首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of DNA repair mechanisms in the cellular response to low dose rate (LDR) irradiation was studied with the aim to gain insight in the process of sublethal damage (SLD) repair. Chinese hamster cell lines mutated in either DNA single strand break (ssb) repair or DNA double strand break (dsb) repair by non homologous end joining (NHEJ) and homologous recombination (HR), or showing an AT-like phenotype, were irradiated in plateau-phase either at high dose rate (HDR, 3.3 Gy/min) or at pulsed low dose rate (p-LDR, average 1 Gy/h). Cell survival after irradiation was assessed using the clonogenic assay. A change in sensitivity when the dose rate was decreased was observed for all parental cell lines and the DNA ssb repair mutant. No difference in cell survival after p-LDR versus. HDR irradiation was observed for the two NHEJ mutants, the AT-like mutant and the HR mutant. Based on these results we conclude that single strand break repair does not play a role in the dose rate effect. The AT like protein, functional NHEJ and XRCC3 are required for the dose rate effect.  相似文献   

3.
A better understanding of the underlying mechanisms of DNA repair after exposure to ionizing radiation represents a research priority aimed at improving the outcome of clinical radiotherapy. Because of the close association with DNA double strand break (DSB) repair, phosphorylation of the histone H2AX protein (γH2AX), quantified by immunodetection, has recently been used as a method to study DSB induction and repair at low and clinically relevant radiation doses. However, the lack of consistency in literature points to the need to further validate the role of H2AX phosphorylation in DSB repair and the use of this technique to determine intrinsic radiosensitivity. In the present study we used human mammary epithelial MCF10A cells, characterized by a radiosensitive phenotype due to reduced levels of the Ku70 and Ku80 repair proteins, and investigated whether this repair-deficient cell line displays differences in the phosphorylation pattern of H2AX protein compared to repair-proficient MCF10A cells. This was established by measuring formation and disappearance of γH2AX foci after irradiating synchronized cell populations with (60)Co γ-rays. Our results show statistically significant differences in the number of γH2AX foci between the repair-deficient and -proficient cell line, with a higher amount of γH2AX foci present at early times post-irradiation in the Ku-deficient cell line. However, the disappearance of those differences at later post-irradiation times questions the use of this assay to determine intrinsic radiosensitivity, especially in a clinical setting.  相似文献   

4.
目的 探讨磷脂酰肌醇-3激酶(phosphatidylinositol 3 kinase,PI3K)在石英致人胚肺成纤维细胞(HELF)DNA双链断裂修复中的作用.方法 用200μg/ml的石英刺激HELF和用显性失活突变体抑制P13K功能的HELF(DN-Δp85)不同时间.免疫印迹法检测磷酸化H2AX(γH2AX)的水平以及DNA依赖性蛋白激酶(DNA-dependent protein kinase,DNA-PK)的组成成分Ku70、Ku8和DNA-PKcs的蛋白水平,并用Image-Pro plus 6.0软件对条带光强度进行半定量分析.中性彗星试验检测DNA双链断裂损伤,用彗尾DNA百分含量值观察DNA双链断裂损伤程度变化,并计算DNA修复能力.结果 γH2AX的水平在石英刺激3 h明显增高,12 h达峰值,24 h下降.与HELF相比,石英诱导的DN-Δp85细胞γH2AX水平增高受到抑制.石英刺激HELF和DN-ΔP85细胞12 h组Ku70、Ku80和DNA-PKcs的蛋白水平(0.58±0.09、0.95±0.21、0.55±0.06,0.37±0.14、0.55±0.17、0.52±0.07)均高于相应的无石英刺激组(0.26±0.10、0.69±0.26、0.43±0.11,0.11±0.07、0.27±0.14、0.39±0.07),差异有统计学意义(P<0.05).与石英刺激HELF 12 h组比较,石英刺激DN-ΔP85 12 h组的Ku70、Ku80蛋白水平增高受到抑制,差异均有统计学意义(P<0.05).石英刺激的HELF12 h组和DN-Δp85 12h组的彗尾DNA百分含量分别为9.78±1.15和11.79±4.90,明显高于同细胞系的无石英刺激组(2.40±0.69,3.31±1.35),差异有统计学意义(P<0.05);与石英刺激HELF 12 h组相比,石英刺激HELF细胞24 h组彗尾DNA百分含量明显降低(4.19±0.47),差异有统计学意义(P<0.05).石英刺激DN-Δp85 24 h组的彗尾DNA百分含量为(7.58±4.32),明显高于无石英刺激DN-Δp85组和石英刺激HELF 24 h组,差异有统计学意义(P<0.05).HELF的DNA修复能力为75.74%,DN-Δp85的DNA修复能力为49.64%.结论 石英可诱导DNA双链断裂损伤,PI3K与DNA损伤修复有关,通过调节Ku70和Ku80的水平,可促进石英诱导的DNA双链断裂损伤的修复.  相似文献   

5.
The biological effects of ionizing radiation, especially those of sparsely ionizing radiations like X-ray and γ-ray, are generally reduced as the dose rate is reduced. This phenomenon is known as ‘the dose-rate effect’. The dose-rate effect is considered to be due to the repair of DNA damage during irradiation but the precise mechanisms for the dose-rate effect remain to be clarified. Ku70, Ku86 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) are thought to comprise the sensor for DNA double-strand break (DSB) repair through non-homologous end joining (NHEJ). In this study, we measured the clonogenic ability of Ku70-, Ku86- or DNA-PKcs-deficient rodent cells, in parallel with respective control cells, in response to high dose-rate (HDR) and low dose-rate (LDR) γ-ray radiation (~0.9 and ~1 mGy/min, respectively). Control cells and murine embryonic fibroblasts (MEF) from a severe combined immunodeficiency (scid) mouse, which is DNA-PKcs-deficient, showed higher cell survival after LDR irradiation than after HDR irradiation at the same dose. On the other hand, MEF from Ku70−/− mice exhibited lower clonogenic cell survival after LDR irradiation than after HDR irradiation. XR-V15B and xrs-5 cells, which are Ku86-deficient, exhibited mostly identical clonogenic cell survival after LDR and HDR irradiation. Thus, the dose-rate effect in terms of clonogenic cell survival is diminished or even inversed in Ku-deficient rodent cells. These observations indicate the involvement of Ku in the dose-rate effect.  相似文献   

6.
The present study aims to examine the effect of low-dose ionizing irradiation on DNA double strand breaks (DSB) in mouse spermatogonial stem cells (SSCs) and reveal the underlying pathways for the DNA repair for DSB in SSCs. Eighteen one-month-old mice were divided into 6 groups and sacrificed separately at 45 minutes, 2 hours, 24 hours, 48 hours, and 72 hours after 0.1Gy X-ray irradiation (mice without receiving ionizing irradiation served as control). After perfusion fixation, testes were removed, sectioned, and followed by staining of γH2AX, 53BP1, Caspase 3, and promyelocytic leukemia zinc-finger (PLZF) for analysis among the different groups. The staining was observed by immunofluorescence visualized by confocal laser scanning. After low-dose irradiation, only 53BP1, but not Caspase3 or γH2AX was upregulated in PLZF positive SSCs within 45 minutes. The expression level of 53BP1 gradually decreased 24 hours after irradiation. Moreover, low-dose irradiation had no effect on the cell number and apoptotic status of SSCs. However other spermatogenic cells highly expressed γH2AX shortly after irradiation which was dramatically reduced following the events of DNA repair. It appears that low-dose ionizing irradiation may cause the DNA DSB of mouse spermatogenic cells. 53BP1, but not γH2AX, is involved in the DNA repair for DSB in SSCs. Our data indicates that 53BP1 plays an important role in the pathophysiological repair of DNA DSB in SSCs. This may open a new avenue to understanding the mechanisms of DNA repair of SSCs and male infertility.  相似文献   

7.
To determine the radiobiological mechanisms underlying relative biological effectiveness (RBE) and the repair efficiencies of DNA double-strand breaks (DSBs) as a function of linear energy transfer (LET), we exposed cells of the chicken B-lymphocyte cell line DT40 and its DSB repair pathway-deficient derivatives to heavy-ion beams produced at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The relationship between LET and cell lethality was investigated in the DNA DSB repair gene knockouts Ku70−/−, Rad54−/−, and Ku70−/−Rad54−/−, and in the wild-type cells. We found that cell-cycle stage and activity of the DNA DSB repair pathways influence LET-mediated biological effects. An expected LET–RBE relationship was observed in the cells capable of DNA repair, but no peak was found in the RBE with respect to cell survival in the Ku70−/−Rad54−/− cells or in Ku70−/− cells in the G1 and early S cell-cycle phases (when no sister chromatids were present and homologous recombination could not occur). These findings suggest that the peak in RBE is caused by deficient repair of the DNA DSBs.  相似文献   

8.
目的 通过对大鼠头部进行不同剂量的照射,研究NHEJ通路相关基因在电离辐射所致脑损伤中的表达情况。方法 利用医用电子加速器装置对SD大鼠分别进行10 Gy、20 Gy、30 Gy的照射,并于照后30天提取动物海马组织中的总RNA;30 Gy照射组在照后6 h、24 h、72 h、7天、30天五个不同时间点提取动物海马组织中的总RNA。使用实时荧光定量PCR技术对NHEJ通路中的XRCC4、XRCC5和XRCC6基因的表达情况进行研究。结果 经照射大鼠海马组织中与DNA修复相关的基因XRCC4、XRCC5和XRCC6表达均有所上调;20 Gy组XRCC4、XRCC5和XRCC6基因的表达量较10 Gy和30 Gy组高;XRCC4基因在照后7天表达量达到最高,而XRCC5和XRCC6基因在照后6 h达到最高,XRCC4、XRCC5和XRCC6基因表达量均在照后30天达到最低。结论 通过本项目研究发现NHEJ通路中与DNA损伤修复有关基因XRCC4、XRCC5、XRCC6在电离辐射所致脑损伤照射不同剂量点及照后不同时间点均上调表达,说明在10、20、30 Gy照射和电离辐射后6 h、24 h、72 h、7天、30天五个不同时间点机体均通过NHEJ通路进行DNA双链修复,且在照后6h和第7天修复能力最强。  相似文献   

9.
Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0–10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, i.e. DNA damage caused by 0–10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body''s maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body''s own ability to repair DNA DSBs via the NHEJ pathway.  相似文献   

10.
11.
Non-homologous end-joining (NHEJ) is the predominant pathway for the repair of DNA double-strand breaks (DSBs) in human cells. XRCC4 is indispensable to NHEJ and functions together with DNA ligase IV in the rejoining of broken DNA ends. Artemis is a nuclease required for trimming of some, but not all, types of broken DNA ends prior to rejoining by the DNA ligase IV/XRCC4 complex. To better understand the roles of these factors, we generated XRCC4- and Artemis-deficient cells from the human colon adenocarcinoma cell line HCT116 by gene targeting and examined their cellular responses to several DNA-damaging agents including X-rays. As anticipated, kinetic analyses of γ-H2AX foci and chromosomal aberrations after ionizing radiation (IR) demonstrated a serious incompetence of DSB repair in the XRCC4-deficient cells, and relatively moderate impairment in the Artemis-deficient cells. The XRCC4-deficient cells were highly sensitive to etoposide and 5-fluoro-2'-deoxyuridine as well as IR, and moderately sensitive to camptothecin, methyl methanesulfonate, cisplatin, mitomycin C, aphidicolin and hydroxyurea, compared to the parental HCT116 cells. The Artemis-deficient cells were not as sensitive as the XRCC4-deficient cells, except to cisplatin and mitomycin C. By contrast, the Artemis-deficient cells were significantly more resistant to hydroxyurea than the parental cells. These observations suggest that Artemis also functions in some DNA damage response pathways other than NHEJ in human cells.  相似文献   

12.
Radiation-induced DNA double-stand breaks (DSBs) lead to numerous biological effects. To elucidate the molecular mechanisms involved in cellular responses to low dose and low dose-rate radiation, it is informative to clarify the roles of DSB repair related genes. In higher vertebrate cells, there are at least two major DSB repair pathways, namely non-homologous end-joining (NHEJ) and homologous recombination (HR). Here, it is shown that in chicken DT40 cells irradiated with gamma-rays at a low dose-rate (2.4 cGy/day), the growth delay in NHEJ-related KU70- and PRKDC (encoding DNA-PKcs)-defective cells were remarkably higher than in cells defective for the HR-related RAD51B and RAD54 genes. DNA-PKcs- defective human M059J cells also showed an obvious growth delay when compared to control M059K cells. RAD54(-/-)KU70(-/-) cells demonstrated their highest degree of growth delay after an X-irradiation with a high dose-rate of 0.9 Gy/min. However they showed a lower degree of growth delay than that seen in KU70(-/-) and PRKDC(-/-/-) cells exposed to low dose-rate irradiation. These findings indicate that cellular responses to low dose-rate radiation are remarkably different from those to high dose-rate radiation. The fact that both DT40 and mammalian NHEJ-defective cells were highly sensitive to low dose-rate radiation, provide a foundation for the concept that NHEJ-related factors may be useful as molecular markers to predict the sensitivity of humans to low dose-rate radiation.  相似文献   

13.
In order to preserve and protect genetic information, eukaryotic cells have developed a signaling or communications network to help the cell respond to DNA damage, and ATM and NBS1 are key players in this network. ATM is a protein kinase which is activated immediately after a DNA double strand break (DSB) is formed, and the resulting signal cascade generated in response to cellular DSBs is regulated by post-translational protein modifications such as phosphorylation and acetylation. In addition, to ensure the efficient functioning of DNA repair and cell cycle checkpoints, the highly ordered structure of eukaryotic chromatin must be appropriately altered to permit access of repair-related factors to DNA. These alterations are termed chromatin remodeling, and are executed by a specific remodeling complex in conjunction with histone modifications. Current advances in the molecular analysis of DNA damage responses have shown that the auto-phosphorylation of ATM and the interaction between ATM and NBS1 are key steps for ATM activation, and that the association of ATM and NBS1 is involved in chromatin remodeling. Identification of novel factors which function in ubiquitination (RNF8, Ubc13, Rap80, etc.) has also enabled us to understand more details of the early stages in DNA repair pathways which respond to DSBs. In this review, the focus is on the role of ATM and the RAD50/MRE11/NBS1 complex in DSB response pathways, and their role in DSB repair and in the regulation of chromatin remodeling.  相似文献   

14.
Helicobacter pylori (H. pylori) is a Gram-negative bacterium that colonizes the gastric mucosa and triggers various stomach diseases. H. pylori induces reactive oxygen species (ROS) production and DNA damage. The heterodimeric Ku70/Ku80 protein plays an essential role in the repair of DNA double-strand breaks (DSB). Oxidative stress stimulate apoptosis and DNA damage that can be repaired by Ku70/80. However, excessive reactive oxygen species (ROS) can cause Ku protein degradation, resulting in DNA fragmentation and apoptosis. α-lipoic acid (α-LA), which is found in organ meats such as liver and heart, spinach, broccoli, and potatoes, quenches free radicals, chelates metal ions, and reduces intracellular DNA damage induced by oxidative stress. Here, we investigated whether H. pylori decreases Ku70/80 and induces apoptosis, and whether α-LA inhibits changes induced by H. pylori. We analyzed ROS, DNA damage markers (γ-H2AX, DNA fragmentation), levels of Ku70/80, Ku–DNA binding activity, Ku80 ubiquitination, apoptosis indices (Bcl-2, Bax, apoptosis-inducing factor (AIF), and caspase-3), and viability in a human gastric epithelial adenocarcinoma cell line (AGS). H. pylori increased ROS, DNA damage markers, Ku80 ubiquitination, and consequently induced apoptosis. It also decreased nuclear Ku70/80 levels and Ku–DNA-binding activity; increased Bax expression, caspase-3 cleavage, and truncated AIF; but decreased Bcl-2 expression. These H. pylori-induced alterations were inhibited by α-LA. The antioxidant N-acetylcysteine and proteasome inhibitor MG-132 suppressed H. pylori-induced cell death and decreased nuclear Ku70/80 levels. The results show that oxidative stress induced Ku70/80 degradation via the ubiquitin–proteasome system, leading to its nuclear loss and apoptosis in H. pylori-infected cells. In conclusion, α-LA inhibited apoptosis induced by H. pylori by reducing ROS levels and suppressing the loss of Ku70/80 proteins in AGS cells.  相似文献   

15.
Roscovitine has been reported to have anti-proliferative properties and is in process of undergoing clinical trials. In addition to its intrinsic anticancer properties, it has recently been suggested that roscovitine may also enhance the activity of traditional chemo- and radio- therapies in certain cancer cell lines. The purpose of this study was to define the activity of roscovitine in increasing radiosensitivity of human non-small cell lung cancer (NSCLC) cell line A549 cells in vitro. A549 cells were exposed to ionizing radiation (IR) of gamma-ray with or without roscovitine pretreatment. Clonogenic assay was performed and cell cycle and apoptosis were analyzed by flow cytometry. Expression of PARP, Ku70 and Ku80 proteins was detected by Western blot. The active form of caspase-3 positive cells were measured by flow cytometry. Our results showed that roscovitine caused dose-dependent apoptosis in A549 cells. Pretreatment with minimally toxic concentration of roscovitine significantly radiosensitized A549 cells by inhibiting colony formation. We then examined potential mechanisms that may contribute to the enhanced radiation response induced by roscovitine. Our results showed that the combination treatment significantly induced apoptosis in A549 cells compared to roscovitine or IR treatment alone. Meanwhile, in the co-treatment group, the percentage of cells with the active form of caspase-3 was markedly increased, while roscovitine or IR alone had little effect. Roscovitine decreased S phase cells when used alone or in sequential combination with IR. Furthermore, this combination treatment blocked DNA repair process after IR, indicated by down regulation of Ku70 and Ku80 proteins, while the singly used treatment did not. Taken together, these results suggest that roscovitine has the potential to act as a radio-sensitizer in A549 cells by promoting caspase-3 activity and increasing apoptosis, affecting cell cycle distribution and impairing DNA repair process.  相似文献   

16.
目的 探讨p53表达在石英致人胚肺成纤维细胞(HELF)细胞周期改变及DNA双链断裂(DNA double strand breaks,DSBs)修复中的作用.方法 3种方式分组处理细胞:(1)不同浓度(0、25、50、100、200、300、400μg/ml)的石英刺激HELF细胞12 h;(2)200 μg/ml石英刺激HELF细胞O、1、2,6、12、24 h;(3)200μg/ml石英刺激H-CMV和H-p53细胞O、12、24 h.用中性彗星试验检测石英所致的DSBs损伤强度,并计算DNA修复能力(DNA repair compentence,DRC),用免疫印迹法检测蛋白表达和磷酸化水平,用流式细胞仪检测细胞周期的变化.结果 (1)200μg/ml的石英作用HELF细胞不同时间,p53表达及p53-Ser15磷酸化水平随着作用时间的延长逐渐升高,12 h达峰值,24 h较12 h略有降低;不同浓度的石英作用HELF细胞12 h,随着石英浓度的增加,p53表达及p53-Ser15磷酸化水平逐渐增强,呈现剂量-反应关系.(2)石英作用于p53 siRNA的阴性对照细胞H-CMV,DRC为57.19%:石英作用沉默p53表达的H-p53细胞后,DSBs的修复能力增强,DRC为87.68%.(3)石英作用p53siRNA的阴性对照细胞24 h后,S期细胞比例由(24.3±3.8)%增加到(31.8±1.1)%,差异有统计学意义(P<0.05);沉默p53表达后,石英诱导的HELF细胞S期细胞比例[(41.4±0.6)%]与同期对照组[(25.4±1.9)%]相比有明显增加.差异有统计学意义(P<0.05).结论 石英可诱导p53表达及磷酸化水平的增加,p53表达上调可抑制石英所致S期细胞百分比的增加及石英所致DNA双链断裂的修复.  相似文献   

17.
Current topics in DNA double-strand break repair   总被引:1,自引:0,他引:1  
DNA double strand break (DSB) is one of the most critical types of damage which is induced by ionizing radiation. In this review, we summarize current progress in investigations on the function of DSB repair-related proteins. We focused on recent findings in the analysis of the function of proteins such as 53BP1, histone H2AX, Mus81-Eme1, Fanc complex, and UBC13, which are found to be related to homologous recombination repair or to non-homologous end joining. In addition to the function of these proteins in DSB repair, the biological function of nuclear foci formation following DSB induction is discussed.  相似文献   

18.
Ionizing radiation (IR) is a well-documented human carcinogen. The increased use of IR in medical procedures has doubled the annual radiation dose and may increase cancer risk. Genomic instability is an intermediate lesion in IR-induced cancer. We examined whether pomegranate extract (PE) suppresses genomic instability induced by x-rays. Mice were treated orally with PE and exposed to an x-ray dose of 2 Gy. PE intake suppressed x-ray-induced DNA double-strand breaks (DSBs) in peripheral blood and chromosomal damage in bone marrow. We hypothesized that PE-mediated protection against x-ray-induced damage may be due to the upregulation of DSB repair and antioxidant enzymes and/or increase in glutathione (GSH) levels. We found that expression of DSB repair genes was not altered (Nbs1 and Rad50) or was reduced (Mre11, DNA-PKcs, Ku80, Rad51, Rad52 and Brca2) in the liver of PE-treated mice. Likewise, mRNA levels of antioxidant enzymes were reduced (Gpx1, Cat, and Sod2) or were not altered (HO-1 and Sod1) as a function of PE treatment. In contrast, PE-treated mice with and without IR exposure displayed higher hepatic GSH concentrations than controls. Thus, ingestion of pomegranate polyphenols is associated with inhibition of x-ray–induced genomic instability and elevated GSH, which may reduce cancer risk.  相似文献   

19.
The effect of wortmannin posttreatment was studied in cells derived from different species (hamster, mouse, chicken, and human) with normal and defective DNA-dependent protein kinase (DNA-PK) activity, cells with and without the ataxia telangiectasia (ATM) gene, and cells lacking other regulatory proteins involved in the DNA double-strand break (DSB) repair pathways. Clonogenic assays were used to obtain all results. Wortmannin radiosensitization was observed in Chinese hamster cells (V79-B310H , CHO-K1), mouse mammary carcinoma cells (SR-1), transformed human fibroblast (N2KYSV), chicken B lymphocyte wild-type cells (DT40), and chicken Rad54 knockout cells (Rad54-/-). However, mouse mammary carcinoma cells (SX9) with defects in the DNA-PK and chicken DNA-PK catalytic subunit (DNA-PKcs) knockout cells (DNA-PKcs-/-/-) failed to exhibit wortmannin radiosensitization. On the other hand, SCID mouse cells (SC3VA2) exposed to wortmannin exhibited significant increases in radiosensitivity, possibly because of some residual function of DNA-PKcs. Moreover, the transformed human cells derived from AT patients (AT2KYSV) and chicken ATM knockout cells (ATM-/-) showed pronounced wortmannin radiosensitization. These studies demonstrate confirm that the mechanism underlying wortmannin radiosensitization is the inhibition of DNA-PK, but not of ATM, thereby resulting in the inhibition of DSB repair via nonhomologous endjoining (NHEJ).  相似文献   

20.
When cell lines are held in a quiescent state after irradiation, survival rates are greater than those from cells that are stimulated to grow immediately after irradiation. These differences in survival rates correspond to rates of potentially lethal damage repair. The effects of confluent holding recovery after gamma-irradiation were investigated using normal human fibroblasts (AG1522) and ataxia telangiectasia fibroblasts (GM02052). Calyculin-A-induced premature chromosome condensation and fluorescent in situ hybridization were applied to study G2/M chromosomal aberrations. Survival results indicated normal capacity for PLDR in AG1522 cells but that PLDR was extremely compromised in GM02052 cells. The chromosomal aberration frequency decreased when AG1522 cells were allowed to repair for 24-h, whereas 24-hour incubation had little effect on the aberration frequency in GM02052 cells. Since the main mechanism for dsbs repair during G0/G1 phases of the cells cycle involve the non-homologous end-joining (NHEJ) process, our study indicates that for AG1522 cells the NHEJ repair process is more likely to induce accurate chromosome repair under quiescent G0 conditions than proliferating G1 phase, while in GM02052 cells the fidelity of NHEJ is similarly defective at either cell cycle phase. Reduced fidelity of NHEJ may be responsible for PLDR defect and its hyper-radiosensitivity in A-T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号