首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:探讨雷公藤红素(celestrol)诱导KRAS驱动的结肠癌SW620细胞产生凋亡的作用和机制。方法:四甲基偶氮唑蓝(MTT)法和台盼蓝拒染法检测细胞增殖;免疫印迹法检测蛋白表达;流式细胞仪和荧光显微镜检测细胞凋亡、细胞周期、线粒体膜电位;荧光显微镜检测细胞内活性氧水平(reactive oxygen species,ROS)。结果:雷公藤红素明显抑制SW620细胞的增殖活性;雷公藤红素下调SW620胞内的p-Akt、NF-κB、Survivin表达,激活caspase-7、caspase-3 和PARP;雷公藤红素增加SW620细胞内的ROS、降低线粒体膜电位、阻滞细胞周期于G2/M期和诱导凋亡。抗氧化剂N-乙酰半胱氨酸(NAC)抑制雷公藤红素引起的上述作用。结论:通过诱导细胞内ROS的累积导致细胞内线粒体膜电位的下降进而触发细胞发生凋亡是雷公藤红素诱导SW620细胞凋亡的作用机制之一。  相似文献   

2.
3.
Emodin, a natural anthraquinone derivative isolated from Rheum palmatum L., has been reported to exhibit anti-cancer effect on several human cancers such as liver cancers and lung cancers. However, the molecular mechanisms of emodin-mediated tumor regression have not been fully defined. In this study, we show that treatment with 50 μM emodin resulted in a pronounced release of cytochrome c, activation of caspase-2, -3, and -9, and apoptosis in human lung adenocarcinoma A549 cells. These events were accompanied by the inactivation of ERK and AKT, generation of reactive oxygen species (ROS), disruption of mitochondrial membrane potential (Δψm), decrease of mitochondrial Bcl-2, and increase of mitochondrial Bax content. Ectopic expression of Bcl-2, or treatment with aurintricarboxylic acid, furosemide or caspase inhibitors markedly blocked emodin-induced apoptosis. Conversely, pharmacologic ERK and AKT inhibition promoted emodin-induced apoptosis. Furthermore, the free radical scavenger ascorbic acid and N-acetylcysteine attenuated emodin-mediated ROS production, ERK and AKT inactivation, mitochondrial dysfunction, Bcl-2/Bax modulation, and apoptosis. Take together, these findings suggest that in A549 cells, emodin-mediated oxidative injury acts as an early and upstream change in the cell death cascade to antagonize cytoprotective ERK and AKT signaling, triggers mitochondrial dysfunction, Bcl-2 and Bax modulation, mitochondrial cytochrome c release, caspase activation, and consequent leading to apoptosis.  相似文献   

4.
The anticancer effects of kotomolide A (KTA), a new butanolide constituent isolated from the leaves of Cinnamomum kotoense (Lauraceae), on the two human breast cancer cell lines MCF-7 and MDA-MB-231, were first investigated in our study. KTA exhibited selectively antiproliferative effects in cancer cell lines without showing any toxicity in normal mammary epithelial cells. Treatment of cancer cells with KTA to trigger G2/M phase arrest was associated with increased p21/WAF1 levels and reduced amounts of cyclin A, cyclin B1, cdc2 and cdc25C. KTA induced cancer cell death treatment by triggering mitochondrial and death receptor 5 (DR5) apoptotic pathways, but did not act on the Fas receptor. Exposure of MCF-7 and MDA-MB-231 cells to KTA resulted in cellular glutathione reduction and ROS generation, accompanied by JNK activation and apoptosis. Both antioxidants, NAC and catalase, significantly decreased apoptosis by inhibiting the phosphorylation of JNK and subsequently triggering DR5 cell death pathways. The reduction of JNK expression by siRNA decreased KTA-mediated Bim cleavage, DR5 upregulation and apoptosis. Furthermore, daily KTA i.p. injections in nude mice with MDA-MB-231 s.c. tumors resulted in a 50% decrease of mean tumor volume, compared with vehicle-treated controls. Taken together, the data show that cell death of breast cancer cells in response to KTA is dependent upon ROS generation and JNK activation, triggering intrinsic and extrinsic apoptotic pathways. The ROS/JNK pathway could be a useful target for novel approaches in breast cancer chemotherapy.  相似文献   

5.
Toona sinensis (T. sinensis), well known in Taiwan as a traditional Chinese medicine, has been shown to exhibit antioxidant effects. In this study, therefore, the ability of T. sinensis to induce apoptosis was studied in cultured human premyelocytic leukemia HL-60 cells. Treatment of the HL-60 cells with a variety of concentrations of the aqueous extracts of T. sinensis (TS extracts) (10–75 μg/ml) and gallic acid (5–10 μg/ml), the natural phenolic components purified from TS extracts, resulted in dose- and time-dependent sequences of events marked by apoptosis, as shown by loss of cell viability and internucleosomal DNA fragmentation. Furthermore, apoptosis in the HL-60 cells was accompanied by the release of cytochrome c, caspase 3 activation and specific proteolytic cleavage of poly (ADP-ribose) polymerase (PARP). This increase in TS extracts- and gallic acid-induced apoptosis was also associated with a reduction in the levels of Bcl-2, a potent cell-death inhibitor, and an increase in those of the Bax protein, which heterodimerizes with and thereby inhibits Bcl-2. Interestingly, TS extracts- and gallic acid-induced dose-dependent reactive oxygen species (ROS) generation in HL-60 cells. We found that catalase significantly decreased TS extracts- or gallic acid-induced cytotoxicity, DNA fragmentation, and ROS production, however, slight reduction was observed with vitamins C and E. Our results indicate that TS extracts- or gallic acid-induced HL-60 apoptotic cell death could be due to the generation of ROS, especially H2O2. The data suggest that T. sinensis exerts antiproliferative action and growth inhibition on HL-60 cells through apoptosis induction, and, therefore, that it may have anticancer properties valuable for application in food and drug products.  相似文献   

6.
Tamoxifen is an anticancer agent widely used for treatment of estrogen receptor (ERα)-positive breast cancer. We previously developed a novel synthesis of tamoxifen and its derivatives, named Ridaifens (RIDs). Some of them, including RID-SB8, exhibited a stronger anticancer activity than tamoxifen in ERα-positive MCF-7 cells while having lost the affinity for ERα, suggesting an ERα-independent anticancer mode of action. In this study, we investigated the underlying mechanism by which RID-SB8 exerts anticancer activity. As expected, anticancer activity of RID-SB8 was not influenced upon knockdown of ERα expression in MCF-7 cells. RID-SB8 exerted similar anticancer effects on thirteen ERα-negative cancer cell lines including human gliosarcoma SF539 cells. In SF539 cells, RID-SB8 triggered loss of mitochondrial membrane potential (ΔΨm) and progression of apoptosis accompanied by activation of caspases and translocation of apoptosis-inducing factor (AIF) to the nucleus. Furthermore, it induced reactive oxygen species (ROS), and a ROS scavenger, N-acetylcysteine (NAC), canceled loss of ΔΨm and progression of apoptosis triggered by RID-SB8. Using fifteen human cancer cell lines, we demonstrated a significant correlation between RID-SB8 concentration required for ROS production and that required for cytotoxic effect across these cell lines, but such correlation was not observed for tamoxifen. Finally, the selective induction of ROS and cytotoxic effect on cancer cells by RID-SB8 were confirmed. From these results, we concluded that RID-SB8 exerts an anticancer effect via a mode of action distinct from tamoxifen, and that RID-SB8 could become a promising anticancer lead compound which selectively induces ROS formation and apoptosis in cancer cells.  相似文献   

7.
The generation of reactive oxygen species (ROS) has been implicated in the perturbation of endothelial function and cell death. However, the specific signaling pathways which mediate and modifying this response have not been fully elucidated. Therefore, in this study we tested the hypothesis that activation of JAK2 is involved in the aortic endothelial cell (EC) response to ROS. When ECs were exposed to HG (25 mM) for 6 h or ROS (i.e., H(2)O(2) (100 microM)) for 1 h and returned to normal medium we found a decrease in cell density and morphologic signs of apoptosis. Furthermore, incubation of ECs with HG and H(2)O(2) also resulted in the tyrosine phosphorylation of JAK2. In addition, pretreatment of ECs with AG-490, an inhibitor of JAK2, prevented nuclear fragmentation, whereas inhibitors of Jun kinase (SP 600125), MAP kinase (PD 98059), Src kinase (PP2) or PI-3 kinase (wortmannin) were without effect. Finally, immunoblot analysis of caspase-3 and PARP cleavage confirmed a role for activation of JAK2 in both HG- or ROS-induced apoptosis, based on inhibition by either AG-490 or adenoviral transfection with a dominant-negative JAK2 mutant. In conclusion the activation of JAK2 plays a pivotal role in oxidant stress-induced commitment of ECs to apoptosis, based on studies with HG and H(2)O(2).  相似文献   

8.
Arsenic can induce reactive oxygen species (ROS) leading to oxidative stress and carcinogenesis. Bladder is one of the major target organs of arsenic, and cyclooxygenase-2 (COX-2) may play an important role in arsenic-induced bladder cancer. However, the mechanism by which arsenic induces COX-2 in bladder cells remains unclear. This study aimed at investigating arsenic-mediated intracellular redox status and signaling cascades leading to COX-2 induction in human uroepithelial cells (SV-HUC-1). SV-HUC-1 cells were exposed to sodium arsenite and COX-2 expression, mitogen-activated protein kinase (MAPK) phosphorylation, glutathione (GSH) levels, ROS induction and Nrf2 expression were quantified. Our results demonstrate that arsenite (1–10 μM) elevates COX-2 expression, GSH levels, ROS and Nrf2 expression. Arsenite treatment for 24 h stimulates phosphorylation of ERK and p38, but not JNK in SV-HUC-1 cells. Induction of Cox-2 mRNA levels by arsenite was attenuated by inhibitors of ERK, p38 and JNK. Arsenite-induced ROS generation and COX-2 expression were significantly attenuated by treatment with melatonin (a ROS scavenger), but enhanced by DL-buthionine-(S, R)-sulfoximine (BSO, an inhibitor of gamma-glutamylcysteine synthetase (γ-GCS) resulting in lower GSH and increased ROS levels). These data indicate that arsenite promotes an induction of ROS, which results in an induction of COX-2 expression through activation of the MAPK pathway.  相似文献   

9.
Lee JY  Jung GY  Heo HJ  Yun MR  Park JY  Bae SS  Hong KW  Lee WS  Kim CD 《Toxicology letters》2006,166(3):212-221
4-Hydroxynonenal (HNE), an end-product of membrane lipid peroxidation, has been suggested to mediate a number of oxidative stress-linked pathological events such as cellular apoptosis. However, little is known about the signals by which HNE induces vascular smooth muscle cell (VSMC) apoptosis. To elucidate the mechanism(s) involved in HNE-induced VSMC apoptosis, we investigated the importance of mitochondria as a potential source for reactive oxygen species (ROS). Exposure of VSMC to HNE (1-30 microM) showed an augmented apoptotic changes in a concentration-dependent manner in association with an increased production of ROS, both of which were significantly attenuated by mitochondrial inhibitors such as rotenone (0.1 microM) and stigmatellin (0.1 microM), but not affected by other oxidase inhibitors involving NADPH oxidase, xanthine oxidase and cyclooxygenase. In connection with these results, HNE-induced ROS generation was not observed in mitochondrial function-deficient (rho 0) VSMC. Taken together, these results suggest that mitochondrial dysfunction plays a key role in mediating HNE-induced VSMC apoptosis through an increased mitochondrial production of ROS.  相似文献   

10.
Indole-3-carbinol (I3C) is a broadly targeted phytochemical shown to prevent carcinogenesis in animal studies and to suppress the proliferation of cancer cells of human breast, colon, prostate, and endometrium. Here we demonstrate that OSU-A9, an I3C derivative with improved anticancer potency, induces cytotoxicity in acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells were less sensitive to OSU-A9 than leukemia cells. OSU-A9 induces caspase activation, PARP cleavage, and autophagy but not autophagic cell death. Interestingly, pretreatment of AML cell lines and primary AML cells with N-acetylcysteine or glutathione rescues them from apoptosis (and concomitant PARP cleavage) and Akt hypophosphorylation, implicating a key role of reactive oxygen species (ROS) in OSU-A9-related cytotoxicity. Importantly, the anticancer utility of OSU-A9 is extended in vivo as it, administered intraperitoneally, suppresses the growth of THP-1 xenograft tumors in athymic nude mice without obvious toxicity. This study shows that ROS-mediated apoptosis contributes to the anticancer activity of OSU-A9 in AML cell lines and primary AML cells, and thus should be considered in the future assessment of its translational value in AML therapy.  相似文献   

11.
12.
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. This study is the first to investigate the anticancer effects of the new phloroglucinol derivative (2,4-bis(2-fluorophenylacetyl)phloroglucinol; BFPP) in human chondrosarcoma cells. BFPP induced cell apoptosis in two human chondrosarcoma cell lines, JJ012 and SW1353 but not in primary chondrocytes. BFPP triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol calcium levels, and increased glucose-regulated protein 78 (GRP78) expression, but failed to show the same effects on GRP94 expression. BFPP also increased calpain expression and activity. Transfection of cells with GRP78 or calpain siRNA reduced BFPP-mediated cell apoptosis in JJ012 cells. Importantly, animal studies have revealed a dramatic 50% reduction in tumor volume after 21 days of treatment. This study demonstrates novel anticancer activity of BFPP against human chondrosarcoma cells and in murine tumor models.  相似文献   

13.
14.
Actinodaphnine, extracted from Cinnamomum insularimontanum (Lauraceae), possesses cytotoxicity in some cancers, but the mechanism by which actinodaphnine induces apoptosis in human hepatoma cells remains poorly understood. In this study, we investigated the mechanisms of apoptosis induced by actinodaphnine in human hepatoma Mahlavu cells. Treatment with actinodaphnine dose-dependently induced apoptosis in Mahlavu cells that correlated with increased intracellular nitric oxide (NO) and reactive oxygen species (ROS), disruptive mitochondrial transmembrane potential (DeltaPsi(m)), and activation of caspase 3/7. Our data also demonstrated that actinodaphnine down-regulated activity of nuclear factor kappaB (NF-kappaB). The apoptotic response to actinodaphnine was markedly decreased in Mahlavu cells pretreated with dexsamethasone, a NO inhibitor, N-acetylcysteine (NAC), an antioxidant, and Boc-Asp(OMe)-fmk, a broad caspases inhibitor. These results suggested that actinodaphnine-induced apoptosis is initially mediated through the NO and/or ROS increase and caspases-dependent pathway. In conclusion, our results indicate that an increase of ROS and/or NO is the initial essential event that results in the decrease of DeltaPsi(m) and the activation of caspases that commits the cells to the apoptotic pathway in actinodaphnine-treated hepatoma Mahlavu cells.  相似文献   

15.
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2L), a member of the TNF gene superfamily, induces apoptosis upon engagement of cognate death receptors. While TRAIL is relatively non-toxic to normal cells, it selectively induces apoptosis in many transformed cells. Nevertheless, some human hepatoma cells are particularly resistant to the effects of TRAIL. In this study, we show that J7, a novel methyl jasmonate analogue, sensitizes TRAIL-resistant HepG2 human hepatocarcinoma cells to TRAIL-mediated apoptosis. Our results indicate that J7 substantially enhances TRAIL-induced apoptosis, compared with treatment with either agent alone. Combined treatment with J7 and TRAIL effectively induced Bid cleavage, down-regulation of XIAP, cIAP-1 and Bcl-xL, activation of caspases, and cleavage of poly(ADP-ribose) polymerase and phopholipase γ-1. In addition, generation of reactive oxygen species (ROS) showed a significant increase in cells following exposure to J7 in a time-dependent manner. However, the cytotoxic effects induced by co-treatment with J7 and TRAIL were markedly attenuated by caspase inhibitors, indicating an important role for caspases. Administration of N-acetyl cysteine, a scavenger of ROS, also resulted in significant inhibition of apoptosis induced by combinatory treatment with J7 and TRAIL. These results support a mechanism whereby J7 plus TRAIL induces apoptosis of HepG2 human hepatoma cells through a signaling cascade involving a ROS-mediated caspase pathway.  相似文献   

16.
We have previously reported that gypenosides induce apoptosis in human hepatocarcinoma Huh-7 cells through a mitochondria-dependent caspase-9 activation cascade. In order to further explore the critical events leading to apoptosis in gypenosides-treated cells, the following effects of gypenosides on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MPT), and the subcellular distribution of Bcl-2 and Bax. We show that gypenosides-induced apoptosis was accompanied by the generation of intracellular ROS, disruption of MPT, and inactivation of ERK, as well as an increase in mitochondrial Bax and a decrease of mitochondrial Bcl-2 levels. Ectopic expression of Bcl-2 or treatment with furosemide attenuated gypenosides-triggered apoptosis. Treatment with ATA caused a drastic prevention of apoptosis and the gypenosides-mediated mitochondrial Bcl-2 decrease and Bax increase, but failed to inhibit ROS generation and MPT dysfunction. Incubation with antioxidants significantly inhibited gypenosides-mediated ROS generation, ERK inactivation, MPT and apoptosis. Moreover, an increase of the intracellular calcium ion (Ca(2+)) concentration rapidly occurred in gypenosides-treated Huh-7 cells. Buffering of the intracellular Ca(2+) increase with a Ca(2+) chelator BAMTA/AM blocked the gypenosides-elicited ERK inactivation, ROS generation, Bcl-2/Bax redistribution, mitochondrial dysfunction, and apoptosis. Based on these results, we propose that the rise in intracellular Ca(2+) concentration plays a pivotal role in the initiation of gypenosides-triggered apoptotic death.  相似文献   

17.
Bleomycin (BLM) has demonstrated potent activity in treating malignant lymphomas but its therapeutic efficacy is hampered by induction of lung fibrosis. This side effect is related to the ability of the drug to generate reactive oxygen species in lung cells. In the present study, we evaluated the consequences of deglycosylation of BLM in term of cytotoxic activity and generation of reactive oxygen species. When tested on U937 human lymphoma cells, both compounds generated a typical apoptotic phenotype. Cell death induction was associated with Bax oligomerization, dissipation of the mitochondrial membrane potential, release of cytochrome c, caspase activation, chromatin condensation and internucleosomal degradation. Whereas both reactive oxygen species and c-jun NH2-terminal kinase (JNK) inhibitors prevented BLM-induced U937 cell death, only JNK inhibition prevented deglycosylated BLM-mediated cell death. Both compounds induced clustering of TRAIL receptors (DR4 and DR5) and Fas at the cell surface but neither a chimeric soluble DR5 receptor that inhibits TRAIL-induced cell death nor a dominant negative version of the adaptor molecule Fas-associated death domain prevented BLM-induced cytotoxicity. These observations indicate that deglycosylation of BLM does not impair the ability of the drug to trigger cell death through activation of the intrinsic pathway but prevents induction of reactive oxygen species. This observation suggests that deglycosylated BLM could exhibit less toxic side effects and could warrant its use in clinic.  相似文献   

18.
《Environmental toxicology》2018,33(5):527-534
Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC‐1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose‐dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl‐2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl‐2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma.  相似文献   

19.
Berberine, a main component of Coptidis Rhizoma, is a plant alkaloid with a long history of medicinal use in Chinese medicine. Berberine has indicated significant antimicrobial activity against a variety of organisms including bacteria, viruses, fungi. The mechanism by which berberine initiates apoptosis remains poorly understood. In the present study, we demonstrated that berberine exhibited significant cytotoxicity in hepatoma HepG2 cells but is ineffective in Chang liver cells. Herein we investigated cytotoxicity mechanism of berberine in HepG2 cells. The results showed that HepG2 cells underwent internucleosomal DNA fragmentation after 24-h treatment with berberine (50 μM). Moreover, berberine induced the activation of caspase-8 and −3, and caused the cleavage of poly ADP-ribose polymerase (PARP) and the cytochrome c release, whereas the expression of Bid and anti-apoptosis factor Bcl-XL were decreased markedly. The loss of mitochondrial membrane potential (Δ ψm) at 24 h and activation of Fas at 12 h were also seen in the berberine-treated HepG2 cells. These findings supported the fact that the inhibitors of caspases, DEVD-FMK, IETD-FMK and VAD-FMK, prevented apoptosis and restored the expression of Bcl-XL, Bcl-2 and Bid. These results indicated that the potential of anti-hepatoma activity of berberine may be mediated through a caspases-mitochondria-dependent pathway.  相似文献   

20.
Oridonin, a diterpenoid isolated from the plant Rabdosia rubescens, induces human epidermoid carcinoma A431 cell death through apoptosis and tyrosine kinase pathway. To examine the pathway of oridonin-induced A431 cell death, morphologic observation, lactate dehydrogenase activity-based assay, DNA agarose gel electrophoresis and Western blot analysis were carried out. When A431 cells, which overexpress epidermal growth factor receptor (EGFR), were treated with oridonin, caspase-3 was activated followed by the degradation of caspase-3 substrates, inhibitor of caspase-activated DNase (ICAD) and poly(ADP-ribose) polymerase (PARP) in a time-dependent manner. Oridonin promoted the release of cytochrome c and the down-regulation of mitochondrial transmembrane potential (ΔΨm). Oridonin up-regulated the expression ratio of mitochondrial proteins, Bax/Bcl-2. In addition, the total tyrosine kinase activity of A431 cellular proteins and the expression of EGFR were markedly reduced after oridonin treatment. Taken together, oridonin induced apoptosis in A431 cells via mitochondrial pathway, activation of caspase-3 and inhibition of tyrosine kinase activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号