further study revealed that the growth inhibitory activity of thio-Cl-IB-MECA is also related with the modulation of Wnt signaling pathway. The levels of beta-catenin, phosphorylated forms of GSK-beta and Akt were down-regulated by the treatment of thio-Cl-IB-MECA (10 nM) in a time-dependent manner, providing one of plausible mechanistic evidence for the involvement of the Wnt signaling pathway in the HL-60 cell growth inhibitory effects by thio-Cl-IB-MECA. These results suggest that a novel A3AR agonist, thio-Cl-IB-MECA can down-regulate Wnt signaling, inhibit proliferation and induce apoptosis in HL-60 leukemia cells, and thus provide the possibility of this compound in the potential therapeutic value of the treatment of leukemia.  相似文献   

13.
The diuretic drug amiloride and its analogues were found previously to be allosteric modulators of antagonist binding to A(2A) adenosine receptors. In this study, the possibility of the allosteric modulation by amiloride analogues of antagonist binding at A(1) and A(3) receptors, as well as agonist binding at A(1), A(2A), and A(3) receptors, was explored. Amiloride analogues increased the dissociation rates of two antagonist radioligands, [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and [3H]8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one ([3H]PSB-11), from A(1) and A(3) receptors, respectively. Amiloride and 5-(N,N-dimethyl)amiloride (DMA) were more potent at A(1) receptors than at A(3) receptors, while 5-(N,N-hexamethylene)amiloride (HMA) was more potent at A(3) receptors. Thus, amiloride analogues are allosteric inhibitors of antagonist binding at A(1), A(2A), and A(3) adenosine receptor subtypes. In contrast to their effects on antagonist-occupied receptors, amiloride analogues did not affect the dissociation rates of the A(1) agonist [3H]N(6)-[(R)-phenylisopropyl]adenosine ([3H]R-PIA) from A(1) receptors or the A(2A) agonist [3H]2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'-N-ethylcarboxamidoadenosine ([3H]CGS21680) from A(2A) receptors. The dissociation rate of the A(3) agonist radioligand [125I]N(6)-(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide ([125I]I-AB-MECA) from A(3) receptors was decreased significantly by amiloride analogues. The binding modes of amiloride analogues at agonist-occupied and antagonist-occupied receptors differed markedly, which was demonstrated in all three subtypes of adenosine receptors tested in this study. The effects of the amiloride analogues on the action of the A(3) receptor agonist were explored further using a cyclic AMP functional assay in intact CHO cells expressing the human A(3) receptor. Both binding and functional assays support the allosteric interactions of amiloride analogues with A(3) receptors.  相似文献   

14.
  1. The effects of adenosine receptor agonists upon both electrically-evoked and phenylephrine-induced contractile responses were investigated in the bisected vas deferens and the cauda epididymis of the guinea-pig. Electrical field-stimulation (10 s trains of pulses at 9 Hz, 0.1 ms duration, supramaximal voltage) elicited biphasic and monophasic contractile responses from preparations of bisected vas deferens and cauda epididymis, respectively; these responses were abolished by tetrodotoxin (300 nM).
  2. In the prostatic half of the vas deferens the A1 selective adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) and the non-selective A1/A2 adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine (NECA) inhibited electrically-evoked contractions (pIC50±s.e.mean values 6.15±0.24, 5.99±0.26 and 5.51±0.24, respectively). The responses to CPA were blocked by the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine, DPCPX (100 nM).
  3. In the epididymal half of the vas deferens NECA potentiated (at ⩽100 nM) and inhibited (at ⩾1 μM) electrically-evoked contractions. In the presence of the non-selective α-adrenoceptor antagonist phentolamine (3 μM), the α1-adrenoceptor antagonist, prazosin (100 nM), or at a reduced train length (3 s) NECA inhibited electrically-evoked contractions (pIC50 values 6.05±0.25, 5.97±0.29 and 5.71±0.27, respectively). CPA (at 10 μM) also inhibited electrically-evoked contractions in this half of the vas deferens. In the presence of prazosin (100 nM), CPA also inhibited electrically-evoked contractions (pIC50 6.14±0.67); this effect was antagonized by DPCPX (30 nM, apparent pKB 8.26±0.88). In the presence of the P2 purinoceptor antagonist, suramin (300 μM), CPA (up to 1 μM) potentiated electrically-evoked contractions.
  4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49±0.62, 7.65±0.74 and 5.84±0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pKB value of 7.64±0.64.
  5. The α1-adrenoceptor agonist phenylephrine elicited concentration-dependent contractile responses from preparations of bisected vas deferens and cauda epididymis. NECA (1 μM) potentiated responses to phenylephrine (⩽1 μM) in the epididymal, but not in the prostatic half of the vas deferens. In preparations of epididymis NECA (1 μM) shifted phenylephrine concentration response curves to the left (4.6 fold). In the presence of a fixed concentration of phenylephrine (1 μM), NECA elicited concentration-dependent contractions of preparations of the epididymal half of the vas deferens and of the epididymis (pEC50 values 7.57±0.54 and 8.08±0.18, respectively). NECA did not potentiate responses to ATP in either the epididymal half of the vas deferens or the epididymis.
  6. These studies are consistent with the action of stable adenosine analogues at prejunctional A1 and postjunctional A1-like adenosine receptors. The prejunctional A1 adenosine receptors only inhibit the electrically-evoked contractions of purinergic origin (an effect predominant in the prostatic half of the vas deferens). At the epididymis, where electrically-evoked contractions are entirely adrenergic, the predominant adenosine receptor agonist effect is a potentiation of α1-adrenoceptor-, but not of ATP-induced contractility.
  相似文献   

15.
Allosteric modulators for the Gi-coupled A3 adenosine receptor (AR) are of considerable interest as therapeutic agents and as pharmacological tools to probe various signaling pathways. In this study, we initially characterized the effects of several imidazoquinolinamine allosteric modulators (LUF5999, LUF6000 and LUF6001) on the human A3 AR stably expressed in CHO cells using a cyclic AMP functional assay. These modulators were found to affect efficacy and potency of the agonist Cl-IB-MECA differently. LUF5999 (2-cyclobutyl derivative) enhanced efficacy but decreased potency. LUF6000 (2-cyclohexyl derivative) enhanced efficacy without affecting potency. LUF6001 (2-H derivative) decreased both efficacy and potency. We further compared the agonist enhancing effects of LUF6000 in several other A3 AR-mediated events. It was shown that although LUF6000 behaved somewhat differently in various signaling pathways, it was more effective in enhancing the effects of low-efficacy than of high-efficacy agonists. In an assay of cyclic AMP accumulation, LUF6000 enhanced the efficacy of all agonists examined, but in the membrane hyperpolarization assay, it only enhanced the efficacy of partial agonists. In calcium mobilization, LUF6000 did not affect the efficacy of the full agonist NECA but was able to switch the nucleoside antagonist MRS542 into a partial agonist. In translocation of β-arrestin2, the agonist-enhancing effect LUF6000 was not pronounced. In an assay of ERK1/2 phosphorylation LUF6000 did not show any effect on the efficacy of Cl-IB-MECA. The differential effects of LUF6000 on the efficacy and potency of the agonist Cl-IB-MECA in various signaling pathway were interpreted quantitatively using a mathematical model.  相似文献   

16.

Background and the purpose of the study

In Parkinson›s disease (PD) prolong use of L-DOPA causes some motor disorders such as wearing-off and L-DOPA induced dyskinesia (LID). In this investigation the effect of 8-OHDAPT, as a 5-HT1A agonist on anti-cataleptic effect of L-DOPA in 6-hydroxydopamine (6-OHDA) lesioned male Wistar rats was investigated.

Methods

Catalepsy was induced by unilateral injection of 6-OHDA (8 µg/2µl/rat) into the central region of the SNc. After 3 weeks as a recovery period, animals received intraperitoneally (i.p.) L-DOPA (15 mg/kg) twice daily for 20 days, and anti-cataleptic effect of L-DOPA was assessed by bar-test at days of 5, 10, 15 and 20.

Results and major conclusion

The results showed that L-DOPA had anti-cataleptic effect only until the day of 15, and its effect was decreased on the day of 20. On the day of 21, rats were co-injected with three different doses of 8-OHDAPT (0.1, 0.5 and 2.5 mg/kg, i.p.) and L-DOPA (15 mg/kg, ip). 8-Hydroxy-2-(di-n-propylamino) tetralin (8-OHDAPT) improved anti-cataleptic effect of L-DOPA at the dose of 0.5 mg/kg. Moreover the effect of 8-OHDAPT on anti-cataleptic effect of L-DOPA (15 mg/kg, ip) was abolished by 1-(2-methyoxyphenyl)-4-[4-(2-phthalamido) butyl] piperazine hydrobromide (NAN-190; 0.5 mg/kg, i.p.) as a 5-HT1A receptor antagonist. According to the obtained results, it may be concluded that activation of 5-HT1A receptors by 8-OHDAPT may improve anti-cataleptic effect of L-DOPA in a 6-OHDA- induced rat model of PD. Further studies are required to clarify the exact mechanism of interaction between 5-HT1A and dopaminergic neurons.  相似文献   

17.
The present study describes the preparation and binding properties of a new, potent, and selective A2A adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (Kd=8.0 nM) and limited capacity (Bmax=1.16 fmol·mg−1 of protein). The presence of 100 μM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5′-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5′-N-ethylcarboxamidoadenosine (CGS-21680)>2-chloroadenosine (2-CADO)>N6-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3,7-dimethyl-1-propargylxanthine (BS-DMPX)>1,3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5,6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The Ki values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3–7-fold lower. [3H]MSX-2 is a highly selective A2A AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20–30%, at 1 nM.  相似文献   

18.
  1. The effects of CGS 21680, a selective A2A adenosine receptor agonist, on cardiac output, blood pressure, mean circulatory filling pressure (Pmcf), arterial and venous resistances, heart rate and left ventricular end-diastolic pressure were assessed in rats with acute heart failure by means of coronary artery occlusion.
  2. Animals (n=6 in each group) were divided into five groups: group I, sham-operated vehicle-treated (0.9% saline; 0.018 mL min−1); groups II-V, subject to coronary artery occlusion and treated with vehicle (0.9% saline; 0.018 ml min−1) and CGS 21680 (0.1, 0.3 and 1.0 μg kg−1 min−1), respectively. Haemodynamic measurements were taken one hour after completion of surgery, ninety minutes after coronary artery occlusion (except in group I), and fifteen minutes after infusion of saline or CGS 21680.
  3. Baseline haemodynamic measurements before occlusion were found not to differ significantly between the different groups of animals. However, after occlusion, cardiac output, rate of rise in left ventricular pressure (+dP/dt) and blood pressure were significantly reduced when compared to corresponding values in sham-operated animals. In addition, occlusion of the coronary artery resulted in a significant elevation in venous resistance, Pmcf and left ventricular end-diastolic pressure as compared to corresponding values in sham-operated animals.
  4. Infusion with CGS 21680 at the highest dose significantly reduced blood pressure, arterial resistance and left ventricular end-diastolic pressure when compared to occluded vehicle-treated animals (group II). Administration of CGS 21680 at the highest dose also significantly increased cardiac output (28%) and heart rate (10%) in comparison to occluded vehicle-treated animals. In addition, the highest dose of CGS 21680 significantly reduced Pmcf (9%) and venous resistance (62%) in comparison to occluded vehicle-treated animals. Administration of CGS 21680 did not significantly affect +dP/dt when compared to occluded vehicle-treated animals.
  5. The results from the present investigation indicate that occlusion of the coronary artery in rats results in a state of heart failure characterized by reduced arterial pressure and cardiac output, and increased venous resistance, Pmcf and left ventricular end-diastolic pressure. Administration of CGS 21680 to animals with acute heart failure resulted in increased cardiac output which was due to reduced venous resistance, as well as increased heart rate.
  相似文献   

19.

Aim:

To investigate whether adenosine A3 receptors (A3AR) stimulation restore vascular reactivity after hemorrhagic shock through a ryanodine receptor (RyR)-mediated and large conductance calcium-activated potassium (BKCa) channel-dependent pathway.

Methods:

Rat hemorrhagic shock model (40 mmHg) and vascular smooth muscle cell (VSMC) hypoxic model were used. The expression of A3AR was determined by Western blot and RT-PCR. The effect of A3AR stimulation on RyR-mediated Ca2+ release in VSMCs was analyzed by the Fura-3/AM loading Ca2+ imaging. The modulation of vascular reactivity to norepinephrine (NE) by A3AR stimulation was monitored by an isolated organ tension instrument.

Results:

Decrease of A3AR expression is consistent with the loss of vasoreactivity to NE in hemorrhagic shock rats. The stimulation of A3AR with a selective agonist, IB-MECA, could partly but significantly restore the vasoreactivity in the rats, and this restorative effect could be counteracted by MRS1523, a selective A3AR antagonist. In hypoxic VSMCs, RyR activation by caffeine significantly evoked the rise of [Ca2+] compared with the control cells, a phenomenon closely associated with the development of vascular hyporeactivity in hemorrhagic shock rats. The stimulation of A3AR with IB-MECA significantly blocked this over activation of RyR-mediated Ca2+ release. RyR activation by caffeine and BKCa channel activation by NS1619 attenuated the restoration of vasoreactivity to NE resulting from A3AR stimulation by IB-MECA after hemorrhagic shock; this attenuation effect could be antagonized by a selective BKCa channel blocker.

Conclusion:

These findings suggest that A3AR is involved in the modulation of vasoreactivity after hemorrhagic shock and that stimulation of A3AR can restore the decreased vasoreactivity to NE through a RyR-mediated, BKCa channel-dependent signal pathway.  相似文献   

20.
The adenosine-receptor modulation of noradrenaline release was compared in prostatic and epididymal portions of rat vas deferens. In both portions, tritium overflow elicited by electrical stimulation (100 pulses/8 Hz) was reduced by the adenosine A(1) receptor agonist, N(6)-cyclopentyladenosine, and enhanced by the nonselective receptor agonist, 5'-N-ethylcarboxamidoadenosine, in the presence of the adenosine A(1) receptor antagonist, 1,3-dipropyl-8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 20 and 100 nM). The adenosine A(2A) receptor agonist, 2-p-(2-carboxyethyl)phenethyl-amino-5'-N-ethylcarboxamidoadenosine, increased tritium overflow, but only in the epididymal portion. The enhancement caused by NECA was prevented by the adenosine A(2A) receptor antagonist, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 20 nM), in the epididymal and by the adenosine A(2B) receptor antagonist, alloxazine (1 microM), in the prostatic portion. Inhibition of adenosine uptake enhanced tritium overflow in both portions, an effect blocked by ZM 241385 in the epididymal and by alloxazine in the prostatic portion. The results indicate that adenosine exerts an adenosine A(1) receptor-mediated inhibition, in both portions, and facilitation mediated by adenosine A(2A) receptors in the epididymal and by A(2B) receptors in the prostatic portion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号