首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant adenovirus mediated p53 gene transfer combined with anti-cancer drugs has clinical potential for gene therapy of lung cancer. We constructed a recombinant adenoviral vector expressing wild-type p53 cDNA (Ad-p53), and assessed the efficacy of a combined treatment with Ad-p53 and six anti-cancer drugs (cisplatin, 5-fluorouracil, doxorubicin, docetaxel, irinotecan, and etoposide) for human lung cancer cell lines, H1299 (with deleted p53), RERF-LC-OK (with mutant p53), and A549 (with wild-type p53). The infection of the Ad-p53 vector into H1299 cells, RERF-LC-OK cells, or A549 cells increased the sensitivity to all six drugs regardless of the cellular p53 status, and a synergism was observed by the isobolic method in combination studies (D<1). We conclude that our strategy using adenoviral mediated p53 gene transfer to cancer cells can enhance the cytotoxic effect of anti-cancer drugs, which leading to an improvement of lung cancer chemotherapy.  相似文献   

2.
Recombinant adenovirus is used as a competent vector in a wide spectrum of cancer gene therapies. Adenovirus infection depends on coxsackievirus and adenovirus receptor (CAR)-mediated virus attachment to the cell surface. However, the expression levels of CAR and the efficiency of adenoviral gene transduction in musculoskeletal tumors have not been systematically investigated. To study the feasibility of gene therapy in musculoskeletal tumors, the expression levels of CAR and the antiproliferative effect of an adenovirally transduced wild-type p53 tumor suppressor gene were examined in 15 distinct musculoskeletal tumor cell lines, 19 tumor tissue samples, and the corresponding pathologically unremarkable mesenchymal tissues. The expression levels of the CAR gene were significantly higher in six of seven osteosarcoma cell lines and two of five osteosarcoma tissue samples than in the other cell lines, musculoskeletal tumors, and mesenchymal tissues. CAR expression levels were closely correlated with adenoviral gene transduction efficiency and the antiproliferative effect of a transduced adenoviral p53 gene in the tested cell lines. In addition, an immunocytochemical study confirmed that transfected green fluorescent protein (GFP) borne by Ad-CAG-GFP was expressed at the cell surface of CAR-positive cells. These results indicate that CAR expression is a critical determinant of transduction efficiency in adenovirus-based gene therapy. Most osteosarcomas appeared to express high levels of CAR, and thus adenovirus-mediated p53 gene therapy is likely to be suitable for the treatment of such tumors. (Cancer Sci 2003; 94: 70–75)  相似文献   

3.

Objective

This study was to investigate the synergistic growth inhibitory effect by combination of adenovirus mediated p53 gene transfer and cisplatin in ovarian cancer cell lines with different p53 gene mutation patterns.

Methods

Three ovarian cancer cell lines, p53 deleted SKOV3, p53 mutated OVCAR-3, and PA-1 with wild-type p53 were transduced with human adenovirus vectors carrying p53 gene (Ad-p53) and treated with a sublethal concentration of cisplatin before and after Ad-p53. The cell number was counted daily for 5 days after Ad-p53 transduction. Western blotting was used to identify p53 and p21 protein expressions, and flow cytometric analysis was performed to investigate any change of DNA ploidy after Ad-p53 transfer.

Results

Ad-p53 transduced cells successfully expressed p53 and p21 proteins after 48 hours of Ad-p53 transduction. Synergistic growth inhibition by combination of Ad-p53 and cisplatin was detected only in SKOV3 and OVCAR-3 cells, but not in PA-1 cells. In p53 deleted SKOV3 cells, cisplatin treatment after Ad-p53 showed higher growth inhibition than the treatment before Ad-p53 transduction, and reverse relationship was observed in p53 mutated OVCAR-3 cells. In SKOV3 cells, the fraction of cells at G2/M phase increased after cisplatin treatment, however, it decreased dramatically with Ad-p53 transduction.

Conclusion

The synergistic growth inhibition by combination of Ad-p53 and cisplatin may depend on the p53 status and the temporal sequence of cisplatin treatment, suggesting judicious selective application of this strategy in clinical trials.  相似文献   

4.
The cytotoxic ligand TRAIL is a promising anti-cancer agent that is entering into clinical trials. We previously identified a major subgroup of TRAIL resistant cancer cell lines with absent, or reduced DR4 expression containing a K441R polymorphism or harboring elevated levels of the caspase activation inhibitor FLIP. In the present study, we explored the use of a gene therapeutic approach utilizing p53, delivered by an adenovirus-p53 (Ad-p53) vector, which directly controls expression of the TRAIL receptor KILLER/DR5 in a panel of 8 cell lines including normal and TRAIL sensitive or resistant cancers. The functional status of the delivered p53 was monitored by detection of induced p21WAF1 expression by immunocytochemistry. In normal cells, which are TRAIL resistant, TRAIL did not reduce cell viability over and above the effect of Ad-p53 alone. All cancer cell lines were sensitive to Ad-p53 and up-regulated expression of the TRAIL receptor KILLER/DR5. TRAIL-resistant cancer cells became more sensitive to TRAIL at low Ad-p53 multiplicities of infection but TRAIL resistance was not completely overcome in one TRAIL-resistant cell line probably because of a high level of expression of FLIP. The results reveal that Ad-p53 induces the TRAIL receptor KILLER/DR5 and, like radiation or chemotherapy may effectively reverse TRAIL resistance.  相似文献   

5.
Anazawa Y  Arakawa H  Nakagawa H  Nakamura Y 《Oncogene》2004,23(46):7621-7627
  相似文献   

6.
Adenoviral vector-mediated p53 expression induced apoptosis is a well established gene therapy approach that has been evaluated extensively in epithelial tumors but only recently in lymphoid malignancies mainly due to the known resistance of the lymphoid lineage to adenovirus infection. Recently, it was shown that this resistance is not absolute and that cell lines derived from anaplastic large cell lymphoma (ALCL) and some other lymphoid malignancies are efficiently transduced by adenoviral vectors. Normal circulating T lymphocytes do not express coxsackie-adenovirus receptor (CAR) and alpha(nu)beta integrins and are relatively resistant to infection by adenovirus. These molecules serve as receptors for adenovirus entry into the cells. ALCL-derived SUDHL-1 cells were evaluated for transduction efficiency and expression of p53 after infection with an adenoviral vector containing wild-type p53 (AdWTp53). Cells derived from ALCL and circulating mononucleated cells (MNCs) were also evaluated for expression of CAR and alpha(nu)beta integrins. AdWTp53-mediated expression of p53 resulted in p21/WAF1 induction, G1 arrest, and apoptosis in SUDHL-1 cells. The expression of CAR and alpha(nu)beta5 integrin was high in SUDHL-1 cells and comparable to levels observed with epithelial tumor cells, but it was absent in MNCs. The susceptibility to adenoviral vector transduction of the tumor-derived cells implies an important biological difference between them and circulating MNCs, possibly underlying the malignant transformation that ALCL cells undergo. Further studies will be required to evaluate this initial observation in more cell lines and tissue derived from ALCL.  相似文献   

7.
Human papilloma virus (HPV) infection is the most important risk factor for cervical cancer development. p53 based gene therapy is not suitable for cervical cancer because HPV oncoprotein E6 inactivates p53 protein by targeting it for ubiquitin mediated degradation. Here we evaluated the efficiency of Ad-p73, a replication deficient adenovirus expressing p73beta a p53 homologue, to inhibit the growth of HPV positive cervical cancer cells in vitro using tissue culture system and in vivo using human xenografts in nude mice. Ad-p73, but not Ad-p53 (p53 adenovirus), inhibited the growth in vitro of three different HPV positive cervical cancer cell lines, HeLa, ME180, and SiHa, efficiently, which correlated with stable expression of functional p73 protein. However, the growth of a HPV negative cervical cancer cell line, C33A, was inhibited equally by both Ad-p73 and Ad-p53. In addition, we show that Ad-p73 preinfected HeLa cells and HCT116 E6 cells, an E6 stable cell line, failed to form tumors in nude mice unlike Ad-p53 or Ad-LacZ preinfected cells. Moreover, Ad-p73, but not Ad-p53, inhibited completely the growth of already established tumors of HeLa or HCT116 E6 cells. Furthermore, the ability of p73 to inhibit the growth of these tumors correlated with the stable expression of p73 protein with the concomitant induction of its target gene p21(WAF1/CIP1) and induction of apoptosis in tumor cells. These results suggest that Ad-p73 inhibits efficiently the growth in vitro and tumorigenicity and tumor growth in vivo of HPV positive cervical cancer cells and that p73-based approach should be explored as a potential therapeutic model for the treatment of cervical cancer.  相似文献   

8.
Therapeutic replacement of the p53 gene using an adenovirus vector (Ad-p53) may be an effective alternative to conventional therapies for the treatment of glioma. We have previously demonstrated that the introduction of Ad-p53 into glioma cells containing mutant p53 induces apoptosis, whereas glioma cells containing wild-type p53 are resistant. However, Ad-p53 will enhance the radiosensitivity of wild-type p53 glioma cells by increasing their tendency for apoptosis. The mechanism underlying these different responses to Ad-p53 has not been elucidated to date. Because phosphorylation of p53 at serines 15, 20, and 392 may play a role in regulating p53-mediated apoptotic activity, we determined the phosphorylation status of exogenous p53 in mutant and wild-type gliomas after Ad-p53 transfer. Monolayer cultures of glioma cell lines expressing mutant p53 (U251 and U373) or wild-type p53 (U87 and D54) were infected with Ad-p53 and analyzed by Western blotting. High levels of exogenous p53 were detected in both cell lines after Ad-p53 transfer. However, only apoptotic mutant p53 cells expressed high levels of phospho-Ser15-p53 and phospho-Ser20-p53. The levels of phospho-Ser15-p53 and phospho-Ser20-p53 were very low in wild-type p53 cells after Ad-p53 infection alone. When wild-type p53 glioma cells were exposed to radiation after Ad-p53 infection, phospho-Ser15-p53 and phospho-Ser20-p53 were detected at high levels, and the cells subsequently underwent apoptosis; no change in serine 392 was detected. The induction of apoptosis and the expression of phospho-Ser15 and phospho-Ser20 in these cells were also enhanced by the combination of Ad-p53 and other DNA-damaging agents such as cisplatin and bichloroethyl nitrosourea. Furthermore, the expression of phospho-Ser15-p53 and phospho-Ser20-p53 correlated with the amount of apoptosis; the apoptotic activity of p53 in glioma cells was partially inhibited by a mutation of p53 at serine 15. These results suggest that phosphorylation of p53 at serine 15 and serine 20 is critical for apoptosis induction in p53 gene therapy for gliomas.  相似文献   

9.
10.
Rho JK  Choi YJ  Ryoo BY  Na II  Yang SH  Kim CH  Lee JC 《Cancer research》2007,67(3):1163-1169
Treatment with gefitinib, a specific inhibitor of epidermal growth factor receptor tyrosine kinase (EGFR-TK), has resulted in dramatic responses in some patients with non-small cell lung cancer (NSCLC). Most patients who respond to gefitinib have EGFR-TK mutations; however, >10% of patients with EGFR-TK mutations do not respond. Similarly, some patients without EGFR-TK mutations respond to this drug, suggesting that other factors determine sensitivity to gefitinib. Aberrations of the tumor suppressor gene p53 are frequently associated with drug resistance. In this study, we investigated the role of p53 in growth-inhibitory and apoptotic effects of gefitinib in the human NSCLC cell lines NCI-H1299 and A549, which have no EGFR-TK mutations. NCI-H1299 cells, which had a p53-null genotype, were more resistant to gefitinib compared with A549 cells, which were wild-type p53 (IC(50), 40 micromol/L in NCI-H1299 and 5 micromol/L in A549). Treatment of A549 with gefitinib resulted in the translocation of p53 from cytosol to nucleus and the up-regulation of Fas, which was localized to the plasma membrane. In the stable H1299 cell line with tetracycline-inducible p53 expression, induced p53 enhanced growth inhibition and apoptosis by gefitinib through the up-regulation of Fas and restoration of caspase activation. A caspase inhibitor, Z-VAD-fmk, reduced these effects. Conversely, inhibition of p53 using antisense oligonucleotide in A549 caused a significant decrease in apoptosis by gefitinib and down-regulation of Fas under the same conditions. In conclusion, p53 may play a role in determining gefitinib sensitivity by regulating Fas expression in NSCLC.  相似文献   

11.
12.
The infection of recombinant adenovirus expressing wild-type p53 (Ad-p53) to lung cancer cells that harbor mutant p53 genes improves their response to cis-diamminedichloroplatinum(II). In this study, we tested whether this improvement in response is also seen in wild-type p53 (wt-p53)-containing cancer cells and whether this phenomenon is universal with other commonly used chemotherapeutic agents, including etoposide, 7-ethyl-10-hydrocycamptothecin, paclitaxel, and docetaxel. Using a panel of 7 non-small cell lung cancer cell lines with wild-type (2) or abnormal (2 null, 3 point-mutated) p53, we examined in vitro cytotoxicity using a tetrazolium-based colorimetric assay (3-(4,5-diethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide assay) and analyzed the combined effects of Ad-p53 and chemotherapeutic agents using the isobologram method. Ad-p53 and DNA-damaging agents (cis-diamminedichloroplatinum(II), etoposide, and 7-ethyl-10-hydrocycamptothecin) showed synergistic effects in six of seven cell lines but additive effects against a p53-mutated cell line. In contrast, Ad-p53 showed additive effects with the antitubulin agents (paclitaxel and docetaxel) in all four of the cell lines tested. Furthermore, we examined this synergistic interaction between Ad-p53 and DNA-damaging agents by flow cytometric analysis and DNA fragmentation analysis. Both analyses revealed that a sublethal dose of Ad-p53 augmented the apoptotic response induced by DNA-damaging agents in six of seven cell lines. Our results suggest that Ad-p53 may synergistically enhance the chemosensitivity of the majority of non-small cell lung cancers to DNA-damaging agents due to augmentation of apoptosis.  相似文献   

13.
目的:观察重组人p53腺病毒( p53-expressing adenovirus,Ad-p53)对人乳腺癌细胞MDA-MB-231细胞生长、细胞周期、凋亡和p53表达的影响。方法:流式细胞仪检测Ad-p53作用于MDA-MB-231细胞72h后细胞凋亡率和细胞周期变化,Western blot法检测MDA-MB-231细胞p53蛋白表达。结果:经Ad-p53处理72h后倒置显微镜下MDA-MB-231细胞形态发生明显的变化。流式细胞术检测结果显示, Ad-p53作用MDA-MB-231后其细胞凋亡率与对照组相比明显增加,G0/G1期细胞比例逐渐升高,S期、G2/M期细胞比例相应减少( P<0.05)。Western blot证实了外源野生型p53基因能在MDA-MB-231细胞表达增加。结论:Ad-p53可以抑制人乳腺癌细胞株MDA-MB-231的生长,促进其凋亡,其机制可能是通过阻滞细胞周期以及野生型p53蛋白表达增加实现的。  相似文献   

14.
Das S  El-Deiry WS  Somasundaram K 《Oncogene》2003,22(52):8394-8402
Tumor suppressor p53 functions are downregulated in most cervical cancers, because the product of human papilloma virus (HPV) oncogene E6 binds to and inactivates p53 by promoting its degradation. p73, a p53 homologue, is similar to p53 in structure and function but yet not degraded by HPV E6 gene product. In this study, we have developed a replication-deficient recombinant adenovirus, which expresses p73beta (Ad-p73). Infection of human cancer cells with Ad-p73 results in several fold increase of p73beta levels as well as its known target genes like p21(WAF1/CIP1). Ad-p73-infected cells showed reduced cellular DNA synthesis, arrest in G1 phase of cell cycle and induction of apoptosis. Ad-p73 inhibited the growth of cancer cells of different types. More importantly, Ad-p73 inhibited the growth of cell lines carrying HPV E6 gene, which was introduced by stable integration, more efficiently in comparison to an Ad-p53. Furthermore, Ad-p73 also inhibited the growth of HeLa cells, a cell line derived from cervical cancer, very efficiently. The ability of Ad-p73 to inhibit the growth of HPV E6-expressing cells and HeLa cells correlated with the stable expression of functional p73 in the presence of E6. These results suggest that Ad-p73 could be used as a potential gene therapy agent against cervical cancer.  相似文献   

15.
Transient expression of the tumor suppressor gene p53 via adenoviral-mediated gene transfer induces apoptosis in glioma cells expressing mutant p53, while causing cell cycle arrest in cells with wild-type p53. To determine whether a change in p53 status of a wild-type p53-expressing cell line such as U-87 MG would alter its apoptotic resistant phenotype in response to Ad-p53 infection, we generated cell lines U-87-175.4 and U-87-175.13 via retroviral-mediated gene transfer of the p53 (175H) mutant into the U-87 MG parental line. Control cell lines U-87-Lux.6 and U-87-Lux.8 were also generated and express the reporter gene luciferase. Both U-87-175.4 and U-87-175.13, but not control cell lines, exhibited morphology characteristic of apoptosis after Ad-p53 infection. Furthermore, expression of other p53 mutants (248W, 273H) in U-87 MG also sensitized cells to Ad-p53-induced apoptosis. Apoptosis was confirmed by TUNEL and cell cycle analysis. Several p53 response genes were examined in cells infected with Ad-p53, and among these, BCL2, p21WAF1/CIP1, CPP32/caspase 3, and PARP showed differences in expression between U87-175 and U87-Lux cell lines. Taken together, our data demonstrate that the introduction of p53 mutants in U-87 MG promotes an apoptotic response in association with adenoviral-mediated wild-type p53 gene transfer. These results underscore the importance of glioma p53 genotype for predicting tumor response to p53-based gene therapy.  相似文献   

16.
Expression of p14ARF overcomes tumor resistance to p53   总被引:5,自引:0,他引:5  
Lu W  Lin J  Chen J 《Cancer research》2002,62(5):1305-1310
Tumors without p53 mutation are often resistant to p53 gene therapy. We examined the mechanism using p53-resistant A549 cells and p53-sensitive H1299 cells. We found that p53 delivered by adenovirus is poorly expressed in A549 (ARF-null) cells but efficiently expressed in H1299 cells (ARF-positive). Strong p53 expression and apoptosis can be achieved in A549 cells using a p53 mutant resistant to degradation by MDM2 or by coexpression of ARF. The results suggest that enhanced MDM2 activity attributable to loss of ARF contributes to p53 resistance. Surprisingly, tumor cell lines with MDM2 gene amplification are still deficient for ARF expression, suggesting that MDM2 amplification does not substitute for ARF inactivation during tumor development.  相似文献   

17.
Deficiency in p53-mediated cell death is common in human cancer, contributing to both tumorigenesis and chemoresistance. In an attempt to restore p53, we evaluated in vitro infectivity and cytotoxicity of a wild type (w.t.) p53-expressing adenovirus (Ad-p53) toward a panel of human cancer cell lines (n = 19). At a multiplicity of infection of 30, both Ad-p53 and adenovirus expressing β-galactosidase (Ad-LacZ) infected greater than 99% of cells derived from brain, lung, breast, ovarian, colon, and prostate cancer, but failed to infect leukemia or lymphoma cells. Ad-p53, but not Ad-LacZ, infection of cancer cells was followed by nuclear accumulation of the CDK inhibitor p21WAF1/CIP1, cell cycle arrest and loss of viability. Ad-p53 induced apoptotic death in cancer cells that express mutant p53, including multi-drug resistant cells, but fewer deaths were observed in some w.t. p53 expressing cells. Ad-p53-infected SKBr3 breast cancer cells were more sensitive to cytotoxicity of the DNA damaging drugs mitomycin C or Adriamycin, but not the M-phase specific drug vincristine. Our results suggest that Ad-p53 is capable of infecting and killing cancer cells of diverse tissue origins (including multi-drug resistant cancer cells), that p21WAF1/CIP1 may be a useful marker of p53 infectivity and that there may be synergy between Ad-p53 and either mitomycin C or Adriamycin induced cell death in tumors with p53 mutations. © 1996 Wiley-Liss, Inc.  相似文献   

18.
We introduced a functional p16 cDNA into non-small cell lung cancer (NSCLC) cell lines expressing different combinations of normal and mutated p16, p53, and Rb genes via a recombinant adenovirus to determine the effect of exogenous p16 expression on cell growth. Analysis of p16-deficient cells infected with Adv/p16 identified growth arrest of the cells in the G0 - G1 phase early on. Apoptosis was identified to occur by the 5th day after infection which corresponded with increased p16 expression, reduced Rb expression, and increased Rb hypophosphorylation, but only occurred in cells expressing functional p53. Further analysis indicated that the expression of the anti-apoptotic protein bcl-2 was greatly reduced in the NSCLC cell lines H460 and A549 (both -p16, +p53, +Rb), again only by the 5th day after Adv/p16 infection, but no affect on Bax expression was observed. H1299 cells (-p16, -p53, +Rb) infected with Adv/p16 only exhibited apoptosis by an additional infection with Adv/p53 which also corresponded with a down-regulation of bcl-2. In addition, the infection of A549 cells with Adv/p16 followed by a subsequent infection with Adv/Rb lead to a significant decrease in apoptosis which correlated with an increase in bcl-2 expression. These studies suggest that p16 is capable of mediating apoptosis in NSCLC cell lines expressing wild-type p53, through a direct down-regulation of Rb and an indirect down-regulation of the anti-apoptotic protein bcl-2.  相似文献   

19.
Tumor suppressor p53-based gene therapy strategy is ineffective in certain conditions. p73, a p53 homologue, could be a potential alternative gene therapy agent as it has been found to be an important determinant of chemosensitivity in cancer cells. Previously, we have reported the generation of a replication-deficient adenovirus expressing p73 beta (Ad-p73). In this study, we evaluated the therapeutic potential of Ad-p73 against a panel of cancer cells (n=12) of different tissue origin. Ad-p73 infected all the cell lines tested very efficiently resulting in several-fold increase in p73 beta levels, which is also functional as it activated the known target gene p21(WAF1/CIP1). Infection with Ad-p73 resulted in potent cytotoxicity in all the cell lines tested. The mechanism of p73-induced cytotoxicity in these cell lines is found to be due to a combination of cell cycle arrest and induction of apoptosis. In addition, exogenous overexpression of p73 by Ad-p73 infection increased the chemosensitivity of cancer cells by many fold to commonly used drug adriamycin. Moreover, Ad-p73 is more efficient than Ad-p53 in enhancing the chemosensitivity of mutant p53 harboring cells. Furthermore, Ad-p73 infection did not induce apoptosis in human normal lung fibroblasts (HEL 299) and human immortalized keratinocytes (HaCaT). These results suggest that Ad-p73 is a potent cytotoxic agent specifically against cancer cells and could be developed as a cancer gene therapy agent either alone or in combination with chemotherapeutic agents.  相似文献   

20.
High frequency of p16 alteration and high local recurrence rate of bladder cancer make this cancer an ideal target for p16 gene therapy. However, a low transduction rate of p16 via adenoviral vector causes an inconsistent result. In this study, we have tested adenovirus-p16 in several bladder cancer cell lines and investigated a way of improving the low transduction rate. Adenovirus-p16 showed a strong antitumor effect on bladder cancer cell lines (253J and T24) with strong Coxackie-adenoviral receptor (CAR) expression but little antitumor effect on bladder cancer cell lines (J82 and HT1376) with little CAR expression. In this study, we suggest a simple way of overcoming the differential effects of the adenovirus. The addition of butyrate to media was found to increase the transduction rate of adenovirus remarkably and increase the antitumor effect of adenovirus-p16 in bladder cancer cell lines with little CAR expression. Butyrate effects were related with increased CAR expression on the cell surface as well as increased transgene expression from adenoviral vector. From these observations, application of adenovirus-p16 gene therapy with butyrate can overcome the obstacle of low gene transfer and enhance the antitumor effect of adenovirus-p16 in bladder cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号