首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate and compare the resistance to fracture of interim restorations obtained through additive techniques (3D impressions) and subtractive techniques (milling) using a computer-aided design and manufacture (CAD/CAM) system of a three-unit fixed dental prosthesis (FDP) to ascertain its clinical importance. (1) Materials and methods: In total, 40 samples were manufactured and divided into two groups (n = 20) using: (1) light-curing micro hybrid resin for temporary crowns and bridges (PriZma 3D Bio Prov, MarketechLabs, São Paulo, Brazil) for the rapid prototyping group (RP) and (2) a polymethylmethacrylate (PMMA) CAD/CAM disc (Vipiblock Trilux, VIPI, São Paulo, Brazil) for the computer-assisted milling (CC). The resistance to fracture was determined with a universal testing machine. (2) Results: The strength and the standard deviation for the computer-assisted milling group were higher (1663.57 ± 130.25 N) than the rapid prototyping (RP) group, which had lower values of (1437.74 ± 73.41 N). (3) Conclusions: The provisional restorations from the computer-assisted milling group showed a greater resistance to fracture than the provisional restorations obtained from the rapid prototyping group.  相似文献   

2.
The extracellular colorants produced by Chlorociboria aeruginosa, Scytalidium cuboideum, and Scytalidium ganodermophthorum, three commonly utilized spalting fungi, were tested against a standard woodworker’s aniline dye to determine if the fungal colorants could be utilized in an effort to find a naturally occurring replacement for the synthetic dye. Fungal colorants were delivered in two methods within a pressure treater—the first through solubilization of extracted colorants in dichloromethane, and the second via liquid culture consisting of water, malt, and the actively growing fungus. Visual external evaluation of the wood test blocks showed complete surface coloration of all wood species with all colorants, with the exception of the green colorant (xylindein) from C. aeruginosa in liquid culture, which did not produce a visible surface color change. The highest changes in external color came from noble fir, lodgepole pine, port orford cedar and sugar maple with aniline dye, cottonwood with the yellow colorant in liquid culture, lodgepole pine with the red colorant in liquid culture, red alder and Oregon maple with the green colorant in dichloromethane, and sugar maple and port orford cedar with the yellow colorant in dichloromethane. The aniline dye was superior to the fungal colorants in terms of internal coloration, although none of the tested compounds were able to completely visually color the inside of the test blocks.  相似文献   

3.
(computer-aided design-computer-aided manufacturing) CAD/CAM monolithic restorations connected to zirconia abutments manufactured with a chairside workflow are becoming a more common restorative option. However, their mechanical performance is still uncertain. The aim of this study was to evaluate the mechanical behavior of a combination of a zirconia abutment and monolithic all-ceramic zirconia and lithium disilicate crown manufactured with a chairside workflow, connected to titanium implants with two types of internal connection—tube in tube connection and conical connection with platform switching. They were thermally cycled from 5 °C to 55 °C and were subjected to a static and fatigue test following ISO 14801. The fractured specimens from the fatigue test were examined by SEM (scanning electron microscopy). Simulations of the stress distribution over the different parts of the restorative complex during the mechanical tests were evaluated by means of (finite element analysis) FEA. The mechanical performance of the zirconia abutment with an internal conical connection was higher than that of the tube in tube connection. Additionally, the use of disilicate or zirconia all-ceramic chairside CAD/CAM monolithic restorations has similar results in terms of mechanical fracture and fatigue resistance. Stress distribution affects the implant/restoration complex depending on the connection design. Zirconia abutments and monolithic restorations seem to be highly reliable in terms of mechanical resistance.  相似文献   

4.
The performance of dental resin-based composites (RBCs) heavily depends on the characteristic properties of the individual filler fraction. As specific information regarding the properties of the filler fraction is often missing, the current study aims to characterize the filler fractions of several contemporary computer-aided design/computer-aided manufacturing (CAD/CAM) RBCs from a material science point of view. The filler fractions of seven commercially available CAD/CAM RBCs featuring different translucency variants were analysed using Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), Micro-X-ray Computed Tomography (µXCT), Thermogravimetric Analysis (TG) and X-ray Diffractometry (XRD). All CAD/CAM RBCs investigated included midifill hybrid type filler fractions, and the size of the individual particles was clearly larger than the individual specifications of the manufacturer. The fillers in Shofu Block HC featured a sphericity of ≈0.8, while it was <0.7 in all other RBCs. All RBCs featured only X-ray amorphous phases. However, in Lava Ultimate, zircon crystals with low crystallinity were detected. In some CAD/CAM RBCs, inhomogeneities (X-ray opaque fillers or pores) with a size <80 µm were identified, but the effects were minor in relation to the total volume (<0.01 vol.%). The characteristic parameters of the filler fraction in RBCs are essential for the interpretation of the individual material’s mechanical and optical properties.  相似文献   

5.
Composite resins are considered the material of choice for esthetic direct restorations, considering both their satisfying esthetic and mechanical properties. The success of composite resin restorations depends highly on their color stability. Discoloration causes color mismatch, consequent patient dissatisfaction, and eventually additional costs for correction/replacement of the restoration. The purpose of this study was to evaluate the degree of pigment penetration within the composite resins, in order to understand how discoloration can be treated properly. Two different commercially available composite resins were compared in the study: a nano-filled composite resin and a non-homogeneous micro-hybrid composite resin. A coffee solution was used to induce staining of the materials. Subsequently, the penetration of the pigments was measured by analyzing the color from the outside to the inside of the specimen. 14 levels were analyzed starting from 0.1 mm to 3.0 mm in depth. The ANOVA test demonstrated a statistically significant difference (p < 0.0001) between test and control groups up to a depth of 1.0 mm for the nano-filled composite and up to a depth of 2.0 mm for the non-homogeneous micro-hybrid composite. The two composite resin materials, subjected to pigmenting treatment, underwent a color variation with different patterns.  相似文献   

6.
The purpose of this study was to evaluate the effect of one week of Computer-aided design/Computer-aided manufacturing (CAD/CAM) crown storage on the μTBS between resin cement and CAD/CAM resin composite blocks. The micro-tensile bond strength (μTBS) test groups were divided into 4 conditions. There are two types of CAD/CAM resin composite blocks, namely A block and P block (KATANA Avencia Block and KATANA Avencia P Block, Kuraray Noritake Dental, Tokyo, Japan) and two types of resin cements. Additionally, there are two curing methods (light cure and chemical cure) prior to the μTBS test—Immediate: cementation was performed immediately; Delay: cementation was conducted after one week of storage in air under laboratory conditions. The effect of Immediate and Delayed cementations were evaluated by a μTBS test, surface roughness measurements, light intensity measurements, water sorption measurements and Scanning electron microscope/Energy dispersive X-ray spectrometry (SEM/EDS) analysis. From the results of the μTBS test, we found that Delayed cementation showed significantly lower bond strength than that of Immediate cementation for both resin cements and both curing methods using A block. There was no significant difference between the two types of resin cements or two curing methods. Furthermore, water sorption of A block was significantly higher than that of P block. Within the limitations of this study, alumina air abrasion of CAD/CAM resin composite restorations should be performed immediately before bonding at the chairside to minimize the effect of humidity on bonding.  相似文献   

7.
(1) The CAD/CAM technique exploiting 3D printing is becoming more and more popular in dentistry. The resins are used in all the dental specialties, including conservative dentistry, prosthodontics, surgery, and orthodontics. The interest in investigating the different properties of dental materials has been an aim of researchers. The purpose of the presented study was to compare the properties of two 3D-printable dental resins (both rigid, used for medical purposes). (2) Methods: Ten blocks of two-type shapes were printed on a printer designed for medical use. The tensile modulus and compression were investigated and compared. The axial compression test was performed according to the PN-EN ISO 604:2003 norm, while the tensile test was performed according to the PN-En ISO 527-1-2019 (E) norm. In the first test, the sample size of the perpendicular shape was 10 ± 0.2 mm × 10 ± 0.2 mm × 4 ± 0.2 mm and in the second it was 75 mm, the end width 10 mm, and the thickness 2 mm. (3) Results: The statistical analysis based on ANOVA tests showed that all the obtained results were statistically significant. Both of the examined materials had similar properties and were resistant and stable in shape. The tensile modulus and compression tests performed on them gave similar results. They also showed high durability to compression and tensility. (4) Conclusions: Both of the examined materials were durable and rigid materials. BioMed Amber was more resistant to compression, while Dental LT clear was more resistant in the tensility test. Although both resins had similar physical properties, it is still disputable whether the chosen materials could be used interchangeably.  相似文献   

8.
Digital dentures can be fabricated by subtractive milling or, more recently, by 3D-printing technology. Several different 3D-printing technologies and materials are commercially available, and the differences in printing accuracy and mechanical behavior among them are unknown. Aim: This study evaluated the printing accuracy of 3D-printed denture base resins and assessed their flexural properties when compared with conventional heat-polymerized ones. Methods: A total of 40 acrylic specimens were prepared with four different materials: three 3D-printed resins, and a conventional heat polymerized resin was used as a control. The printing accuracy was evaluated by calculating the error rate of 3D-printed specimens compared with dimensions of the virtual design. Flexural strength and elastic modulus were assessed with a universal testing machine. One-way ANOVA and Kruskal–Wallis tests were used for analysis. Results: Printing accuracy across the tested materials was statistically different. Specimen length showed error rates between 1.3% and 2.4%, specimen width had error rates between 0.2% and 0.7%, and specimen thickness had error rates between 0.2% and 0.6%. Three-dimensional-printed specimens had lower flexural strength and elastic modulus values when compared with heat-polymerized specimens. Conclusions: The choice of material seems to influence printing accuracy, and to a lesser extent, flexural strength. However, it has no effect on the elastic modulus.  相似文献   

9.
The aim of this study was to compare the clinical properties of tooth-colored computer-aided design/computer-aided manufacturing (CAD/CAM) materials for the fabrication of a 3-unit fixed dental prostheses (FDPs) in the same clinical scenario. A 53-year-old female patient was supplied with a 3-unit FDP to replace a second premolar in the upper jaw. Restorations were fabricated from 3 mol%, 4 mol%, and 5 mol% yttrium oxide zirconia, zirconia with translucency gradient, indirect composite resin, polyetheretherketone (PEEK), and polyetherketoneketone (PEKK). Milling time, weight, and radiopacity were investigated. Esthetics were examined following the US Public Health Service criteria (USPHS). The milling time for zirconia was twice as high as for the indirect composite resin, PEEK, or PEKK. The latter materials had a weight of 2 g each, while zirconia restorations yielded 5 g. Zirconia presented intense radiopacity. PEEK and PEKK required veneering and an opaquer was applied to the PEKK framework. All FDPs showed acceptable esthetics. PEEK and PEKK restorations were featured by a grayish shimmering. A variety of CAD/CAM materials are available to fabricate 3-unit FDPs with esthetically acceptable results. In the esthetic zone, PEEK and PEKK require veneering and an opaquer might be applied. Milling time, weight, and radiopacity were relatively high for zirconia FDPs.  相似文献   

10.
Current intraoral scanners (IOS) enable direct impression taking for computer-aided de-sign/computer-aided manufacturing (CAD/CAM) posts and cores (P+C) with subsequent milling out of monolithic materials. The aim of this in vitro study was to systematically investigate the accuracy of CAD/CAM-P+C in a fully digital workflow, considering different IOS impression methods (Primescan (PRI), Trios4 without (TRI) and with scanpost (TRI+SP)) (Part A), and CAD/CAM milling of zirconium dioxid (ZIR) and resin composite (COM)-P+C (Part B). Five human models were developed in this study. Micro-CT imaging was used as a reference (REF). For Part A, the models were scanned 12 times for each impression method. Then, IOS datasets (n = 180) were superimposed with REF, and scan accuracy was determined using 3D software (GOMInspect). For Part B, one CAD/CAM-P+C (n = 30) was milled for each model, impression method, and material. The triple-scan method was applied using an industrial scanner (ATOS) to determine the accuracy of the fit. Statistical analysis was performed using analysis of variance (ANOVA, p < 0.05). Part A showed for PRI significantly lower accuracy than TRI and TRI+SP (p < 0.05). The data of Part B revealed significantly higher accuracy for ZIR than for COM (p < 0.05). Within the limitations of this study, CAD/CAM-P+C of the ZIR can be recommended for fabrication in a fully digital workflow regarding the accuracy of fit.  相似文献   

11.
The prevention of root fractures of pulpless teeth is an important clinical issue to maintain healthy teeth through lifetime. The aim of this study was to examine a clinically effective treatment method for strengthening vulnerable pulpless teeth using CAD/CAM (computer-aided design/computer-aided manufacturing) fiber-reinforced post-core by conducting a fracture resistance test. A post-core made with a fiber-reinforced resin disk TRINIA (TR, SHOFU, Kyoto, Japan) was fabricated using a CAD/CAM system. The fiber-layer orientation of the CAD/CAM post-core was parallel to the axis of the restored tooth. A post-core using a conventional composite and a fiber post (CF) was also prepared. A fracture resistance test of teeth restored with the post-cores and zirconia crowns was conducted using a universal testing machine, and fracture patterns were identified by micro-CT observation. The fracture load of the roots restored with TR was 1555.9 ± 231.8 N, whereas that of CF was 1082.1 ± 226.7 N. The fracture load of TR was 43.8% that was significantly higher than that of CF (Student’s t-test, p < 0.05). The restored teeth with CAD/CAM resin post-core were found to be repairable even after fracture. These results suggest that the CAD/CAM indirect fiber post-core has the potential to strengthen the vulnerable pulpless teeth.  相似文献   

12.
The fabrication of fixed dental prostheses using aesthetic materials has become routine in today’s dentistry. In the present study, three-unit full zirconia fixed prosthetic restorations obtained by computer-aided design/computer-aided manufacturing (CAD/CAM) technology were tested by bending trials. The prostheses were intended to replace the first mandibular left molar and were manufactured from four different types of zirconia bioceramics (KatanaTM Zirconia HTML and KatanaTM Zirconia STML/Kuraray Noritake Dental Inc.; NOVAZir® Fusion float® ml/NOVADENT/Dentaltechnik; and 3D PRO Zirconia/Bloomden Bioceramics). In total, sixteen samples were manufactured—four samples per zirconia material. Additionally, the morphology, grain size area distribution, and elemental composition were analyzed in parallelepiped samples made from the selected types of zirconia in three different areas, noted as the upper, middle, and lower areas. The scanning electron microscope (SEM) analysis highlighted that the grain size area varies with respect to the researched area and the type of material. Defects such as microcracks and pores were also noted to a smaller extent. In terms of grain size area, it was observed that most of the particles in all samples were under 0.5 μm2, while the chemical composition of the investigated materials did not vary significantly. The results obtained after performing the bending tests showed that a zirconia material with fewer structural defects and an increased percentage of grain size area under 0.5 µm2, ranging from ~44% in the upper area to ~74% in the lower area, exhibited enhanced mechanical behavior. Overall, the resulting values of all investigated parameters confirm that the tested materials are suitable for clinical use.  相似文献   

13.
Recent burgeoning development in material science has introduced a 3D-printable, nanohybrid composite resin restorative material. However, its performance has not yet been investigated. This study evaluates the stain susceptibility and efficacy of different stain removal techniques. A total of 120 labial veneers were fabricated using milling (n = 60) and SLA 3D-printing (n = 60). Based on the immersion media: coffee, tea and artificial saliva, each group was divided into three sub-groups (n = 20). Stain susceptibility was evaluated by calculating color difference (∆E00) at 12 and 24 days using a spectrophotometer against black and white backgrounds. Collected data were analyzed with ANOVA and Tukey’s post hoc test (p < 0.05). A significant interaction effect was found between the staining mediums and fabrication methods in both black and white backgrounds (p < 0.001). 3D-printed restorations showed significantly higher stain susceptibility than milled restorations (p < 0.001). Prolonged immersion time increased the color difference in both groups. In-office bleaching was more effective in stain removal in both 3D-printed and milled restoration groups. The susceptibility of the presented novel 3D-printed restorative material to color changes in different immersion mediums was clinically not-acceptable. The clinicians might expect the need to replace the restoration after 1–2 years and thus, recommendation for the use of such a material as a permanent restoration cannot be made but rather as a long-term temporary restoration.  相似文献   

14.
Purpose: This study aims to evaluate the effectiveness of two ceramic and two composite polishing systems for a novel chairside computer-aided design/computer-aided manufacturing (CAD/CAM) lithium disilicate ceramic with three-dimensional and two-dimensional microscopy images. This ceramic material can be used for implant-supported or tooth-borne single-unit prostheses. Materials and Methods: Sixty flat samples of novel chairside CAD/CAM reinforced lithium disilicate ceramic (Amber Mill, Hass Bio) were divided into five groups (n = 15/group) and treated as follows: Group 1 (NoP), no polished treatment; group 2 (CeDi), polished with ceramic Dialite LD (Brasseler USA); group 3, (CeOp) polished with ceramic OptraFine (Ivoclar Vivadent); group 4, (CoDi) polished with composite DiaComp (Brasseler USA), and group 5 (CoAs), polished with composite Astropol (Ivoclar Vivadent). The polished ceramic surface topography was observed and measured with three-dimensional and two-dimensional images. Results: All polishing systems significantly reduced the surface roughness compared with the non-polished control group (Sa 1.15 μm). Group 2 (CeDi) provided the smoothest surface arithmetical mean eight with 0.32 μm, followed by group 3 (CeOp) with 0.34 μm. Group 5 (CoAs) with 0.52 μm provided the smoothest surface among the composite polishing kits. Group 4 (CoDi) with 0.66 μm provided the least smooth surface among all polishing systems tested. Conclusions: Despite the effectiveness of ceramic polishing systems being superior to composite polishing systems of the CAD/CAM lithium disilicate restorative material, both polishing systems significantly improved the smoothness.  相似文献   

15.
To investigate the antibacterial functionality of natural colorant extracts, five kinds of natural dying aqueous solutions were obtained by extraction from peony, pomegranate, clove, Coptis chinensis and gallnut using water at 90 °C for 90 min with a liquor ratio (solid natural colorant material/water, weight ratio) of 1:10. The colorimetric assay and antibacterial activity of cotton, silk, and wool fabrics dyed with these natural colorant extracts were examined. It was found that these properties were significantly dependent on the structure of colorant and the kind of fabrics. The hues (H) of all fabrics dyed with these natural colorants were in the range of 6.05YR -1.95Y. The order of value (V) was wool, silk and cotton. The chroma (C) of all samples was found to be at very low levels indicating the natural tone. All the fabrics dyed with the five natural colorants (peony, pomegranate, clove, Coptis chinensis and gallnut) extracts displayed excellent antibacterial activity (reduction rate: 96.8 - 99.9%) against Staphylococcus aureus. However, in the case of Klebsiella pneumoniae, the antibacterial activity was found to depend on the kind of natural colorant extract used.  相似文献   

16.
With the advent of 3D printing technologies in dentistry, the optimization of printing conditions has been of great interest, so this study analyzed the accuracy of 3D-printed temporary restorations of different sizes produced by digital light processing (DLP) and liquid crystal display (LCD) printers. Temporary restorations of 2-unit, 3-unit, 5-unit, 6-unit, and full-arch cases were designed and printed from a DLP printer using NextDent C&B or an LCD printer using Mazic D Temp (n = 10 each). The restorations were scanned, and each restoration standard tessellation language (STL) file was superimposed on the reference STL file, by the alignment functions, to evaluate the trueness through whole/point deviation. In the whole-deviation analysis, the root-mean-square (RMS) values were significantly higher in the 6-unit and full-arch cases for the DLP printer and in the 5-unit, 6-unit, and full-arch cases for the LCD printer. The significant difference between DLP and LCD printers was found in the 5-unit and full-arch cases, where the DLP printer exhibited lower RMS values. Color mapping demonstrated less shrinkage in the DLP printer. In the point deviation analysis, a significant difference in direction was exhibited in all the restorations from the DLP printer but only in some cases from the LCD printer. Within the limitations of this study, 3D printing was most accurate with less deviation and shrinkage when a DLP printer was used for short-unit restorations.  相似文献   

17.
CAD/CAM technology is gaining popularity and replacing archaic conventional procedures for fabricating dentures. CAD/CAM supports using a digital workflow reduce the number of visits, chair time, and laboratory time, making it attractive to patients. This study aimed to provide a comparative review of complete dentures manufactured using CAD/CAM and conventional methods. The PubMed/Medline, Science Direct, Cochrane, and Google Scholar databases were searched for studies published in English within the last 11 years (from 2011 to 2021). The keywords used were “computer-engineered complete dentures”, “CAD/CAM complete dentures”, “computer-aided engineering complete dentures”, and “digital complete dentures”. The search yielded 102 articles. Eighteen relevant articles were included in this review. Overall, computer-engineered complete dentures have several advantages over conventional dentures. Patients reported greater satisfaction with computer-engineered complete dentures (CECDs) due to better fit, reduced chair time, shorter appointments, and fewer post-insertion visits. CAD/CAM allows for precision and reproducibility with fewer procedures compared to conventional dentures. Polymethyl methacrylate is used as the denture base material for conventional dentures. For CECDs, the resin can be modified and cross-linked to improve its mechanical properties. The advantages of CECDs include a reduced number of appointments, saving chairside time, a digital workflow allowing easy reproducibility and greater patient satisfaction with a better fit.  相似文献   

18.
The presence of additive manufacturing, especially 3D printing, has the potential to revolutionize pharmaceutical manufacturing owing to the distinctive capabilities of personalized pharmaceutical manufacturing. This study’s aim was to examine the behavior of commonly used polyvinyl alcohol (PVA) under in vitro dissolution conditions. Polylactic acid (PLA) was also used as a comparator. The carriers were designed and fabricated using computer-aided design (CAD). After printing the containers, the behavior of PVA under in vitro simulated biorelevant conditions was monitored by gravimetry and dynamic light scattering (DLS) methods. The results show that in all the dissolution media PVA carriers were dissolved; the particle size was under 300 nm. However, the dissolution rate was different in various dissolution media. In addition to studying the PVA, as drug delivery carriers, the kinetics of drug release were investigated. These dissolution test results accompanied with UV spectrophotometry tracking indirectly determine the possibilities for modifying the output of quality by computer design.  相似文献   

19.
The computer-aided design/computer-aided manufacturing (CAD/CAM) fabrication technique has become one of the hottest topics in the dental field. This technology can be applied to fixed partial dentures, removable dentures, and implant prostheses. This study aimed to evaluate the feasibility of NaCaPO4-blended zirconia as a new CAD/CAM material. Eleven different proportional samples of zirconia and NaCaPO4 (xZyN) were prepared and characterized by X-ray diffractometry (XRD) and Vickers microhardness, and the milling property of these new samples was tested via a digital optical microscope. After calcination at 950 °C for 4 h, XRD results showed that the intensity of tetragonal ZrO2 gradually decreased with an increase in the content of NaCaPO4. Furthermore, with the increase in NaCaPO4 content, the sintering became more obvious, which improved the densification of the sintered body and reduced its porosity. Specimens went through milling by a computer numerical control (CNC) machine, and the marginal integrity revealed that being sintered at 1350 °C was better than being sintered at 950 °C. Moreover, 7Z3N showed better marginal fit than that of 6Z4N among thirty-six samples when sintered at 1350 °C (p < 0.05). The milling test results revealed that 7Z3N could be a new CAD/CAM material for dental restoration use in the future.  相似文献   

20.
Polymer infiltrated ceramic network (PICN) composites are an increasingly popular dental restorative material that offer mechanical biocompatibility with human enamel. This study aimed to develop a novel PICN composite as a computer-aided design and computer-aided manufacturing (CAD/CAM) block for dental applications. Several PICN composites were prepared under varying conditions via the sintering of a green body prepared from a silica-containing precursor solution, followed by resin infiltration. The flexural strength of the PICN composite block (107.8–153.7 MPa) was similar to a commercial resin-based composite, while the Vickers hardness (204.8–299.2) and flexural modulus (13.0–22.2 GPa) were similar to human enamel and dentin, respectively. The shear bond strength and surface free energy of the composite were higher than those of the commercial resin composites. Scanning electron microscopy and energy dispersive X-ray spectroscopic analysis revealed that the microstructure of the composite consisted of a nanosized silica skeleton and infiltrated resin. The PICN nanocomposite block was successfully used to fabricate a dental crown and core via the CAD/CAM milling process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号