首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral potentials preceding voluntary bilateral simultaneous finger movements were investigated in 19 right-handed young adult subjects, and were compared with unilateral right-sided finger m n the same experiment. With bilateral movements, the Bereitschaftspotential (BP) was not symmetrical or larger over the dominant hemisphere, but surprisingly, it was larger over the minor hemisphere. The BP averaged -3.66 microV (S.D. 1.96) over the left precentral region and -4.82 microV (S.D. 3.73) over the right precentral region in this condition. The difference was significant at 2P less than 0.01. This difference was pronounced in precentral leads but very small and almost missing in parietal leads. The pre-motion positivity (PMP) was well developed and even larger with bilateral than with unilateral (right-sides) movements. At the vertex it averaged +1.33 microV (S.D.4.16) with bilateral movements and only +0.15 microV (S.D. 1.42) with right-sided unilateral movements (2P less than 0.05). With bilateral movements the PMP could be observed in any record, but with unilateral movements it was missing at the left precentral lead, in accordance with previous publications (Deecke et al. 1969, 1976). The motor potential (MP), measured in a bipolar record from left and right precentral leads, was larger with unilateral (-1.25 microV, S.D. 1.33) than with bilateral movements (-0.36 microV, S.D. 0.92). Onset time differences of the BP preceding unilateral and bilateral movements were very small. However, there was a tendency towards earlier onset with unilateral than with bilateral movements (1031 msec, S.D. 358, as compared with 951 msec, S.D. 305). The averaged EMG revealed differences in movement onset. Muscular contraction tended to be earlier in the right than in the left m. flexor indicis in our right-handed subjects, on the average by 16 msec (S.D. 15). With unilateral right-sided movements, the left m. flexor indicis was not silent but showed an abortive mirror activity in the EMG, without visible movement. This activity occurred on the average 50 msec (S.D. 39) later on the non-moving side.  相似文献   

2.
3.
Movement-related potentials ( MRPs ) preceding a finger flexion and a plantar flexion of the foot on either side were compared over the frontal, central and parietal areas of both hemispheres. MRP amplitudes were larger preceding foot than preceding finger movements. In the first case their onset was earlier and their presence in the frontal area was more marked. Prior to a finger flexion amplitudes over the hemisphere contralateral to the movement side were larger than those recorded over the ipsilateral hemisphere. On the contrary, prior to a plantar flexion of the foot, amplitudes were larger over the hemisphere ipsilateral to the movement. These findings point to differently localized sources of the MRPs in the two cases. In other experiments larger amplitudes preceding foot movements were found near the midline. It is suggested that the ipsilateral preponderance prior to foot movements is caused by a contralateral source in the depth near the longitudinal fissure. The dipoles are presumably directed obliquely to the median plane. The ipsilateral preponderance is present both prior to and following the plantar flexion. This suggests comparable directions of the dipoles in the motor and somatosensory areas.  相似文献   

4.
Previous studies have shown a relationship of the readiness potential (RP) preceding a motor act to motor control, as indexed by eye movement (EM). Greater EM and, therefore, less motor control was associated with increased positivity in preresponse RP components. It was hypothesized that these positive components may reflect processes involved in the inhibition of extraneous or associated movement during the performance of a motor act, especially in younger subjects with less motor development. We developed a finger lift task for detecting irrelevant associated movements (AM) from the responding hand and the nonresponding contralateral hand. During each target finger lift, small movements of the other nontarget fingers from the target hand and the contralateral hand were considered movements that should have been inhibited. Trials for each subject were divided into two bins: associated movement (AM) trials which had movement of target plus nontarget fingers, and trials with only target finger movement detected (NAM). Difference waveforms indicated a positive-going shift on trials with discrete target finger movements (NAM). Age and RP positivity at ipsilateral and posterior regions were significantly correlated. We suggest that, on trials on which associated movements are successfully inhibited, the negativity of the RP is confounded by an overlapping slow positivity. The positivity may be related to the effort needed to inhibit associated movements in order to perform a sharper and more discrete response. This relationship is a function of motor control and, indirectly, of age.  相似文献   

5.
Movement-related magnetic fields (MRMFs) accompanying left and right unilateral and bilateral finger flexions were studied in 6 right-handed subjects. Six different MRMF components occurring prior to, and during both unilateral and bilateral movements are described: a slow pre-movement readiness field (RF, 1-0.5 sec prior to movement onset); a motor field (MF) starting shortly before EMG onset; 3 separate "movement-evoked" fields following EMG onset (MEFI at 100 msec; MEFII at 225 msec; and MEFIII at 320 msec); and a "post-movement" field (PMF) following the movement itself. The bilateral topography of the RF and MF for both unilateral and bilateral movements suggested bilateral generators for both conditions. Least-squares fitting of equivalent current dipole sources also indicated bilateral sources for MF prior to both unilateral and bilateral movements with significantly greater strength of contralateral sources in the case of unilateral movements. Differences in pre-movement field patterns for left versus right unilateral movements indicated possible cerebral dominance effects as well. A single current dipole in the contralateral sensorimotor cortex could account for the MEFI for unilateral movements and bilateral sensorimotor sources for bilateral movements. Other MRMF components following EMG onset indicated similar sources in sensorimotor cortex related to sensory feedback or internal monitoring of the movement. The results are discussed with respect to the possible generators active in sensorimotor cortex during unilateral and bilateral movement preparation and execution and their significance for the study of cortical organization of voluntary movement.  相似文献   

6.
OBJECTIVE: The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements, influenced the movement-related potentials (MRP). METHODS: Our experimental design systematically controlled the angular displacement, velocity and acceleration (kinematic) profiles of finger movement while torque (kinetics) was varied by adding different external loads opposing finger flexion movement. We applied time-domain averaging of EEG single trials in order to extract three movement-related potentials (BP-600 to -500 BP-100 to 0 and N0 to 100) preceding and accompanying 25, 50 and 75 degrees unilateral finger movements with no inertial load, small (100 g) and large (200 g) loading. RESULTS: It was shown that both inertial load and the degree of angular displacement of index finger flexion increased the amplitude of late components of MRP (BP-100 to 0 and N0 to 100) over frontal and precentral areas. In contrast, the external load and movement amplitude manipulations did not influence the earlier component of the MRP (BP- 600 to -500). CONCLUSIONS: Overall, the data demonstrate that adding inertial load to the finger with larger angular displacements involves systematic increase in activation across frontal and precentral areas that are related to movement initiation as reflected in BP-100 to 0 and N0 to 100.  相似文献   

7.
The movement-related cortical electroencephalographic potential was recorded from scalp electrodes in 8 patients with idiopathic Parkinson's disease studied at least 12 hours after withdrawal of their normal drug therapy, and compared with the results from a group of 8 age-matched control subjects. Two types of self-paced voluntary arm movements were examined: repetitive forward movement of a joystick, and random-choice movements of the same joystick in which subjects had to choose freely the direction in which they were to move the stick (forward, backward, left, or right). In normal subjects, the movement-related cortical potential was larger prior to random-choice movements, whereas in the patients, the amplitude was the same in both tasks. The implication is that processes involved in self-selection of movement are abnormal in Parkinson's disease. This may contribute to the difficulty that patients have in initiating voluntary movement in the absence of any external cues.  相似文献   

8.
ObjectiveMovement-related cortical potentials (MRCP; nomenclature of MRCP components according to Shibasaki and Hallett (Shibasaki H, Hallett M. What is the Bereitschaftspotential? Clin Neurophysiol 2006;117:2341–56) were studied in patients with Machado–Joseph disease (MJD) to elucidate the pathophysiology of voluntary movement.MethodsWe studied nine genetically proven MJD patients and eight age-matched healthy subjects. Multi-channel electroencephalogram (EEG) recordings were obtained during self-paced fast extensions of the wrist. EEG epochs were time-locked to electromyography (EMG) onset or offset of the voluntary EMG burst and averaged.ResultsIn the MJD patients, the early Bereitschaftspotential (early BP, −1500 to −500 ms) was not affected but the late BP was reduced over the central midline area and contralaterally to the movement side. The amplitude of the fpMP, a post-movement MRCP component, was also reduced. In addition, the offset cortical potential in the first 500 ms after EMG offset (Moff + 500) was attenuated bilaterally over a wide cortical area.ConclusionsFindings suggest that cortical activations associated with the initiation and termination of a voluntary movement are impaired in MJD patients.SignificanceAbnormalities of pre- and post-movement MRCP components provide researchers with pathophysiological insight into voluntary motor dysfunction in MJD.  相似文献   

9.
Cortical potentials following voluntary and passive finger movements   总被引:4,自引:0,他引:4  
In order to clarify the time relationship and functional significance of post-motion components of the movement-related cortical potential, averaged cortical potentials associated with voluntary and passive movements were compared mainly with respect to their scalp topography. Fourteen channels of scalp EEG, together with EOG and EMG, were simultaneously recorded in 7 healthy adult subjects while the subject was either repeating a self-paced brisk extension of a middle finger or while the experimenter was extending the middle finger by pulling up a string attached to the finger. Potentials associated with the movement were averaged opisthochronically in relation to a trigger actuated by the finger interrupting a beam of light. Seven peaks were identified in the passive movement-evoked potential. A sharp negative peak occurred over the contralateral precentral region 16 msec after the photometer trigger (N15). Another negative component (N70) formed a composite of double-peaked negativity with N15 and was seen over the frontal region with a contralateral predominance. A positive peak (P65) was recorded over the contralateral parietal region with a similar latency to N70. This N70/P65 complex has some marked similarities in terms of wave form and spatial relationship with the N + 50/P + 90 complex recorded with voluntary movement of the same finger. It is postulated that these components may be the projected potential fields from a dipole source within the central sulcus and may represent a kinesthetic feedback from the muscle afferents.  相似文献   

10.
Cortical potentials associated with unilateral and bilateral simultaneous thumb opposition were studied in 9 healthy subjects. The P1 component, "pre-motion positivity", was recognized in 5 out of 9 subjects on unilateral thumb movement. In all subjects in whom P1 was recognized, P1 was dominant over the cerebral hemisphere ipsilateral to the contracting muscles. On bilateral simultaneous thumb movement, however, P1 was not discerned in any subject. This is compatible with the assumption that P1 is related to an inhibition of imitative movement of the opposite hand (mirror movement). The N2 component had its onset after the start of muscle contraction in most cases, suggesting that N2 might not reflect activation of the corticospinal pathways.  相似文献   

11.
Cerebral potentials accompanying visually triggered finger movement in man   总被引:1,自引:0,他引:1  
The cerebral potentials associated with visually triggered movements of the right index finger were studied in 5 normal subjects using multichannel scalp recordings and separate stimulus and movement-locked averaging. The visually locked wave forms showed enhanced components of the passive visual evoked potential (P1-N1) with a more widespread distribution than the VEP. The amplitude of the P1-N1 complex was influenced by the reaction time but its timing was independent of the timing of the movement. In a 'move'/'no move' choice paradigm, the positive components following the P1-N1 complex were attenuated with movement and subtraction of the 'move' and 'no move' wave forms showed a movement-related negativity building up over the contralateral parietal and central regions. With movement-locked averaging, a pre-motor negativity (PMN) of comparable topography and timing to the readiness potential was found when the timing of the cuing stimulus was regular. With randomly timed stimuli, the PMN still developed but then plateaued prior to movement. It is suggested that in this situation the PMN is related to an increasing level of arousal, anticipation and preparedness to move which is then maintained pending the arrival of the stimulus and the final motor command.  相似文献   

12.
OBJECTIVE: To investigate a possible deficit of the voluntary movement mechanism within the central nervous system (CNS) in patients with myotonic dystrophy (MyD). METHODS: Movement-related cortical potentials preceding voluntary extension of the right middle and index fingers were studied in 9 patients with MyD and compared with those in 11 age-matched healthy subjects and 9 age-matched patients with other neuromuscular disorders (NMDs). RESULTS: The amplitudes of Bereitschaftspotential was smaller in MyD patients than in age-matched controls and age-matched patients with other NMDs although there was no statistically significant difference. The amplitude of negative slope was significantly smaller in MyD patients than in age-matched controls and age-matched patients with other NMDs. Clinical findings such as age, disease duration, degree of motor impairment and cognitive function had no effect on the individual electrophysiological parameters. CONCLUSIONS: The present results suggest that subclinical abnormalities exist in CNS function associated with motor preparation and execution, which is independent of muscle weakness.  相似文献   

13.
OBJECTIVE: In our previous study of movement-related cortical potential (MRCP) in association with the voluntary relaxation of the hand muscle, Bereitschaftspotential (BP) was maximal at the vertex and symmetrically distributed, and Negative Slope (NS') was maximal over the contralateral central region. In order to clarify the generator sources of MRCP with voluntary muscle relaxation, we recorded MRCP in association with voluntary relaxation of the foot. METHODS: MRCP in association with plantar flexion of the foot caused by voluntary relaxation of the tibialis anterior muscle was recorded in 10 normal subjects. RESULTS: The BP started at about 1.7 s before the onset of the muscle relaxation, followed by NS' starting at about 650 ms before it. Both were maximal at the vertex and symmetrically distributed. There was no additional EEG activity in the lateral frontal areas, which are presumably located over the primary negative motor areas (PNMA). CONCLUSIONS: It is concluded that the voluntary muscle relaxation, similarly to the voluntary muscle contraction, involves the cortical preparatory activity at least in the primary motor area (M1) and probably the supplementary motor areas (SMAs). There is no evidence to suggest that the PNMA is also active prior to the voluntary muscle relaxation.  相似文献   

14.
Topography of scalp-recorded motor potentials in human finger movements   总被引:1,自引:0,他引:1  
Four distinct negative events were identified in the averaged, scalp-recorded EEGs of normal subjects before and after the onset of self-paced, voluntary finger movements; reaction-time movements and passive movements were also studied. These events are the peak of the negative slope (NS'), the initial slope of motor potential (isMP), the parietal peak of motor potential (ppMP), and the frontal peak of motor potential (fpMP). For self-paced movements, NS' and isMP occurred before the onset of electromyographic (EMG) activity, and ppMP and fpMP occurred after the onset of EMG activity. NS' had a wide distribution, covering the parietal region with slight contralateral predominance. The isMP mapped focally over the contralateral hand motor area on the scalp. The location of ppMP was similar to that of isMP. The fpMP was localized anterior and medial to motor cortex with a contralateral preponderance and possible location over the supplementary motor area. The isMP and fpMP also were identified in the recordings of reaction-time movements, but only the fpMP persisted in the recordings of passive movements. The isMP appears to reflect activation of the cortical cells in the hand area of motor cortex for the execution of voluntary movement, and the fpMP appears to reflect proprioceptive feedback from the periphery.  相似文献   

15.
We studied the topographic distribution of scalp-recorded, averaged movement-related cortical potentials occurring immediately before and after the onset of voluntary movements in six patients with cerebellar degenerative disease. We placed 26 electrodes on the scalp overlying the sensorimotor area and recorded cortical potentials related to abduction of the index finger. The amplitudes and latencies of the potentials were normal in all patients except two, in whom the negative slope (NS') was absent. All patients had an abnormal topographic pattern of potentials compared with normal subjects. The initial slope of motor potential (isMP), which was focal and contralateral in the normal subjects, was diffuse and bilateral in the patients. The topography of the frontal peak of motor potential (fpMP) was more posterior in the patients than in normal subjects. The patterns found in this preliminary study indicate a derangement of sensorimotor cortex activity in voluntary movement as a consequence of cerebellar dysfunction.  相似文献   

16.
Oromandibular dystonia is a neurological disorder characterized by involuntary contraction of masticatory and/or tongue muscles. Cortical negative shifts preceding voluntary movements called "movement-related cortical potentials" (MRCPs) reflect a central motor control process. Reduced amplitude of MRCPs has been reported in other types of dystonia. To elucidate whether the abnormality is observed also in oromandibular dystonia, we compared MRCPs associated with mandibular movements in 6 patients with this condition and in 8 normal subjects. Electroencephalograms (EEGs) were recorded from 11 electrodes, and electromyograms (EMGs) were recorded from the masseter muscle and the suprahyoid muscles. The subjects were asked to repeat mouth opening, closing, and left and right lateral mandibular excursions. MRCPs were obtained by averaging the EEG using the EMG onset as the trigger signal. In the patient group, MRCP amplitudes over central and parietal areas for mouth opening and lateral movements were significantly reduced compared to normal subjects. In normal controls, the MRCPs at mouth opening and closing were symmetrically distributed, whereas those at lateral movements showed predominance over the hemisphere ipsilateral to the direction of the movement. This laterality was lost in the patient group. These results suggest impaired cortical preparatory process for jaw movements in oromandibular dystonia.  相似文献   

17.
To investigate whether motor activation can cause lactate elevation, we observed the metabolic changes in seve right-handed volunteers by localized1H-magnetic resonance spectroscopy (MRS). The volume of interest (VOI) was centered on a region including portions of the putamen and globus pallidus. Finger opposition movements were applied as the motor tasks. On the side contralateral to the finger movements, lactate rose in all subjects. No lactate rise occurred in basal ganglia ipsilateral to the movements.  相似文献   

18.
Movement-related cortical potentials (MRCPs) register brain electrical activity before and during movement execution. In an attempt to delineate the components of MRCPs that reflect common sources to various movements and that are movement-specific, simple self-paced voluntary foot, finger, and mouth movements were studied. MRCPs were recorded in eight healthy volunteers with 30 electrodes placed on the scalp. Data were analyzed using Brain Electric Source Analysis software, and multiple equivalent dipole models were developed to separate spatial and temporal aspects of brain activity related to the execution of voluntary movements. Independent models were separately developed for the grand average data and for the individual subjects' data for each movement type. MRCPs derived from foot movements were accounted for using a 5-dipole model, finger movements using an 8-dipole model, and mouth movements with a 7-dipole model, yielding the grand average residual variances of 3%, 2%, and 6%, respectively. Based on individual models, intersubject variability of dipole locations was less than 10 mm (+/- SD). Overlaying the mean dipole coordinates onto the stereotaxic atlas provided proof that the sensorimotor cortical areas, supplementary motor area, and also cerebellum and thalamus were active in all three movements. Locations of the dipoles in the contralateral sensorimotor area clearly implied well-known medial to lateral somatotopic organization of foot, finger, and mouth movements. Temporal separation of the activity spread over different brain areas was demonstrated by evolution in the moments of dipole source potentials. The authors' models support the view of simultaneous activation of the primary motor cortex and supplementary motor area at the time of movement execution. Multiple equivalent dipole models developed in this study implied the activity originating in corresponding brain areas as previously detected by positron emission tomography or functional magnetic resonance imaging. However, MRCPs provided additional information regarding the temporal evolution of the brain activity related to the execution of voluntary movements. Thus, the concurrent use of MRCPs and other imaging techniques may provide complementary information not easily obtained by the other imaging techniques themselves.  相似文献   

19.
Scalp somatosensory evoked potentials (SEPs) were recorded in 10 volunteers after median nerve stimulation, in four experimental conditions of hand movements performance/ideation, and compared with the baseline condition of full relaxation. The experimental conditions were (a) self-improvised hand-finger sequential movements; (b) the same movements according to a read sequence of numbers; (c) mental ideation of finger movements; and (d) passive displacement of fingers in complete relaxation. Latencies and amplitudes of the parietal (N20, P25, N33, and P45) and frontal peaks (P20–22, N30, and P40) were analyzed. Latencies did not vary in any of the paradigms. Among the parietal complexes, only the P25-N33 amplitude was significantly reduced in (a), (b), (c), and (d) and the N20-P25 was reduced in (a) and (d); among frontal waves, N30 and P40 were significantly reduced (20–75%) in (a) and (b). Coronal electrodes showed amplitude decrements maximal at the frontal-rolandic positions contralateral to the stimulated side. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
Finger and foot movement related potentials (MRPs) were recorded over the frontal, central and parietal areas of both hemispheres in 20 left-handed subjects. A unilateral flexion of the index finger and a plantar flexion of the foot were studied on either side. MRPs were larger preceding foot movements than preceding finger movements, their onset being earlier also. Prior to a finger flexion amplitudes were larger over the hemisphere contralateral to the movement than over the ipsilateral hemisphere. Preceding a foot movement, however, amplitudes were larger over the ipsilateral hemisphere. These results indicate differently localized sources of the MRPs in the two kinds of movement, in accordance with data obtained in right-handed subjects. No indication of a hemisphere effect, possibly related to motor dominance, was found in left-handers. This is in contrast to a slight hemisphere effect found with foot movements in right-handed subjects in the former study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号