首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model of hepatic dysfunction in vivo has been developed in rabbits to determine the effects of sublethal hepatocellular necrosis upon doxorubicin pharmacology. Eight New Zealand white rabbits were given 3 mg/kg doxorubicin i.v. Plasma doxorubicin and metabolite pharmacokinetics were determined and toxicity assessed by nadir complete blood counts. Hepatic function was assessed by the pulmonary excretion rate of 14CO2 from [14C]aminopyrine. Hepatocellular necrosis was produced by i.v. injection of 1.35 mg/kg of a 2% allyl alcohol solution. Doxorubicin administration and pharmacokinetics were repeated. Doxorubicin enhances the hepatotoxicity of allyl alcohol. Hepatocellular necrosis does not alter the plasma pharmacokinetics of doxorubicin but does increase the plasma exposure of doxorubicinol. Doxorubicin-induced myelosuppression is enhanced by allyl alcohol pretreatment. These data suggest that in circumstances of reduced hepatocellular volume or acute hepatocellular necrosis, a key plasma marker of doxorubicin-induced acute toxicity may be doxorubicinol.  相似文献   

2.
The effect of the paclitaxel vehicle Cremophor on the pharmacokinetics of doxorubicin and doxorubicinol was studied in two groups of mice given intravenously either 2.5 ml kg-1 Cremophor or saline followed 5 min later by 10 mg kg-1 doxorubicin. In each group three mice were sacrificed at ten time points and doxorubicin and doxorubicinol were measured in plasma by high-performance liquid chromatography (HPLC). With Cremophor present, doxorubicin AUC increased from 1420+/-440 to 2770+/-660 ng h ml(-1) (P<0.05) and doxorubicinol AUC increased from 130+/-76 to 320+/-88 ng h ml(-1) (p<0.05). Neither the terminal elimination half-lives nor the doxorubicinol-doxorubicin AUC ratio changed in the presence of Cremophor, suggesting a lack of a direct effect on drug metabolism. The possibility exists the Cremophor may change the pharmacokinetics of both paclitaxel and other drugs given concurrently.  相似文献   

3.
Previous studies in mice with disrupted mdr1a P-glycoprotein genes have shown that the oral bioavailability of paclitaxel is very low because of the presence of this drug-transporting protein in the intestinal wall. Additional studies with cyclosporin A have shown that this P-glycoprotein-inhibiting agent is able to increase the bioavailability of paclitaxel in mouse models and in patients. However, the potential immune-suppressive side effects of cyclosporin A renders this compound less suitable for chronic use in cancer patients. In this paper we present the results obtained with GF120918, an experimental P-glycoprotein inhibitor, on the oral bioavailability of paclitaxel in both wild-type and mdrlab knockout mice. GF120918 (25 mg/kg) was administered p.o. by gavage 15 min or 2 h before oral or i.v. dosing of paclitaxel, respectively. Paclitaxel plasma levels were quantified by high-performance liquid chromatography. GF120918 increased the plasma values for areas under the concentration-time curve of oral paclitaxel in wild-type mice by 6.6-fold from 408 to 2701 ng x ml(-1) h. Calculated relative to their respective values for area under the concentration-time curve after i.v. administration, GF120918 increased the oral bioavailability of paclitaxel in wild-type mice from 8.5 to 40.2%. The plasma pharmacokinetics of paclitaxel in mdr1ab knockout mice was not altered by GF120918, whereas the pharmacokinetics of paclitaxel in wild-type mice receiving GF120918 became comparable with mdr1ab knockout mice. This result indicates that GF120918 at this dose-level selectively and completely blocks P-glycoprotein in the intestines and does not notably interfere in the elimination of paclitaxel by metabolism or other transporters. On the basis of this result, GF120918 has been selected for additional study in humans.  相似文献   

4.
PURPOSE: Although dexrazoxane (ICRF-187) is used clinically to protect against doxorubicin cardiotoxicity, the age-related effect of dexrazoxane on doxorubicin pharmacokinetics has not been well studied. METHODS: We therefore examined the effect of pretreatment with dexrazoxane (50 mg kg(-1) i.p. 1 h prior to administration of doxorubicin 2 mg kg(-1) i.v. bolus) on doxorubicin and doxorubicinol pharmacokinetics in Fischer 344 rats at 5 months of age (young adult) and 22 months of age (old). RESULTS: Dexrazoxane had no major effects on doxorubicin or doxorubicinol pharmacokinetics in plasma or heart in either young or old rats. However, age had significant effects on anthracycline pharmacokinetics. Early plasma concentrations were increased and systemic clearance of doxorubicin was decreased in old compared with young rats. Cardiac concentrations of doxorubicin (AUC) were significantly increased in old rats. In addition cardiac doxorubicinol concentrations (AUC 0-72 h) were increased by over 80% in old compared to young rats. CONCLUSION: The results suggest that dexrazoxane does not alter doxorubicin pharmacokinetics. In contrast, aging in the rat model is associated with altered doxorubicin and doxorubicinol pharmacokinetics, in particular in the heart. These changes could increase the risk of anthracycline cardiotoxicity with age.  相似文献   

5.
Summary Doxorubicin is metabolized extensively to doxorubicinol by the ubiquitous aldoketoreductase enzymes. The extent of conversion to this alcohol metabolite is important since doxorubicinol may be the major contributor to cardiotoxicity. Aldoketoreductases are inhibited in vitro by phenytoin. The present study was conducted to examine the effect of phenytoin on doxorubicin pharmacokinetics. Doxorubicin single-dose pharmacokinetic studies were performed in 10 New Zealand White rabbits after pretreatment with phenytoin or phenytoin vehicle (control) infusions in crossover fashion with 4–6 weeks between studies. Infusions were commenced 16 h before and during the course of the doxorubicin pharmacokinetic studies. Phenytoin infusion was guided by plasma phenytoin estimation to maintain total plasma concentrations between 20 and 30 g/ml. Following doxorubicin 5 mg/kg by i.v. bolus, blood samples were obtained at intervals over 32 h. Plasma doxorubicin and doxorubicinol concentrations were measured by HPLC. The mean plasma phenytoin concentrations ranged from 17.4 to 33.9 g/ml. Phenytoin infusion did not alter doxorubicin pharmacokinetics. The elimination half-life and volume of distribution were almost identical to control. Clearance of doxorubicin during phenytoin administration (60.9±5.8 ml/min per kg, mean±SE) was similar to that during vehicle infusion (67.5±5.4 ml/min per kg). Phenytoin administration was associated with a significant decrease in doxorubicinol elimination half-life from 41.0±4.8 to 25.6±2.8 h. The area under the plasma concentration/time curve (AUC) for doxorubicinol decreased significantly from 666.8±100.4 to 491.5±65.7 n.h.ml-1. These data suggest that phenytoin at clinically relevant concentrations does not alter the conversion of doxorubicin to doxorubicinol in the rabbit. The reduction in the AUC for doxorubicinol caused by phenytoin appears to be due to an increased rate of doxorubicinol elimination. Phenytoin or similar agents may have the effect of modifying doxorubicinol plasma concentrations by induction of doxorubicinol metabolism rather than by inhibition of aldoketoreductase enzymes.  相似文献   

6.
Cumulative dose-related, chronic cardiotoxicity is a serious clinical complication of anthracycline therapy. Clinical and animal studies have demonstrated that continuous infusion, compared to bolus injection of doxorubicin, decreases the risk of cardiotoxicity. Continuous infusion of doxorubicin may result in decreased cardiac tissue concentrations of anthracyclines, including the primary metabolite doxorubicinol, which may also be an important contributor to cardiotoxicity. In this study, doxorubicin and doxorubicinol plasma pharmacokinetics and tissue concentrations were compared in New Zealand white rabbits following intravenous administration of doxorubicin (5 mg·kg–1) by bolus and continuous infusion. Blood samples were obtained over a 72-h period after doxorubicin administration to determine plasma doxorubicin and doxorubicinol concentrations. Rabbits were killed 7 days after the completion of doxorubicin administration and tissue concentrations of doxorubicin and doxorubicinol in heart, kidney, liver, and skeletal muscle were measured. In further experiments, rabbits were killed 1 h after bolus injection of doxorubicin and at the completion of a 24-h doxorubicin infusion (anticipated times of maximum heart anthracycline concentrations) to compare cardiac concentrations of doxorubicin and doxorubicinol following both methods of administration. Peak plasma concentrations of doxorubicin (1739±265 vs 100±10 ng·ml–1) and doxorubicinol (78±3 vs 16±3 ng·ml–1) were significantly higher following bolus than infusion dosing. In addition, elimination half-life of doxorubicinol was increased following infusion. However, other plasma pharmacokinetic parameters for doxorubicin and doxorubicinol, including AUC, were similar following both methods of doxorubicin administration. Peak left ventricular tissue concentrations of doxorubicin (16.92±0.9 vs 3.59±0.72 g·g–1 tissue;P<0.001) and doxorubicinol (0.24±0.02 vs 0.09±0.01 g·g–1 tissue;P<0.01) following bolus injection of doxorubicin were significantly higher than those following infusion administration. Tissue concentrations of parent drug and metabolite in bolus and infusion groups were similar 7 days after dosing. The results suggest that cardioprotection following doxorubicin infusion may be related to attenuation of the peak plasma or cardiac concentrations of doxorubicin and/or doxorubicinol.  相似文献   

7.
Summary The pharmacokinetics of doxorubicin in rabbits preloaded either with ammonium chloride or sodium hydrogencarbonate have been investigated following single IV administration of 5 mg/kg.Plasma samples and urine collections were obtained over 3 h following administratio, and were assayed in duplicate for doxorubicin and its main metabolite doxorubicinol by reversed-phase high-pressure liquid chromatography.The plasma concentration of doxorubicin was fitted to an open two-compartment model.The areas under the plasma concentration-time curves (AUC) of doxorubicin in rabbits with alkaline urine were approximately half the areas in rabbits with acid urine. A pharmacokinetic analysis indicated an increase in the central volume of distribution, which is interpreted as an increase in tissue permeability in the alkaline state, due to the acid-base properties of the doxorubicin molecule.The renal excretion of doxorubicin and doxorubicinol was quantitatively similar in the two groups of rabbits. The total renal excretion of anthracyclines during the experiment was calculated to approximately 6% of the administered dose. The clearances of doxorubicin were initially three times higher than inulin clearance, but approximated this value at the end of the experiment.The renal handling of doxorubicin in the rabbits is explained by glomerular filtration followed by tubular secretion and finally by a reabsorption mechanism with limited capacity.  相似文献   

8.
The purpose of this study was to examine the effect of tamoxifen pretreatment on the metabolism and pharmacokinetics of doxorubicin. We tested the hypothesis that the pretreatment would counteract the side effects of doxorubicin and modify the disposition of the drug. The concentration-time profiles of doxorubicin in plasma and blood cells were determined in conjunction with the cumulative amount of renal and hepatobiliary elimination of unchanged drug and metabolites following a 10-day tamoxifen pretreatment at a dose of 1 mg/kg per day. Furthermore, under the same experimental protocol the serum concentration-time profile of endothelin was determined as a biomarker of toxicity. Methods: Female Sprague Dawley rats (225–275 g), pretreated orally for 10 days with corn oil or tamoxifen in corn oil (1 mg/kg per day), received 14C-doxorubicin (specific activity 0.4 μCi/mg, 10 mg/kg) intravenously. Plasma, blood cells, bile and urine were collected periodically and analyzed for doxorubicin and its metabolites. Four other groups of animals received the same pretreatment and non-labeled doxorubicin. Their serum samples were analyzed for endothelin. Two additional groups were also used to examine the effect of tamoxifen on the in vitro metabolism of doxorubicin by the cytosolic enzyme aldo-keto reductase. Results: Tamoxifen pretreatment reduced the total protein of the cytosolic fraction by 50% and reduced the formation of doxorubicinol both in vitro and in vivo. The pretreatment resulted in a notable increase in the area under plasma and blood cells concentration-time curves of doxorubicin and a significant reduction in mean residence time, apparent volume of distribution and serum endothelin levels. Conclusions: We attributed the increase in the area under the curves of plasma and blood cells following tamoxifen pretreatment to a reduction in the uptake of doxorubicin by peripheral tissues. This conclusion was consistent with the reduction in the volume of distribution of plasma, mean residence time and higher availability of the parent compound for excretion. An interesting observation was that the increase in concentration of doxorubicin in plasma was not concomitant with an increase in concentration of doxorubicinol. The levels of this toxic metabolite and its corresponding biliary rate constant were reduced by approximately 50%. The results demonstrate that tamoxifen, in addition to being a modulator of P-glycoprotein and counteracting the effects of doxorubicin at the cellular level, also alters the metabolic profile of doxorubicin either by inhibiting the formation of the toxic metabolite doxorubicinol or by reducing the enzyme responsible for the biotransformation. The change in metabolism may well be a contributing factor to reduction of serum endothelin levels. Received: 2 September 1999 / Accepted: 14 April 2000  相似文献   

9.
PURPOSE: To develop a population pharmacokinetic model for doxorubicin and doxorubicinol in the presence of zosuquidar.3HCl, a potent P-glycoprotein inhibitor. METHODS: The population approach was used (implemented with NONMEM) to analyse doxorubicin-doxorubicinol pharmacokinetic data from 40 patients who had received zosuquidar.3HCl and doxorubicin intravenously (separately in cycle 1 and concomitantly in cycle 2 over 48 h and 0.5 h, respectively). RESULTS: A five-compartment pharmacokinetic model (including three compartments for doxorubicin pharmacokinetics with two pathways for doxorubicinol formation) best described the doxorubicin-doxorubicinol pharmacokinetics in the presence of zosuquidar.3HCl. Doxorubicin clearance (CL), peripheral volume of distribution (V2) and doxorubicinol apparent clearance (CLm/fm) and apparent volume of distribution (Vm/fm) were 62.3 l/h, 2360 l, 143 l/h and 3150 l, respectively, in the absence or presence of low doses of zosuquidar.3HCl (<500 mg). In the presence of high doses of zosuquidar.3HCl (>or=500 mg), these values decreased by 25%, 26%, 48% and 73%, respectively, and doxorubicinol pharmacokinetics were characterized by a delayed t(max) (24 h versus 4 h), which led to the inclusion of the parallel pathways. A decrease in the objective function ( P<0.005) was observed when the impact of zosuquidar.3HCl was accounted for. CONCLUSIONS: This integrated parent-metabolite population pharmacokinetic model accurately characterized the increase in doxorubicin and doxorubicinol exposure (1.33- and 2-fold, respectively) in the presence of zosuquidar.3HCl (>or=500 mg) and provided insights into the pharmacokinetic interaction, which may be useful in designing future clinical trials.  相似文献   

10.
Summary Malnutrition involving protein deficiency, which commonly occurs in cancer patients receiving anthracycline treatment, is considered to be a risk factor for the development of cardiotoxicity. Protein deficiency has been shown to impair the metabolism of drugs such as theophylline and acetaminophen. If protein deficiency also impairs anthracycline metabolism, it could explain at least in part the enchanced anthracycline toxicity associated with malnutrition. We tested this idea by determining the effect of a low- protein, isocaloric diet on doxorubicin pharmacokinetics in rabbits. The animals were randomized into two groups for 8–12 weeks. Rabbits in group 1 received a low-protein (5%), isocaloric diet, whereas those in group 2 received a normal-protein (15%) diet. Both groups (group 1,n=15; group 2,n=14) were given 5 mg/kg doxorubicin by i.v. bolus. After doxorubicin injection, blood samples were obtained over the next 52 h for the measurement of doxorubicin and doxorubicinol plasma concentrations by high-performance liquid chromatography (HPLC) with fluorometric detection. The low-protein diet significantly decreased doxorubicin clearance (48±3 vs 59±4 ml min–1 kg–1;P<0.05), prolonged the terminal climination half-life (28±2 vs 22±2 h;P<0.05), and increased the area under the plasma concentration/time curve extrapolated to infinity (1722±122 vs 1405±71 ng h ml–1;P<0.05) as compared with the values determined for rabbits fed the standard rabbit chow (15% protein). The volume of distribution for doxorubicin was not altered by the low-protein diet. In addition, in rabbits fed the the low-portein diet, the terminal elimination half-life of the alcohol metabolite, doxorubicinol was prolonged (52±5 vs 40±2 h;P<0.05). Thus, a low-protein diet causes a reduction in the ability of rabbits to eliminate doxorubicin and possibly its alcohol metabolite doxorubicinol. If a similar alteration in anthracycline pharmacokinetics occurs in malnourished cancer patients, this phenomenon may contribute to their increased risk of developing cardiotoxicity associated with anthracycline therapy.Supported by the Department of Veterans Affairs and the American Heart Foundation  相似文献   

11.
Summary The pharmacokinetics of doxorubicin given according to three different schedules with a similar dosetime intensity have been studied and compared in 16 women with metastatic breast cancer. Six patients were treated with doxorubicin 75 mg/m2 by i.v. bolus repeated every 3 weeks; 5 patients received doxorubicin by 4-day continuous infusion every 3 weeks (4 at 75 mg/m2 and 1 at 60 mg/m2); 5 patients received 25 mg/m2 by i.v. bolus given weekly. Timed blood samples were collected and plasma levels of doxorubicin and its metabolite doxorubicinol were measured by high-performance liquid chromatography with fluorescence detection. Peak plasma concentrations were measured, and areas under the concentration-time curves calculated. Peak plasma levels of doxorubicin were significantly lower with the 4-day infusion than with either of the bolus injections. The 4-day infusion, however, gave significantly greater total exposure to doxorubicin and doxorubicinol, as indicated by area under the concentration-time curve, than weekly or 3-weekly bolus treatment. A single bolus injection of doxorubicin 25 mg/m2 yielded a total exposure to doxorubicin approximately half that achieved with a 75 mg/m2 bolus injection. Over a 3-week period, therefore, total exposure to doxorubicin would be greater with the weekly low-dose schedule than with the 3-weekly administration. We conclude that drug scheduling has significant effects on doxorubicin pharmacokinetics.  相似文献   

12.
Two major classes of plasma membrane proteins that actively extrude a wide range of structurally diverse hydrophobic amphipathic antineoplastic agents from cells, with different mechanisms of action, lead to multidrug resistance. To study the importance of these ATP-binding cassette transporters to the toxicity of cancer chemotherapy agents, we have used mice genetically deficient in both the mdr1a and mdr1b genes [mdr1a/1b(-/-) mice], the mrp1 gene [mrp1(-/-) mice], and the combined genes mdr1a/1b and mrp1 [mdr1a/1b(-/-), mrp1(-/-) mice] and embryonic fibroblasts derived from wild-type mice and from the three gene knockout animals. The consequences of export pump deficiencies were evaluated primarily using vincristine and etoposide. Mice deficient in the three genes, mdr1a/1b and mrp1, exhibited a 128-fold increase in toxicity to vincristine and a 3-5-fold increase in toxicity to etoposide; increased toxicity to embryonic fibroblast cells from triple knockout mice also occurred with vincristine and etoposide. Vincristine, which normally does not express toxicity to the bone marrow and to the gastrointestinal mucosa when used at therapeutic doses, caused extensive damage to these tissues in mdr1a/1b(-/-), mrp1(-/-) mice. The findings indicate that the P-glycoprotein and mrpl are compensatory transporters for vincristine and etoposide in the bone marrow and the gastrointestinal mucosa and emphasize the potential for increased toxicities by the combined inhibition of these efflux pumps.  相似文献   

13.
14.
BACKGROUND: In the fight against cancer, new drug delivery systems are attractive to improve drug targeting of tumors, maximize drug potency, and minimize systemic toxicity. We studied a new drug delivery system comprising microspheres, with unique properties allowing delivery of large amounts of drugs to tumors for a prolonged time, thereby decreasing plasma levels. Liver tumors, unlike nontumorous liver, draw most of their blood supply from the hepatic artery. Exploiting this property, we delivered drug-eluting microspheres/beads (DEB) loaded with doxorubicin, intra-arterially, in an animal model of liver cancer (Vx-2). PURPOSE: The purpose of our study was to determine the pharmacokinetics and tumor-killing efficacy of DEB. RESULTS: Our results show that plasma concentration of doxorubicin was minimal in the animals treated with DEB at all time points (0.009-0.05 micromol/L), suggesting high tumor retention of doxorubicin. This was significantly lower (70-85% decrease in plasma concentration) than control animals treated with doxorubicin intra-arterially. Within the tumor, doxorubicin concentration peaked at 3 days (413.5 nmol/g), remaining high to 7 days (116.7 nmol/g) before declining at 14 days (41.76 nmol/g), indicating continuous doxorubicin elution from beads. In control animals, peak tumor concentration of doxorubicin was 0.09 nmol/g. Tumor necrosis (approaching 100%) was greatest at 7 days, with minimal adverse local side effects reflected in liver function tests results. The plasma concentration of doxorubicinol (doxorubicin main metabolite) was minimal. CONCLUSIONS: Our results support the concept of DEBs as an effective way to deliver drugs to tumor. This new technology may prove to be a useful weapon against liver cancer.  相似文献   

15.
Doxorubicin clearance in the obese   总被引:3,自引:0,他引:3  
A study was carried out to examine the effect, if any, of obesity on doxorubicin pharmacokinetics. Body weight was found to be significantly related to doxorubicin clearance (r = -.75; P less than .001) and elimination half-life (r = .62; P = .003). Thus, the contribution of obesity on pharmacokinetics of antineoplastic agents should be taken into consideration in the analysis of clinical data with respect to toxicity and tumor response. Twenty-one patients were studied with their first course of doxorubicin (50 to 70 mg/m2) administered as a 60-minute intravenous (IV) infusion. Patients were divided into three groups on the basis of percentage of ideal body weight (IBW): normal (less than 115% IBW), mildly obese (115% to 130% IBW), and obese (greater than 130% IBW). Blood samples were collected up to 48 hours after the infusion and analyzed for doxorubicin and its metabolite, doxorubicinol, by high performance liquid chromatography. Doxorubicin area under the curve (AUC) was greater in obese than in normal patients (2,209 v 1,190 ng h/mL; P less than .05), yielding correspondingly reduced systemic clearance of the agent in obese patients (891 v 1,569 mL/min; P less than .001). The mean elimination half-life (T1/2) was 20.4 hours in the obese patients and 13.0 hours in the normal patients. The apparent volume of distribution (Vss) was not significantly different among the three groups of patients, indicating that the prolonged T1/2 in the obese patients is due to the reduction in clearance. The AUC and T1/2 of doxorubicinol were similar among all patient groups.  相似文献   

16.
Summary The influence of dexrazoxane on doxorubicin pharmacokinetics was investigated in four dogs using the two treatment sequences of saline/doxorubicin or dexrazoxane/doxorubicin. Intravenous doses of 1.5 mg/kg doxorubicin and 30 mg/kg (the 20-fold multiple) dexrazoxane were given separately, with doxorubicin being injected within 1 min of the dexrazoxane dose. Both doxorubicin and its 13-dihydro metabolite doxorubicinol were quantified in plasma and urine using a validated high-performance liquid chromatographic (HPLC) fluorescence assay. The doxorubicin plasma concentration versus time data were adequately fit by a three-compartment model. The mean half-lives calculated for the fast and slow distributive and terminal elimination phases in the saline/doxorubicin group were 3.0±0.5 and 32.2±12.8 min and 30.0±4.0 h, respectively. The model-predicted plasma concentrations were virtually identical for the saline and dexrazoxane treatment groups. Analysis of variance of the area under the plasma concentration-time curve (AUC0–), terminal elimination rate (Z), systemic clearance (CL s), and renal clearance (CL r) for the parent drug showed no statistically significant difference (P<0.05) between the two treatments. Furthermore, the doxorubicinol plasma AUC0– value and the doxorubicinol-to-doxorubicin AUC0– ratio showed no significant difference, demonstrating that dexrazoxane had no effect on the metabolic capacity for formation of the 13-dihydro metabolite. The total urinary excretion measured as parent drug plus doxorubicinol and the metabolite-to-parent ratio in urine were also unaffected by the presence of dexrazoxane. The myelosuppressive effects of doxorubicin as determined by WBC monitoring revealed no apparent difference between the two treatments. In conclusion, these results show that drug exposure was similar for the two treatment arms. No kinetic interaction with dexrazoxane suggests that its coadministration is unlikely to modify the safety and/or efficacy of doxorubicin.  相似文献   

17.
PURPOSE: The extensive and unpredictable biliary excretion of CPT-11 and its metabolites, SN-38 and SN-38 glucuronide (SN-38G) may contribute to the wide interpatient variability reported in the disposition and gastrointestinal toxicity of CPT-11. We studied the role of P-glycoprotein (P-gp) in in vivo biliary excretion of CPT-11, SN-38 and SN-38G in mice lacking mdr1-type P-gp [ mdr1a/1b(-/-)] in the presence of the multidrug resistance (MDR) reversal agent, PSC833. METHODS: Wild-type (Wt) and mdr1a/1b(-/-) mice ( n=3 or 4) were treated intragastrically with PSC833 (50 mg/kg) or vehicle 2 h prior to i.v. CPT-11 dosing (10 mg/kg), and bile samples were collected. RESULTS AND CONCLUSIONS: P-gp was found to play an important role in CPT-11 biliary excretion, as there was a significant (40%, P<0.05) decrease in its biliary recovery in 90 min in mdr1a/1b(-/-) mice (6.6+/-0.6% dose) compared with Wt mice (11+/-1.2%). This also implied a major role of other undetermined non-P-gp-mediated mechanism(s) for hepatic transport of CPT-11, which was inhibited by PSC833 (1.8+/-0.8% with PSC833, 6.6+/-0.6% without PSC833) in mdr1a/1b(-/-) mice. SN-38 and SN-38G biliary transport was unchanged in mice lacking P-gp after vehicle treatment, indicating a lack of P-gp mediation in their transport. PSC833 significantly reduced (56-89%) SN-38 and SN-38G biliary transport in Wt and mdr1a/1b(-/-) mice, suggesting that PSC833 may be a candidate to modulate biliary excretion of SN-38 with potential use in reducing CPT-11 toxicity.  相似文献   

18.
Summary Cimetidine is an H2 antagonist which inhibits cytochrome P-450 and reduces hepatic blood flow. To determine whether cimetidine interferes with the plasma pharmacokinetics of doxorubicin, we gave six female New Zealand rabbits doxorubicin 3 mg/kg, followed a month later by cimetidine 120 mg/kg every 12 h over 72 h and doxorubicin 3 mg/kg. Serial plasma specimens were obtained over 72 h and assayed for doxorubicin and its metabolites by high-performance liquid chromatography and fluorescence detection.Doxorubicin plasma pharmacokinetics were prolonged after cimetidine pretreatment [AUC 0.76±0.22 vs. 2.85±1.22 M×h, no pretreatment vs pretreatment (p=0.005), half-life=11.7±6.55 vs 28.0±8.16 h (P=0.0002), and clearance=0.129±0.036 vs 0.036±0.0111/min-1 kg-1 (P=0.0007)]. No significant differences were found between the AUCs for doxorubicinol, 7-deoxy doxorubicinol aglycone, or two unidentified nonpolar metabolites in nonpretreatment and pretreatment studies. Cimetidine increases and prolongs the plasma exposure to doxorubicin in rabbits. Doxorubicin metabolism does not appear to be affected by cimetidine.Grant Support Veterans Administration, NIH Grant RR-05424 and Clinical Research Center Grant RR-00095 American Cancer Society Institutional Grants #IN25V and IN24V, and JFCF #649  相似文献   

19.
Recent studies have shown that expression levels of the multidrug resistance gene MDR1, which encodes the drug transporter P-glycoprotein, correlate with prognostic outcomes of certain tumor types. These findings suggest that expression of MDR1 may affect tumor behaviors. To address this issue further, we investigated the expression of mdr1a, a human MDR1 homolog, on the development of hepatocellular carcinoma in a transgenic mouse model carrying the liver-targeted expression of human hepatitis-B virus (HBV) surface antigen. The pathogenetic program was compared in HBV mice carrying either mdr1a(+/+) or mdr1a(-/-). We found that the expressions of proliferative activity markers, Ki67 nuclear antigen, and proliferating cell nuclear antigen were elevated in mdr1a(-/-) mice younger than 10 wk in comparison with those in the same age group of wild-type animals. Replication in the hepatic population as determined by bromodeoxyuridine incorporation tended to support observation that mdr1a(-/-) mice exhibited elevated labeling indices in this age group. Moreover, histologic staining and flow-cytometric analysis showed that the mdr1a(-/-) animals exhibited a higher cell population with polyploidy than did the mdr1a(+/+) counterparts of the same age. However, no significant differences in the expression of the liver-injury markers serum alanine transaminase and aspartate transaminase were observed. Although our results showed that absence of mdr1a expression is correlated with modest enhanced proliferative characteristics in the livers at stage before the development of hepatocellular carcinoma, the overall life spans between these two strains of mice were not significantly different. The implication of these findings to the role of P-glycoprotein in tumor development and cancer chemotherapy is discussed.  相似文献   

20.
Doxorubicin cardiotoxicity is a multifactorial process in which the alcohol metabolite doxorubicinol mediates the transition from reversible to irreversible damage. We investigated whether the tubulin-active taxane paclitaxel increases conversion of doxorubicin to doxorubicinol, thus explaining the high incidence of congestive heart failure when doxorubicin is used with paclitaxel. Specimens of human myocardium from patients undergoing bypass surgery were processed to obtain cytosolic fractions in which doxorubicin was converted to doxorubicinol by NADPH-dependent aldo/keto or carbonyl reductases. In this model, clinically relevant concentrations of paclitaxel (1-2.5 microM) increased doxorubicinol formation by mechanisms consistent with allosteric modulation of the reductases. Stimulation was observed over a broad range of basal enzymatic activity, and was accompanied by a similar pattern of enhanced formation of doxorubicinol aglycone, a metabolite potentially involved in the reversible phase of cardiotoxicity. The closely related analogue docetaxel had effects similar to paclitaxel, but increased doxorubicinol formation over a narrower range of enzymatic activity. The unrelated tubulin-active alkaloid vinorelbine had no effect. These results demonstrate that taxanes have a unique potential for enhancing doxorubicin metabolism to toxic species in human myocardium. The effects on doxorubicinol formation provide clues to explain the clinical pattern of doxorubicin-paclitaxel cardiotoxicity and also caution against the potential toxicity of combining docetaxel with high cumulative doses of doxorubicin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号