首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to measure apparent diffusion coefficient values of normal liver parenchyma and focal liver lesions utilizing a respiratory gated diffusion sequence with multiple b-values and to investigate whether apparent diffusion coefficient (ADC) measurements may be utilized to characterize and differentiate between malignant and benign focal hepatic lesions. Thirty-eight consecutive patients underwent MRI of the liver including diffusion-weighted imaging (DWI). A single-shot echo planar imaging sequence was applied in coronal orientation with multiple b-values (0, 50, 500, 1,000 s/mm2) and respiratory gating. ADC values were recorded on corresponding maps utilizing region of interest measurements in patients with benign (group A), malignant (group B) focal lesions and liver parenchyma (group C). Statistical analysis was applied to check whether differences in mean ADC values were significant (p<0.05). No focal lesions were detected in 11 patients, with a mean ADC value (CI 95%) of liver parenchyma 1.25×10−3 mm2/s (1.21×10−3 mm2/s−1.29×10−3 mm2/s). Differences in mean ADC of liver parenchyma between group A and B were not significant (p=0.054, 1.30×10−3 mm2/s and 1.31×10−3 mm2/s, respectively). Mean ADC value (95% CI) of 22 benign lesions found in 18 patients was 2.55×10−3 mm2/s (2.35×10−3 mm2/s−2.74×10−3 mm2/s), while the mean ADC value (95% CI) of 16 malignant lesions recorded in 9 patients was 1.04×10−3 mm2/s (0.9×10−3 mm2/s−1.17×10−3 mm2/s). The difference between mean ADC values of benign and malignant focal lesions was statistically significant (p<0.0001). Respiratory gated diffusion-weighted imaging in the liver is technically feasible. Apparent diffusion coefficient measurements can be useful in differentiating malignant from benign focal liver lesions.  相似文献   

2.
We evaluated the diagnostic ability of diffusion-weighted imaging for the differentiation between lymphomas and carcinomas in the pharynx and between carcinomas with different histological types in the pharynx. T1-weighted, fat-suppressed T2-weighted, and diffusion-weighted MR imaging was performed on 14 patients with pharyngeal lymphomas, 26 patients with carcinomas of the pharynx, 5 patients with adenoidal hypertrophy, and 22 patients with normal tonsils. Apparent diffusion coefficients (ADCs) were determined by using two b factors (500 and 1,000 s/mm2). The ADCs of lymphomas were significantly smaller (0.454 ± 0.075 × 10−3 mm2/s) than those of carcinomas (0.863 ± 0.238 × 10−3 mm2/s). The ADCs of poorly differentiated and undifferentiated carcinomas (0.691 ± 0.149 × 10−3 mm2/s) were significantly smaller than those of moderately differentiated and well-differentiated carcinomas (0.971 ± 0.221 × 10−3 mm2/s), but were significantly larger than those of lymphomas. When an ADC smaller than 0.560 × 10−3 mm2/s was used for predicting lymphomas, we obtained the highest accuracy of 96%, with 100% sensitivity and 94% specificity, 86% positive predictive value, and 100% negative predictive value. Therefore, ADC measurements effectively differentiate lymphomas from carcinomas in the pharynx and could be a useful adjunct to biopsy-based development of treatment planning.  相似文献   

3.
PURPOSE: To evaluate the different signal characteristics of focal hepatic lesions on ferumoxides-enhanced MR imaging, including T1-weighted spoiled gradient recalled echo (GRE) images using different echo times (TE) and T2- and T2*-weighted images. MATERIALS AND METHODS: Ferumoxides-enhanced MR imaging was performed using a 1.5-T system in 46 patients who were referred for evaluation of known or suspected hepatic malignancies. One hundred and seven lesions (42 hepatocellular carcinomas [HCC], 40 metastases, 13 cysts, eight hemangiomas, three focal nodular hyperplasias [FNHs], and one cholangiocarcinoma) were evaluated. Postcontrast MR imaging included 1) T2-weighted FSE; 2) T2*-weighted GRE; 3) T1-weighted spoiled GRE using moderate (TE = 4.2-4.4 msec) TE; and 4) minimum (TE = 1.8-2.1 msec) TE. Signal intensities of the focal lesions were rated by two radiologists in conference as follows: hypointense, isointense or invisible, hyperintense, and markedly hyperintense. Lesion-to-liver contrast-to-noise ratio (C/N) was measured by one radiologist for a quantitative assessment. RESULTS: On ferumoxides-enhanced FSE images, 92% of cysts were "markedly hyperintense" and most of the other lesions were "hyperintense", and the mean C/N of cysts was significantly higher than that of other focal lesions. T2*-weighted GRE images showed most lesions with similar hyperintensities and the mean C/N was not significantly different between any two types of lesion. T1-weighted GRE images using moderate TE showed all FNHsand hemangiomas, 29 (69%) HCCs and eight (20%) metastases as "hyperintense". On T1-weighted GRE images using minimum TE, however, all HCCs and metastasis except one were iso- or hypointense, while all of the FNHs and hemangiomas were hyperintense. Ring enhancement was highly suggestive of malignant lesions, and was more commonly seen on the minimum TE images than on the moderate TE images. CONCLUSION: Addition of T1-weighted GRE images using minimum and moderate TE is helpful for characterizing focal lesions in ferumoxides-enhanced MR imaging.  相似文献   

4.
The role of diffusion-weighted magnetic resonance imaging (DWI) to differentiate breast lesions in vivo was evaluated. Sixty women (mean age, 53 years) with 81 breast lesions were enrolled. A coronal echo planar imaging (EPI) sequence sensitised to diffusion (b value=1,000 s/mm2) was added to standard MR. The mean diffusivity (MD) was calculated. Differences in MD among cysts, benign lesions and malignant lesions were evaluated, and the sensitivity and specificity of DWI to diagnose malignant and benign lesions were calculated. The diagnosis was 18 cysts, 21 benign and 42 malignant nodules. MD values (mean±SD ×10−3 mm2/s) were (1.48±0.37) for benign lesions, (0.95±0.18) for malignant lesions and (2.25±0.26) for cysts. Different MD values characterized different malignant breast lesion types. A MD threshold value of 1.1×10−3 mm2/s discriminated malignant breast lesions from benign lesions with a specificity of 81% and sensitivity of 80%. Choosing a cut-off of 1.31×10−3 mm2/s (MD of malignant lesions -2 SD), the specificity would be 67% with a sensitivity of 100%. Thus, MD values, related to tumor cellularity, provide reliable information to differentiate malignant breast lesions from benign ones. Quantitative DWI is not time-consuming and can be easily inserted into standard clinical breast MR imaging protocols.  相似文献   

5.
The feasibility of a diffusion-weighted single-shot fast-spin-echo sequence for the diagnostic work-up of bone marrow diseases was assessed. Twenty healthy controls and 16 patients with various bone marrow pathologies of the spine (bone marrow edema, tumor and inflammation) were examined with a diffusion-weighted single-shot sequence based on a modified rapid acquisition with relaxation enhancement (mRARE) technique; four diffusion weightings (b-values: 50, 250, 500 and 750 s/mm2) in three orthogonal orientations were applied. Apparent diffusion coefficients (ADCs) were determined in the bone marrow and in the intervertebral discs of healthy volunteers and in diseased bone marrow. Ten of the 20 volunteers were repeatedly scanned within 30 min to examine short-time reproducibility. Spatial reproducibility was assessed by measuring ADCs in two different slices including the same lesion in 12 patients. The ADCs of the lesions exhibited significantly higher values, (1.27 ± 0.32)×10−3 mm2/s, compared with healthy bone marrow, (0.21 ± 0.10)×10−3 mm2/s. Short-time and spatial reproducibility had a mean coefficient of variation of 2.1% and 6.4%, respectively. The diffusion-weighted mRARE sequence provides a reliable tool for determining quantitative ADCs in vertebral bone marrow with adequate image quality.  相似文献   

6.

Purpose:

To evaluate apparent diffusion coefficient (ADC) values for characterization of a variety of focal liver lesions and specifically for differentiation of solid benign lesions (focal nodular hyperplasia [FNH] and adenomas) from solid malignant neoplasms (metastases and hepatocellular carcinoma [HCC]) in a large case series.

Materials and Methods:

A total of 542 lesions in 382 patients were evaluated. ADC values were measured in 166 hemangiomas, 112 hepatomas, 107 metastases, 95 cysts, 10 abscesses, 43 FNH, and nine adenomas. ADCs of 1.5 and 1.6 (×10?3 mm2/second) were selected as threshold values to separate benign and malignant lesions. Sensitivity, specificity, positive, and negative predictive values (PPV, NPV) were calculated. Comparisons were carried out with studentized range test.

Results:

There was high interobserver agreement in ADC measurements for all lesion types. The mean ADCs for cysts was 3.40 (×10 ?3 mm2/second), hemangiomas 2.26, FNH 1.79, adenomas 1.49, abscesses 1.97, HCC 1.53, and metastases 1.50. The mean ADC for benign lesions was 2.50 and for malignant lesions was 1.52. Cysts were easily distinguished from other lesions. There was, however, overlap between solid benign and malignant lesions.

Conclusion:

Benign lesions have higher mean ADC values than malignant lesions. However, ADC values of solid benign lesions (FNH and adenomas) are similar to malignant lesions (metastases, HCC) limiting the value of diffusion weighted imaging (DWI) for differentiating solid liver masses. J. Magn. Reson. Imaging 2010;32:138–147. © 2010 Wiley‐Liss, Inc.
  相似文献   

7.
Introduction Epidural spinal cord compression is one of the most critical emergency conditions requiring medical attention and requires prompt and adequate treatment. The aim of our study was to assess the role of diffusion-weighted magnetic resonance (MR) imaging (DWI) in the diagnosis and differentiation of epidural spinal lesions. Methods Three patients with epidural lymphoma, two with sarcoma and three with epidural metastatic disease were imaged on a 1.5T MRI unit. DWI was performed using navigated, interleaved, multi-shot echo planar imaging (IEPI). Three region of interest (ROI)-measurements were obtained on corresponding apparent diffusion coefficient (ADC) maps, and the mean ADC value was used for further analysis. The cellularity of tumors was determined as the N/C ratio (nucleus/cytoplasma ratio) from histological samples. The ADC values and N/C ratios of lesions were compared using a Kruskal-Wallis test. Results The mean ADC of the lymphomas was 0.66 × 10−3 mm2/s, that of the sarcomas was 0.85 × 10−3 mm2/s and the ADC of the metastatic lesions was 1.05 × 10−3 mm2/s; however, the differences were not statistically significant. Mean N/C ratios in the lymphoma, sarcomas and metastases were 4:1, 2:1, and 2.6:1, respectively, with a statistically significant difference between the groups (p < 0.025). Conclusion Although not statistically significant due to the small patient sample, our results clearly show a tendency toward decreased diffusivity in neoplastic lesions with higher cellularity. The data from our study suggest that DWI is a feasible and potentially useful technique for the evaluation of epidural lesions that cause spinal cord compression on a per-patient basis.  相似文献   

8.

Objective

To determine the findings of various focal hepatic lesions at contrast-enhanced gray-scale ultrasound (US) using a coded harmonic angio (CHA) technique and emphasizing lesion characterization.

Materials and Methods

The study involved 95 patients with 105 focal hepatic lesions, namely 51 hepatocellular carcinomas (HCCs), 22 metastases, 22 hemangiomas, four cases of focal nodular hyperplasia (FNH), and six nontumorous nodules. After the injection of a microbubble contrast agent (SH U 508A), gray-scale harmonic US studies using a CHA technique were performed with a combination of continuous scanning to assess the intratumoral vasculature (vascular imaging) and interval-delay scanning to determine the sequential enhancement pattern (acoustic emission imaging). Each imaging pattern was categorized and analyzed.

Results

At vascular imaging, 69% of HCCs (35/51) showed irregular branching vessels, while in 91% of metastases (20/22) a peripherally stippled pattern was observed. Intratumoral vessels were absent in 95% of hemangiomas (21/22) and all nontumorous lesions (6/6), while in 75% of FNHs (3/4) a spoke-wheel pattern was evident. At acoustic emission imaging, 71% of HCCs (36/51) showed heterogeneous enhancement and 86% (19/22) of metastases showed rim- or flame-like peripheral enhancement during the early phase, with washout occurring in all HCCs and metastases (100%, 73/73) during the late phase. In hemangiomas, enhancement was either peripheral and nodular (19/22, 86%) or persistent and homogeneous (3/22, 14%), and 75% of FNHs (3/4) became isoechoic during the late phase.

Conclusion

At contrast-enhanced gray-scale US using a CHA technique, a period of continuous scanning depicted the intratumoral vasculature, and interval-delay scanning demonstrated the sequential enhancement pattern. The characteristic findings of various focal hepatic lesions were thus determined.  相似文献   

9.
Fluoro-18-deoxyglucose positron emission tomography computed tomography (FDG-PET/CT) and magnetic resonance imaging (MRI), including unenhanced single-shot spin-echo echo planar imaging (SS SE-EPI) and small paramagnetic iron oxide (SPIO) enhancement, were compared prospectively for detecting colorectal liver metastases. Twenty-four consecutive patients suspected for metastases underwent MRI and FDG-PET/CT. Fourteen patients (58%) had previously received chemotherapy, including seven patients whose chemotherapy was still continuing to within 1 month of the PET/CT study. The mean interval between PET/CT and MRI was 10.2 ± 5.2 days. Histopathology (n = 18) or follow-up imaging (n = 6) were used as reference. Seventy-seven metastases were detected. In nine patients, MRI and PET/CT gave concordant results. Sensitivities for unenhanced SS SE-EPI, MRI without SS SE-EPI and FDG-PET/CT were, respectively, 100% (p = 9 × 10−10 vs PET, p = 8 × 10−3 vs MRI without SS SE-EPI), 90% (p = 2 × 10−7 vs PET) and 60%. PET/CT sensitivity dropped significantly with decreasing size, from 100% in lesions larger than 20 mm (identical to MRI), over 54% in lesions between 10 and 20 mm (p = 3 × 105 versus unenhanced SS SE-EPI), to 32% in lesions under 10 mm (p = 6 × 10−5 versus unenhanced SS SE-EPI). Positive predictive value of PET was 100% (identical to MRI). MRI, particularly unenhanced SS SE-EPI, has good sensitivity and positive predictive value for detecting liver metastases from colorectal carcinoma. Its sensitivity is better than that of FDG-PET/CT, especially for small lesions.  相似文献   

10.
The purpose of this study was to assess the value of diffusion-weighted magnetic resonance imaging (DWI) in detecting esophageal cancer and assessing lymph-node status, compared with histopathological results. DWI was prospectively performed in 24 consecutive patients with esophageal cancer, using the diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) sequence. DWIBS images were fused with T2-weighted images, and independently and blindly evaluated by three board-certified radiologists, regarding primary tumor detectability and lymph-node status. Apparent diffusion coefficients (ADCs) of the primary tumor and lymph nodes were also measured. Average primary tumor detection rate was 49.4%, average patient-based sensitivity and specificity for the detection of lymph-node metastasis were 77.8 and 55.6%, and average lymph-node group-based sensitivity and specificity were 39.4 and 92.6%. There were no interobserver differences among the three readers (P < 0.0001). Mean ADC of detected primary tumors was 1.26 ± 0.29×10−3 mm2/s. Mean ADC of metastatic lymph nodes (1.46 ± 0.35×10−3 mm2/s) was significantly higher (P < 0.0001) than that of nonmetastatic lymph nodes (1.15 ± 0.24 mm2/s), but ADCs of both groups overlapped. In conclusion, this study suggests that DWI only has a limited role in detecting esophageal cancer and nodal staging.  相似文献   

11.
PURPOSE: To compare the mangafodipir-enhanced magnetic resonance (MR) and superparamagnetic iron oxide (SPIO)-enhanced images for their ability to detect and characterize focal hepatic lesions. MATERIALS AND METHODS: Unenhanced, mangafodipir-enhanced, and SPIO-enhanced hepatic MR images obtained from 64 patients were analyzed. A total of 121 hepatic lesions were included: 66 hepatocellular carcinomas (HCCs), 26 metastases, 14 hemangiomas, 5 cysts, 3 cholangiocarcinomas, 4 focal nodular hyperplasias (FNHs), 2 abscesses, and 1 adenoma. Two radiologists independently reviewed the two sets of images in a random order: 1) the unenhanced and mangafodipir-enhanced images (the mangafodipir set) and 2) the unenhanced and SPIO-enhanced images (the SPIO set). This study compared the accuracy of lesion detection, the ability to distinguish between a benign and malignant lesion, and the ability to distinguish between the hepatocellular and nonhepatocellular origins of the lesions using the areas (Az) under the receiver operating characteristic (ROC) curve. RESULTS: The overall accuracy for detecting focal lesions was significantly higher (P < 0.05) with the SPIO set (Az = 0.846 and 0.871 for readers 1 and 2, respectively) than with the mangafodipir set (Az = 0.716 and 0.766). Most of the lesions detected only with the SPIO-enhanced MR images by the readers were small HCCs. For lesions larger than 15 mm, the sensitivities of the two contrast enhancement techniques were similar for both readers. The accuracy of the mangafodipir and SPIO sets in distinguishing between benign and malignant lesions was comparable. The accuracy for distinguishing between the hepatocellular and nonhepatocellular origins of the lesions was significantly higher (P < 0.05) using the mangafodipir set (Az = 0.897 and 0.946) than using the SPIO set (Az = 0.741 and 0.833). CONCLUSION: SPIO- and mangafodipir-enhanced images were comparable for detection of focal hepatic lesions other than small HCCs, which were better detected on the SPIO-enhanced images. Mangafodipir-enhanced images are likely better than the SPIO-enhanced images for distinguishing between focal liver lesions with a hepatocellular or nonhepatocellular origin.  相似文献   

12.

Purpose

To compare a free breathing navigator triggered single shot echoplanar imaging (SS EPI) diffusion‐weighted imaging (DWI) sequence with prospective acquisition correction (PACE) with a breathhold (BH) DWI sequence for liver imaging.

Materials and Methods

Thirty‐four patients were evaluated with PACE‐DWI and BH DWI of the liver using b‐values of 0, 50, and 500 s/mm2. There were 29 focal liver lesions in 18 patients. Qualitative evaluation was performed on a 3‐point scale ( 1 - 3 ) by two independent observers (maximum score 9). Quantitative evaluation included estimated SNR (signal to noise ratio), lesion‐to‐liver contrast ratio, liver and lesion apparent diffusion coefficients (ADCs), and coefficient of variation (CV) of ADC in liver parenchyma and focal liver lesions (estimate of noise contamination in ADC).

Results

PACE‐DWI showed significantly better image quality, higher SNR and lesion‐to‐liver contrast ratio when compared with BH DWI. ADCs of liver and focal lesions with both sequences were significantly correlated (r = 0.838 for liver parenchyma, and 0.904 for lesions, P < 0.0001), but lower with the BH sequence (P < 0.02). There was higher noise contamination in ADC measurement obtained with BH DWI (with a significantly higher SD and CV of ADC).

Conclusion

The use of a navigator echo to trigger SS EPI DWI improves image quality and liver to lesion contrast, and enables a more precise ADC quantification compared with BH DWI acquisition. J. Magn. Reson. Imaging 2009;30:561–568. © 2009 Wiley‐Liss, Inc.  相似文献   

13.

Objective

The aim of this paper was to evaluate the application of ARFI ultrasound imaging and its potential value for characterizing focal solid liver lesions.

Materials and methods

In this multicentric prospective study, over a total non-consecutive period of four months, all patients underwent ARFI US examination. Two independent operators performed 5 measurements per each lesion and 2 measurements in the surrounding liver. According to the definitive diagnosis, a mean velocity value and standard deviations were obtained in each type of focal solid lesion, compared by using t-test, and the inter-operator evaluation was performed by using the Student's t-test. A comparison between the total mean values of each type of lesion and the mean value of the parenchyma was performed.

Results

40 lesions were evaluated and a total of 400 measurements were obtained. The lesions were: 6/40(15%) hepatocellular carcinomas, 7/40(17.5%) hemangiomas, 5/40(12.5%) adenomas, 9/40(22.5%) metastases and 13/40(32.5%) focal nodular hyperplasias. The total mean values obtained were: 2.17 m/s in HCCs, 2.30 m/s in hemangiomas, 1.25 m/s in adenomas, 2.87 m/s in metastases and 2.75 m/s in FNHs. The inter-operator evaluation resulted non-statistically different (p > 0.05). A significant difference (p < 0.05) was always found by comparing adenomas to the other lesions. 160 measurements were obtained in the surrounding parenchyma, with a no significant difference between values measured in adenomas and in the surrounding liver.

Conclusions

ARFI technology with Virtual Touch tissue quantification could non-invasively provide significant complementary information regarding the tissue stiffness, useful for the differential diagnosis of focal solid liver lesions.  相似文献   

14.
A review of liver sonograms obtained for cancer patients (excluding primary liver cancers) over a 12 year period found 829 benign lesions: non-parasitic cysts (427 cases), hemangiomas (216 cases), solitary calcifications (79 cases), focal fatty infiltration (62 cases), and miscellaneous lesions (45 cases). These benign pathologies represented 41.8% of the focal hepatic lesions observed during this period in this population; hepatic metastases accounted for the remaining 58.2%. Marked female predilection was noted for the nonparasitic cysts, hemangiomas, and focal fatty infiltration; 63–78.7% of these lesions were solitary, and first-line imaging by US was sufficient for diagnosis of 66.1–98.2% of cases. Analysis of lesion evolution over more than 5 years revealed modifications in 17% of hemangiomas, 23.9% of nonparasitic cysts, and 75% of cases of focal fatty infiltration. Systematic pretherapy liver sonography can be proposed owing to the high frequency of benign liver lesions that can create diagnostic problems during follow-up of cancer patients. Correspondence to: J. N. Bruneton  相似文献   

15.
Progressive multifocal leukoencephalopathy (PML) is a severe demyelinating disease of the central nervous system due to JC polyoma virus infection of oligodendrocytes. PML develops in patients with impaired T-cell function as occurs in HIV, malignancy or immunosuppressive drugs users. Until now no imaging methods have been reported to correlate with clinical status. Diffusion-weighted imaging (DWI) is a robust MRI tool in investigating white matter architecture and diseases. The aim of our work was to assess diffusion abnormalities in focal white matter lesions in patients with PML and to correlate the lesion load measured with conventional MRI and DWI to clinical variables. We evaluated eight patients with a biopsy or laboratory-supported diagnosis of PML. All patients underwent MRI including conventional sequences (fluid attenuated inversion recovery-FLAIR) and DWI. Mean diffusivity (MD) maps were used to quantify diffusion on white matter lesions. Global lesion load was calculated by manually tracing lesions on FLAIR images, while total, central core and peripheral lesion loads were calculated by manually tracing lesions on DWI images. Lesion load obtained with the conventional or DWI-based methods were correlated with clinical variables such as disease duration, disease severity and survival. White matter focal lesions are characterized by a central core with low signal on DWI images and high MD (1.853 × 10−3 mm2/s), surrounded by a rim of high signal intensity on DWI and lower MD (1.1 × 10−3 mm2/s). The MD value of normal-appearing white matter is higher although not statistically significant (0.783 × 10−3 mm2/s) with respect to control subjects (0.750 × 10−3 mm2/s). Inter-rater correlations of global lesion load between FLAIR (3.96%) and DWI (3.43%) was excellent (ICC =0.87). Global lesion load on FLAIR and DWI correlates with disease duration and severity (respectively, p = 0.037, p = 0.0272 with Karnofsky scale and p = 0.0338 with EDSS on FLAIR images; p = 0.043, p = 0.0296 with Karnofsky scale and p = 0.0365 with EDSS on DW images). Central core lesion load on DWI correlates with disease duration and severity (respectively p = 0.043, p = 0.0103 with Karnofsky scale and p = 0.0112 with EDSS), while peripheral lesion load does not correlate with any clinical variable. The global lesion load in PML correlates with disease duration and severity. DWI images, which can distinguish within lesions a central core from a peripheral rim, reveal that a larger central core component correlates to a worsened clinical status and longer disease duration. On the other hand the peripheral rim lesion load visualized on DWI images does not correlate with clinical variables and does not achieve obtaining further prognostic information with respect to conventional imaging.  相似文献   

16.
PURPOSE: To determine whether MR images with motion-probing gradients (MPGs) usefully improve lesion detection in comparison with MR images without MPGs. MATERIALS AND METHODS: Echo planar (EP) images without MPGs and with small and intermediate MPGs (gradient factor b = 2, 18, and 188 second/mm(2), respectively) were acquired for 61 hepatic lesions (21 hepatocellular carcinomas (HCCs), 19 metastases, eight hemangiomas, and 13 cysts). The lesion-to-liver signal intensity ratios (SIRs) of these lesions were calculated using EP images with and without MPGs. Qualitative analysis for detection of HCCs and metastases were also performed between the images without MPGs and with small MPGs. RESULTS: The SIRs of HCCs and metastases for the images with small MPGs were significantly higher than the values for the images without MPGs (P < 0.05), although no significant differences were found in the case of hemangiomas and cysts. In comparison to images without MPGs, images with small MPGs improved lesion detection of three metastases and six HCCs, and worsened lesion detection of two HCCs. CONCLUSION: Images with small MPGs may improve HCC and metastasis detection over images without MPGs.  相似文献   

17.
The aim of this study was to retrospectively measure and compare pancreatic apparent diffusion coefficient (ADC) in patients with acute pancreatitis (AP) with aged matched controls who underwent diffusion weighted imaging (DWI). The institutional review board approved this retrospective Health Insurance Portability and Accountability Act compliant study with a waiver for informed consent. Pancreatic ADC values from 27 patients with a clinical diagnosis of AP and 38 normal age-matched controls evaluated with DWI (b = 0 and 800 mm2/s) were retrospectively and independently measured by two radiologists. The ADCs were compared between the groups and between each of the pancreatic segments in the normal group. Inter-observer reliability was calculated and receiver operating characteristic analysis was used to determine the sensitivity and specificity of DW imaging in the diagnosis of acute pancreatitis. P < 0.05 was considered statistically significant. The ICC for inter-observer reliability was 0.98 in the control and 0.97 in the AP group. The mean pancreatic ADC in the AP group (1.32 × 10−3 mm2/s ± 0.13) was significantly lower than in the normal group (1.77 × 10−3 mm2/s ± 0.32). There was no significant difference in mean ADCs between each of the pancreatic segments in the controls. A threshold ADC value of 1.62 × 10–3 mm2/s yielded a sensitivity of 93% and specificity of 87% for detecting acute pancreatitis for b values of 0 and 800 s/mm2. Pancreatic ADCs are significantly lower in patients with AP than normal controls.  相似文献   

18.

Objective

To evaluate intravoxel incoherent motion (IVIM) model-based liver lesion characterisation from three b-value diffusion-weighted imaging (DWI).

Methods

The 1.5-T DWI data from a respiratory gated spin-echo echo-planar magnetic resonance imaging sequence (b?=?0, 50, 800 s/mm2) were retrospectively analysed in 38 patients with different liver lesions. Conventional apparent diffusion coefficient ADC?=?ADC(0,800) as well as IVIM-based parameters D′?=?ADC(50,800), ADC_low?=?ADC(0,50), and f′ were calculated voxel-wise. Sixty-one regions of interest in hepatocellular carcinomas (HCCs, n?=?24), haemangiomas (HEMs, n?=?11), focal nodular hyperplasias (FNHs, n?=?11), and healthy liver tissue (REFs, n?=?15) were analysed. Group differences were investigated using Student’s t-test and receiver-operating characteristic (ROC) analysis.

Results

Mean values?±?standard deviations of ADC, D′, ADC_low (in 10-5 mm2/s), and f′ (in %) for REFs/FNHs/HEMs/HCCs were 130?±?11/143?±?27/168?±?16/113?±?25, 104?±?12/123?±?25/162?±?18/102?±?23, 518?±?66/437?±?97/268?±?69/283?±?120, and 18?±?3/14?±?4/6?±?3/9?±?5, respectively. Differences between lesions and REFs were more significant for IVIM-based parameters than for conventional ADC. ROC analysis showed the best discriminability between HCCs and FNHs for ADC_low and f′ and between HEMs and FNHs or HCCs for D′.

Conclusion

Three instead of two b-value DWI enables a numerically stable and voxel-wise IVIM-based analysis for improved liver lesion characterisation with tolerable acquisition time.

Key Points

? Quantitative analysis of diffusion-weighted MRI helps liver lesion characterisation. ? Analysis of intravoxel incoherent motion is superior to apparent diffusion coefficient determination. ? Only three b-values enable separation of diffusion and microcirculation effects. ? The method presented is numerically stable, with voxel-wise results and short acquisition times.  相似文献   

19.
Our purpose is to evaluate the diagnostic accuracy of apparent diffusion coefficient (ADC) measurement in differentiating malignant from benign uterine endometrial cavity lesions. We retrospectively evaluated 25 uterine endometrial cavity lesions in 25 female patients: endometrial carcinoma (n = 11), carcinosarcoma (n = 2), submucosal leiomyoma (n = 8), and endometrial polyp (n = 4). Diffusion-weighted images were performed at 1.5 T with b factors of 0–1,000/mm2. The region of interest was defined within the tumor on T2-weighted EPI image and then manually copied to an ADC map. Thereby, the ADC value was obtained. We compared ADC values between malignant and benign lesions using Student’s t-test. The mean and standard deviation of ADC values (×10−3 mm2/s) were as follows: endometrial carcinoma, 0.98±0.21; carcinosarcoma, 0.97±0.02; submucosal leiomyoma, 1.37±0.28; and endometrial polyp, 1.58±0.45. The ADC values differed significantly between malignant (0.98±0.19) and benign lesions (1.44±0.34) (P < 0.01). We defined malignant tumors as cases with an ADC value less than 1.15 × 10−3 mm2/s for obtaining the highest accuracy. Sensitivity, specificity, and accuracy were 84.6%, 100%, and 92%, respectively. ADC measurement can provide useful information in differentiating malignant from benign uterine endometrial cavity lesions.  相似文献   

20.
The purpose of the study was to perform a node-by-node comparison of an ADC-based diagnosis and various size-based criteria on T2-weighted imaging (T2WI) with regard to their correlation with PET/CT findings in patients with uterine cervical cancer. In 163 patients with 339 pelvic lymph nodes (LNs) with short-axis diameter >5 mm, the minimum apparent diffusion coefficient (ADC), mean ADC, short- and long-axis diameters, and ratio of long- to short-axis diameters (L/S ratio) were compared in PET/CT-positive and -negative LNs. On PET/CT, 118 (35%) LNs in 58 patients were positive. The mean value of minimum and mean ADCs, short- and long-axis diameters, and L/S ratio were different in PET/CT-positive (0.6436 × 10−3 mm2/s, 0.756 × 10−3 mm2/s, 10.3 mm, 13.2 mm, 1.32, respectively) and PET/CT-negative LNs (0.8893 × 10−3 mm2/s, 1.019 × 10−3 mm2/s, 7.4 mm, 11.0 mm, 1.49, respectively) (P < 0.05). The Az value of the minimum ADC (0.864) was greater than those of mean ADC (0.836), short-axis diameter (0.764), long-axis diameter (0.640) and L/S ratio (0.652) (P < 0.05). The sensitivity and accuracy of the minimum ADC (86%, 82%) were greater than those of the short-axis diameter (55%, 74%), long-axis diameter (73%, 58%) and L/S ratio (52%, 66%) (P < 0.05). ADC showed superior correlation with PET/CT compared with conventional size-based criteria on T2WI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号