共查询到14条相似文献,搜索用时 15 毫秒
1.
2.
目的:探讨内源性大麻素2-花生四烯酰甘油(2-AG)对脂多糖(LPS)损伤的大鼠尾核神经元L型电压门控钙通道(L-VGCC)电流的调制作用及其分子机制。方法:原代培养新生大鼠尾核神经元,分为对照组、LPS组、2-AG组、2-AG+LPS组、SR141716A(CB1受体反向激动剂)+2-AG+LPS组和AM630(CB2受体反向激动剂)+2-AG+LPS组,应用全细胞膜片钳记录2-AG对LPS损伤的大鼠尾核神经元L-VGCC电流的影响;采用Hoechst染色法观察2-AG对LPS诱导的尾核神经元损伤的影响,并用试剂盒测定尾核神经元caspase-3的活性。结果:(1)LPS能增强L-VGCC电流密度,且未影响L-VGCC激活及失活的电学特征;(2)2-AG能抑制LPS增强L-VGCC电流密度的作用;(3)LPS增强L-VGCC电流密度并非是通过CB1和CB2受体起作用的;(4)2-AG本身对尾核神经元L-VGCC电流密度、激活及失活等电流特性均不产生影响;(5)LPS诱导的尾核神经元caspase-3活性增强可被2-AG抑制,CB1受体反向激动剂SR141716A可取消2-AG的这种效应;(6)LPS可诱导尾核神经元表现出典型的凋亡特征,2-AG可使LPS诱导的核固缩细胞数目显著减少。结论:内源性大麻素2-AG可通过调节尾核神经元L-VGCC电流起抗炎作用和保护神经元的效应。 相似文献
3.
Riekki R Pavlov I Tornberg J Lauri SE Airaksinen MS Taira T 《Journal of neurophysiology》2008,99(6):3075-3089
GABA(A) receptor (GABA-AR)-mediated inhibition is critical for proper operation of neuronal networks. Synaptic inhibition either shifts the membrane potential farther away from the action potential firing threshold (hyperpolarizing inhibition) or via increase in the membrane conductance shunts the excitatory currents. However, the relative importance of these different forms of inhibition on the hippocampal function is unclear. To study the functional consequences of the absence of hyperpolarizing inhibition, we have used KCC2-deficient mice (KCC2hy/null) maintaining only 15-20% of the neuron-specific K-Cl-cotransporter. Gramicidin-perforated patch-clamp recordings in hippocampal CA1 pyramidal cells revealed that the reversal potential of the GABA-AR-mediated postsynaptic currents (E(GABA-A)) was approximately 20 mV more positive in KCC2hy/null mice than in wild-type (WT) animals. The basic glutamatergic transmission appeared unaltered in the KCC2hy/null mice, yet they displayed lowered threshold for stimulation-induced synchronous afterdischarges in the CA1 area. Also fatigue of field excitatory postsynaptic potentials/excitatory postsynaptic currents in response to repetitious stimulation was smaller in KCC2hy/null mice, indicating altered synaptic dynamics. Interestingly, this effect was present also under blockade of GABA-ARs and was dependent on the extracellular K+ concentration. Moreover, there were no differences in the levels of either long-term potentiation or long-term depression between the genotypes. The local hippocampal CA1 network can in several aspects maintain its functional viability even in the absence of hyperpolarizing inhibition in pyramidal cells. Our results underscore the central role of shunting type of inhibition in controlling the neuronal excitation/inhibition balance. Moreover, our data demonstrate a novel, unexpected role for the KCC2, namely the modulation of properties of glutamatergic transmission during repetitious afferent activity. 相似文献
4.
N. A. Breakwell T. Behnisch S. J. Publicover K. G. Reymann 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1995,106(3):505-508
Calcium currents in CA1 neurons from rat hippocampus were studied with the whole-cell, patchclamp technique. Under control conditions high-voltage-activated (HVA) calcium currents activated from membrane potentials of -80 mV and -40 mV underwent run-down. The rate of run-down of the current activated from -40 mV was significantly attenuated by inclusion of the G-protein activator NaF (1 mM) in the pipette and also irreversibly attenuated by brief batch application of NaF (10 mM). This effect was significantly reduced by inclusion of high (10 mM) ethyleneglycoltetraacetate (EGTA) concentrations in the pipette, suggesting an involvement of calcium-dependent processes. It is suggested that activation of guanine nucleotide-binding proteins by NaF leads to a long-lasting attenuation of HVA calcium current run-down in hippocampal CA1 cells. 相似文献
5.
6.
Amyloid-β protein (Aβ) is thought to play a central pathogenic role in Alzheimer's disease. Aβ can impair synaptic transmission, but little is known about the effects of Aβ on intrinsic cellular properties. Here we compared the cellular properties of CA1 hippocampal pyramidal neurons in acute slices from preplaque transgenic (Tg+) CRND8 mice and wild-type (Tg-) littermates. CA1 pyramidal neurons from Tg+ mice had narrower action potentials with faster decays than neurons from Tg- littermates. Action potential-evoked intracellular Ca(2+) transients in the apical dendrite were smaller in Tg+ than in Tg- neurons. Resting calcium concentration was higher in Tg+ than in Tg- neurons. The difference in action potential waveform was eliminated by low concentrations of tetraethylammonium ions and of 4-aminopyridine, implicating a fast delayed-rectifier potassium current. Consistent with this suggestion, there was a small increase in immunoreactivity for Kv3.1b in stratum radiatum in Tg+ mice. These changes in intrinsic properties may affect information flow through the hippocampus and contribute to the behavioral deficits observed in mouse models and patients with early-stage Alzheimer's disease. 相似文献
7.
We studied the effects of GABA(B) receptor activation on either glycine or GABA(A) receptor-mediated synaptic transmission to hypoglossal motoneurons (HMs, P8-13) using a rat brainstem slice preparation. Activation of GABA(B) receptors with baclofen, a GABA(B) receptor agonist, inhibited the amplitude of evoked glycine and GABA(A) receptor-mediated inhibitory postsynaptic currents. Additionally, with blockade of postsynaptic GABA(B) receptors baclofen decreased the frequency of both glycine and GABA(A) receptor-mediated spontaneous miniature inhibitory postsynaptic currents (mIPSCs), indicating a presynaptic site of action. Conversely, the GABA(B) receptor antagonist CGP 35348 increased the frequency of glycine receptor-mediated mIPSCs. Application of the GABA transport blocker SKF 89976A decreased the frequency of glycinergic mIPSCs. Lastly, we compared the effects of baclofen on the frequency of glycine and GABA(A) receptor-mediated mIPSC during HM development. At increased postnatal ages (P8-13 versus P1-3) mIPSC frequency was more strongly reduced by baclofen. These results show that presynaptic GABA(B) receptors inhibits glycinergic and GABAergic synaptic transmission to HMs, and the presynaptic sensitivity to baclofen is increased in P8-13 versus P1-3 HMs. Further, endogenous GABA is capable of modulating inhibitory synaptic transmission to HMs. 相似文献
8.
Antonia García-Muñoz Luis C. Barrio Washington Buño 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1993,97(2):325-333
The mechanisms mediating intrinsic and entrained CA1 pyramidal neuron rhythmic membrane potential oscillations were investigated in rat hippocampal slices. Intrinsic oscillations (6–14 Hz, < 10 mV) were evoked by long duration (2 s), depolarizing current pulses in 42% of the cells. Oscillations were also evoked by imposing sinusoidal transmembrane currents at 2, 7, and 14 Hz, adjusted at 7 Hz to imitate the synaptically mediated in vivo intracellular theta. Slow all-or-none events (40 mV, 55 ms) — reminiscent of the rhythmic, high threshold slow spikes observed in vivo — were evoked and entrained by the sine wave current cycles with large, imposed depolarization in 35% of the cells. Intrinsic oscillations were insensitive to Ca2+-free, Co2+ (2 mM) and Mn2+ (2 mM) solutions, but were blocked by tetrodotoxin (TTX; 5 M), illustrating that they were Na+-mediated. Tetraethylammonium (TEA; 15 mM) unmasked slow all-or-none events (40–50 mV, 20–55 ms) and plateau potentials (40–60 mV, 100–700 ms). Plateaus were Co2+ and Mn2+ resistant and were abolished by TTX, hence suggesting that the underlying persistent conductance was Na+-mediated. Plateaus were entrained one-to-one at all sinusoidal current frequencies in Ca2+-free, TEA+Co2+, or TEA+Mn2+ solutions. However, the high threshold Ca2+ spikes uncovered in TEA+TTX could only follow sinusoidal currents of less than 7 Hz. In conclusion, the high threshold Ca2+ and persistent Na+ conductances coexist in CA1 pyramidal cells. The persistent Na+ conductance mediated the intrinsic oscillations, and fluctuated at all the sine wave current frequencies used. The more sluggish high-threshold Ca2+ conductance exclusively oscillated at frequencies of less than 7 Hz and did not support the intrinsic rhythm. Therefore, the findings suggest that the Na+-mediated oscillations may contribute to the high-frequency, type I, hippocampal theta rhythm present in vivo, whereas the high threshold Ca2+ conductance may take part in the low-frequency, type II rhythm. 相似文献
9.
H Yokota H Tsubokawa T Miyawaki K Konno H Nakayama T Masuzawa N Kawai 《Neuroscience research》2001,41(4):365-371
We examined the effects of beta-pompilidotoxin (beta-PMTX), a neurotoxin derived from wasp venom, on synaptic transmission in the mammalian central nervous system (CNS). Using hippocampal slice preparations of rodents, we made both extracellular and intracellular recordings from the CA1 pyramidal neurons in response to stimulation of the Schaffer collateral/commissural fibers. Application of 5-10 microM beta-PMTX enhanced excitatory postsynaptic potentials (EPSPs) but suppressed the fast component of the inhibitory postsynaptic potentials (IPSPs). In the presence of 10 microM bicuculline, beta-PMTX potentiated EPSPs that were composed of both non-NMDA and NMDA receptor-mediated potentials. Potentiation of EPSPs was originated by repetitive firings of the presynaptic axons, causing summation of EPSPs. In the presence of 10 microM CNQX and 50 microM APV, beta-PMTX suppressed GABA(A) receptor-mediated fast IPSPs but retained GABA(B) receptor-mediated slow IPSPs. Our results suggest that beta-PMTX facilitates excitatory synaptic transmission by a presynaptic mechanism and that it causes overexcitation followed by block of the activity of some population of interneurons which regulate the activity of GABA(A) receptors. 相似文献
10.
Fujii Satoshi Kuroda Yoichiro Miura Masami Furuse Hidekazu Sasaki Hiroshi Kaneko Kenya Ito Kenichi Chen Zhixiong Kato Hiroshi 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1996,111(3):305-312
We have investigated the effects of prior activation of afferent inputs by a train of low-frequency stimulation (LFS) on the induction of long term potentiation (LTP) induced by highfrequency stimulation (tetanus, 100 Hz, 100 pulses) in CA1 neurons of guinea pig hippocampal slices. The parameters of the LFS were altered systematically: the frequency (1 or 5 Hz); the number of pulses (80, 200 or 1000); and the time lag from the LFS to the tetanus (20, 60 or 100 min). Conditioning effects of the LFS on the induction of LTP were evaluated in terms of the slope of the field excitatory postsynaptic potential (S-EPSP) and the amplitude of the population spike (A-PS). LTP could reliably be induced by 100 Hz tetanic stimulation delivered to a naive slice. In contrast, the attempt to induce LTP 60 min after LFS of 200 or 1000 pulses at 1 Hz resulted only in short-term potentiation while the LFS itself produced no significant change in the responses. The suppressive effect on LTP was significantly reduced for 1 Hz LFS with a smaller number of pulses (80 pulses), or a shorter (20 min) or longer (100 min) time lag from the LFS to the tetanus, or with LFS at a higher frequency (5 Hz). When the LFS of 1000 pulses at 1 Hz was delivered in the presence of the n-methyl-d-aspartate (NMDA) receptor antagonist AP5 (d,l-4-amino-5-phosphonovalerate, 50 M), which was washed out after the end of the LFS, the tetanus given 60 min after application of the LFS produced stable LTP, indicating the involvement of NMDA receptor/channels in the mechanisms of this particular form of synaptic plasticity-long-term suppression of LTP. 相似文献
11.
Serotonin (5-HT) usually induced a slow hyperpolarization lasting several minutes on first drop-application onto CA1 neurons. Subsequent applications always caused a briefer (less than 2 min) hyperpolarization, usually followed by a depolarization. 8-Hydroxy-2(di-n-propylamino)tetralin, a 5-HT1A receptor agonist, and 5-methoxytryptamine, a 5-HT1 receptor agonist, produced only the long-lasting hyperpolarization. The application of 5-HT agonists caused a persistent prolongation of the post-spike train afterhyperpolarization. These observations suggest that the long-lasting hyperpolarization produced by 5-HT may be mediated by the activation of the 5-HT1A receptor subtype. 相似文献
12.
D. Bingmann E. -J. Speckmann 《Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale》1989,74(2):239-248
Summary Antiepileptic actions of the organic calcium antagonists flunarizine (cinnarizine derivate) and verapamil (papaverin derivat) on pentylenetetrazol-induced epileptic bioelectric activity were tested in CA3 neurones of hippocampal slices. In all experiments both calcium antagonists reduced the amplitudes and/or durations of paroxysmal depolarizations as well as their rate of occurrence, when the bath concentrations of flunarizine or verapamil exceeded 20 mol/l. When they were added to the bath solution before pentylenetetrazol application, recordings of the resting membrane potential, of the membrane resistance, of action potentials and of spontaneous as well as of evoked excitatory and inhibitory postsynaptic potentials gave no indication that the antiepileptic effects of these drugs are due to unspecific depressive actions on neuronal excitability or spread of excitation. 相似文献
13.
The mechanisms underlying gamma-amino butyric acid (GABA(B)) receptor-mediated inhibition of exocytosis have been characterized in a variety of synapses. Using patch-clamp recording methods, we attempted to clarify the intracellular mechanisms underlying presynaptic inhibition in autaptic synapses of isolated mouse hippocampal neurons. Baclofen, a selective GABA(B) receptor agonist, decreased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) without changing their amplitude in Ca(2+)-free extracellular solution, suggesting that baclofen inhibits exocytosis downstream of Ca(2+) entry. Syntaxin 1A is known to modulate exocytosis and suppress neuronal sprouting. Antisense oligonucleotide-mediated knockdown of syntaxin 1A increased the frequency of mEPSCs under Ca(2+)-free condition. Estimation of the number of functional release sites by staining with FM1-43 indicated that the increased frequency of mEPSCs was induced by facilitation of exocytosis at each site, rather than by an increased number of release sites due to neuronal sprouting. Baclofen reduced mEPSC frequency in syntaxin 1A-knockdown neurons to the same level as that in nonsense oligonucleotide transfected neurons under Ca(2+)-free condition. These results suggest that the GABA(B) receptor- and syntaxin 1A-induced inhibitions of exocytosis occlude one another and that the GABA(B) receptor shares a common intracellular pathway with syntaxin 1A in inhibiting transmitter release downstream of Ca(2+) entry. 相似文献
14.
This report investigates acute changes in the sensitivity of 5-HT1A receptors in dorsal raphe (dr) neurons in response to elevated serotonin. DR neurons were isolated from adult rats and measurements of inhibition of Ca2+ current by 5-HT were obtained using the whole cell patch clamp technique. During a 10-min application of 5-HT (with normal [Ca2+]i∼100 nM) a desensitization occurred. The response to 20 nM 5-HT decreased by 66% relative to control and remained depressed for about 30 min. When the internal [Ca2+] was buffered to <1 nM only a weak transient desensitization occurred that was surmountable with higher [5-HT]. Adenylyl cyclase activation with forskolin mimicked the desensitization and selective inhibition of protein kinase A (PKA), but not protein kinase C (PKC), partially antagonized the desensitization induced by 5-HT. To measure the activity of PKA and phosphatase enzymes, dr slices were incubated with the selective agonist dipropyl-5-carboxamidotryptamine (DP-5-CT, 1 μM) for 10 min and the phosphorylation of the PKA substrate Kemptide was followed using ATP-γ32P. DP-5-CT inhibited the cAMP stimulated maximal activity of PKA but raised basal PKA activity, thus increasing the percentage of PKA in the active state (activity ratio), an effect that was prevented by the selective 5-HT1A antagonist WAY100635. DP-5-CT also caused a significant inhibition of phosphatase activity. These data support a model in the dr where 5-HT1A-receptor stimulation of PKA promotes phosphorylation of a target and phosphatase inhibition leading to heterologous desensitization. The effect would be expected to have physiological consequences for 5-HT-mediated inhibitory post synaptic potentials and the Ca2+ component of the action potentials of dr neurons. 相似文献