首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary This paper presents electron microscopy, supported by optical diffraction and filtering of images from 100 nm and 25 nm sections, to complement the companion report of X-ray diffraction monitoring (immediately preceding this article) performed on the same insect flight muscle specimens during fixation, dehydration and embedding. GlycerinatedLethocerus fibre bundles initially fixed in rigor, in ATP relaxing buffer, or in 1mM AMPPNP at 2° C, gave thin-section images from each state whose optical transforms match the distinctive X-ray diffraction patterns from the embedded samples. For rigor and relaxed states, this extends and confirms a long-known correlation between X-ray patterns and EM image regularities. For the AMPPNP state, such correlation is here fully developed for the first time, and involves a new and distinctive EM image pattern of the crossbridge array, clearly different from a previously reported structure in AMPPNP-treated muscles that appears identical to fixed relaxed muscle. We found this latter artifact of AMPPNP-relaxed structure in many fibres from our best AMPPNP specimen, but could identify other fibres which retained the distinctive AMPPNP structure, known to be dominant in this specimen from the X-ray pattern. The true AMPPNP structure shows features of both the ATP-relaxed and rigor crossbridge patterns, not as separate patches, but hybridized uniformly along each filament and throughout each affected sarcomere and fibre. It presents a 14.5 nm repeat of striping and lateral projections along thick filaments, together with variously angled crossbridge attachments to actin that form a 38.7 nm repeat of diffuse chevrons or deltoids replacing the more clearly delinated rigor double chevrons. The associated optical transform has the typical AMPPNP features, that is, it has in common with rigor a strong 19.3 nm layer line and strong second to fourth row line sampling on the 38.7 nm layer line, it has in common with relaxed patterns a strong 14.5 nm meridional and layer line, but it uniquely shows no intensity at the first row line on the 38.7 nm layer line (the 10.3 X-ray reflection), where rigor and relaxed transforms always show high intensity. The processing artifacts which intensify the 10.3 reflection, and produce the weak 19.3 nm layer line (a gain of intensity for ATP but a loss for the AMPPNP state), throughout ATP specimens and in those analogue-treated fibres showing AMPPNP-relaxed structure, might indicate trapping and accumulation of minority populations within the native equilibrium distribution of crossbridge conformations in each nucleotide state.  相似文献   

3.
Previously it was shown that when troponin-C (TnC) is extracted from barnacle myofibrillar bundles they lose their Ca2+ sensitivity, which can be restored by adding back barnacle TnC (either isoform, BTnC1 or BTnC2). Thus barnacle muscle shows thin filament regulation, as does rabbit psoas skeletal muscle. In this paper we comp are the interactions of barnacle and rabbit fast muscle TnC in their respective muscles. We demonstrate that muscle fibres from the giant barnacle, Balanus nubilus, contain about 186 μm kg−1 muscle tissue of BTnC1 plus BTnC2 compared to about 91 μm kg−1 of TnC in rabbit psoas muscle fibres. Extraction of BTnC is achieved using similar low ionic strength, low divalent ion Ca2+-low Mg2+ conditions which are required for TnC extraction in rabbit psoas skinned muscle fibres; extraction was prevented by 1 mm Mg2+. Full reconstitution of Ca2+-sensitivity was achieved by adding back BTnC (1 + 2, or 2). Reconstitution of barnacle muscle with rabbit fast skeletal TnC (RTnC) was more complex, with partial recovery of Ca2+-sensitivity with reconstitution in the presence of 3 mm Mg2+ and more fully with reconstitution in the presence of activating Ca2+ (pCa 4.0). This suggests that the barnacle TnC-TnI (troponin I) recognition sites may be more complex than in rabbit because the barnacle sites appear to have at least two different conformations or types, in which one recognizes RTnC in the presence of Mg2+ and the other only in the presence of Ca2+ and Mg2+. This is consistent with the presence of several TnI isoforms in barnacle striated myofibrils. RTnC has two C-terminal Ca2+-Mg2+ binding sites that are thought to be involved in the Mg2+-sensitive binding of RTnC in rabbit muscle, yet it has been suggested that this site in barnacle muscle does not bind Mg2+, even though Mg2+ stabilizes BTnC binding in barnacle muscle. Consistent with this stabilizing action of Mg2+, using fluorescent probes IAANS or IAE on isolated BTnC2 we demonstrate that BTnC2 binds both Ca2+ and Mg2+, but the data do not suggest direct competition. Consistent with the C-terminal sites on BTnC being Ca2+-specific, BTnC1+2 could only reconstitute low levels of force (about 1/3) in TnC-extracted rabbit skinned muscle fibers in the presence of pCa 4.0 (not just Mg2+) and only at low ionic strengths (0.09 m). Ca2+-activation of contraction was further examined using fluorescently labelled BTnC2 (labelled with IANBD) incorporated into skinned barnacle myofibrillar bundles. Maximal Ca2+ binding produced structural changes in BTnC which resulted in a 45% decrease in the fluorescence compared to the value at pCa 9.2. The magnitude of the fluoresence decrease paralleled the increase in force with increas ing Ca2+. The Hill fits to the data gave pCa1/2 and n of 5.61 ± 0.02 and 2.06 ± 0.12 for force, and 5.52 ± 0.02 and 1.88 ± 0.10 for fluoresence. Removing MgATP to induce rigor in the fibre decreased BTnC2-NBD fluorescence only about 11%, but the addition of Ca2+ in rigor further decreased the fluorescence to a slightly larger extent than under maximal Ca2+ activating conditions. These fluorescence changes are qualitatively similar to the fluorescence enhancement seen with Ca2+-activation and rigor with RTnCDanz exchanged into rabbit psoas skinned muscle fibres. The data support a similar model for Ca2+-activation of force in barnacle muscle and in rabbit psoas skeletal muscle fibres This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
5.
Evidence suggests that ryanodien affects ligandgated calcium channels in the sarcoplasmic reticulum (SR) resulting in depressed muscle contraction. In skinned fibers from striated muscle the effects of ryanodine were examined (1) on Ca2+ uptake and on Ca2+ release to differentiate whether the effects are on the pump or channel, and (2) during the tension transient, with ryanodine exposure at various times either simultaneous with or directly after exposure to caffeine. Of total calcium content in the SR, 25 mM caffeine released>90% in papillary muscle (PM), 25% in soleus (SL), and 20% in adductor magnus (AM). Ryanodine (100 M for 1–3 s for AM and SL; 1 M for 7–10 s for PM), in the initial loading phase, did not significantly change, and in the initial release phase, markedly depressed the subsequent control caffeine-induced tension transients (C2) in all three muscle types. The depression increased with increasing time of exposure to ryanodine (10 M) in the order of PM>AM>SL. Upon introduction of ryanodine after caffeine-induced tension transients, maximal depression was observed at half-maximum rise of the tension transient, followed by recovery of depression to completion in SL, and only partially in AM and PM at steady state of relaxation. The extent of recovery was in the order of SL>AM>PM. The data suggest that ryanodine affects Ca2+ releasing channel as a result of its binding to open channels.  相似文献   

6.
Summary Glycerinated insect (Lethocerus) flight muscle in the presence of the non-hydrolysable ATP-analogue AMPPNP (1 mm at 4° C) has been prepared for electron microscopy using X-ray diffraction monitoring during fixation and embedding. Superior preservation of the original structure has been achieved through use of a fixative which included tannic acid and excess Mg2+. New features have been recognized in single filament layers (myac and actin) and 15 nm cross sections. As previously shown, some aspects of relaxed structure (14.5 nm shelves along thick filaments) and of rigor (38.7 nm angled bridges along thin filaments) are retained in a modified form. New observations include: (1) In 15 nm cross sections that show single 14.5 nm levels: (a) The flared X structure characteristic of rigor is replaced by a straight-X figure in which the crossbridge density is aligned along the myosin-actin plane, rather than skewed across it as in rigor, (b) In AMPPNP, each crossbridge appears to have a separate origin from the thick filament, rather than bifurcating two from one stem as in the flared X of rigor. The separation of crossbridge origins is also evidenced by the loss of ladder rungs in actin layers. (2) A halving (19.3 nm) of the 38.7 nm axial repeat along actin, rather than a thirding (12.9 nm) as in rigor, indicates redistribution of bridge attachments in cold AMPPNP. (3) In AMPPNP, the 14.5 nm shelves of density around the thick filament shaft are thicker but extend to smaller radius than similar shelves in ATP-relaxed muscle. This is shown by a lack of 14.5 nm periodicity and diffraction in actin layers of AMPPNP, in contrast to ATP-relaxed actin layers, in which the 14.5 nm period is present. Our results suggest that attached crossbridges are modified by AMPPNP and that ordered features of the analogue state are not accounted for solely by detached myosin heads or by a mixture of relaxed and rigor crossbridges. A two-domain model for the crossbridge is proposed. Domain 1 binds to the thin filament, and while bound, maintains a constant stereospecificity to actin at low resolution, independent of the type or presence of nucleotide at the myosin active site. Domain 2 is proximal to the thick filament and can exist in two characteristic states. In the absence of nucleotide (rigor), Domain 2 adopts a variable relationship to the thick filament, to accommodate the actin-bound end of the bridge. When ATP or AMPPNP are bound, in both attached and detached myosin heads, Domain 2 adopts a fixed disposition with respect to the thick filaments, its origin specified both longitudinally and azimuthally, while allowing a variable relationship to Domain 1 (nearest to actin). In AMPPNP, a variable relationship between the domains in attached crossbridges is required in order to connect the invariant 14.5 nm myosin origins to the 38.7nm actin target zones.  相似文献   

7.
8.
Actomyosin interaction in striated muscle   总被引:13,自引:0,他引:13  
Cooke  R. 《Physiological reviews》1997,77(3):671-697
  相似文献   

9.
An historical perspective of the phosphorylation of tropomyosin is provided. The effects of this covalent modification on the properties of striated muscle tropomyosin are summarised. Technical hurdles and findings in other systems are also discussed.  相似文献   

10.
Regulation of contraction in striated muscle   总被引:37,自引:0,他引:37  
Ca(2+) regulation of contraction in vertebrate striated muscle is exerted primarily through effects on the thin filament, which regulate strong cross-bridge binding to actin. Structural and biochemical studies suggest that the position of tropomyosin (Tm) and troponin (Tn) on the thin filament determines the interaction of myosin with the binding sites on actin. These binding sites can be characterized as blocked (unable to bind to cross bridges), closed (able to weakly bind cross bridges), or open (able to bind cross bridges so that they subsequently isomerize to become strongly bound and release ATP hydrolysis products). Flexibility of the Tm may allow variability in actin (A) affinity for myosin along the thin filament other than through a single 7 actin:1 tropomyosin:1 troponin (A(7)TmTn) regulatory unit. Tm position on the actin filament is regulated by the occupancy of NH-terminal Ca(2+) binding sites on TnC, conformational changes resulting from Ca(2+) binding, and changes in the interactions among Tn, Tm, and actin and as well as by strong S1 binding to actin. Ca(2+) binding to TnC enhances TnC-TnI interaction, weakens TnI attachment to its binding sites on 1-2 actins of the regulatory unit, increases Tm movement over the actin surface, and exposes myosin-binding sites on actin previously blocked by Tm. Adjacent Tm are coupled in their overlap regions where Tm movement is also controlled by interactions with TnT. TnT also interacts with TnC-TnI in a Ca(2+)-dependent manner. All these interactions may vary with the different protein isoforms. The movement of Tm over the actin surface increases the "open" probability of myosin binding sites on actins so that some are in the open configuration available for myosin binding and cross-bridge isomerization to strong binding, force-producing states. In skeletal muscle, strong binding of cycling cross bridges promotes additional Tm movement. This movement effectively stabilizes Tm in the open position and allows cooperative activation of additional actins in that and possibly neighboring A(7)TmTn regulatory units. The structural and biochemical findings support the physiological observations of steady-state and transient mechanical behavior. Physiological studies suggest the following. 1) Ca(2+) binding to Tn/Tm exposes sites on actin to which myosin can bind. 2) Ca(2+) regulates the strong binding of M.ADP.P(i) to actin, which precedes the production of force (and/or shortening) and release of hydrolysis products. 3) The initial rate of force development depends mostly on the extent of Ca(2+) activation of the thin filament and myosin kinetic properties but depends little on the initial force level. 4) A small number of strongly attached cross bridges within an A(7)TmTn regulatory unit can activate the actins in one unit and perhaps those in neighboring units. This results in additional myosin binding and isomerization to strongly bound states and force production. 5) The rates of the product release steps per se (as indicated by the unloaded shortening velocity) early in shortening are largely independent of the extent of thin filament activation ([Ca(2+)]) beyond a given baseline level. However, with a greater extent of shortening, the rates depend on the activation level. 6) The cooperativity between neighboring regulatory units contributes to the activation by strong cross bridges of steady-state force but does not affect the rate of force development. 7) Strongly attached, cycling cross bridges can delay relaxation in skeletal muscle in a cooperative manner. 8) Strongly attached and cycling cross bridges can enhance Ca(2+) binding to cardiac TnC, but influence skeletal TnC to a lesser extent. 9) Different Tn subunit isoforms can modulate the cross-bridge detachment rate as shown by studies with mutant regulatory proteins in myotubes and in in vitro motility assays. (ABSTRACT TRUNCATED)  相似文献   

11.
Obliquely striated muscle.   总被引:1,自引:0,他引:1  
  相似文献   

12.
13.
Three benign forms of muscle tumors and three variants of rhabdomyosarcoma are discussed from the point of view of their histology and behabior. Recent combined modality therapy has significantly improved the prognosis in at least the embryonal form of rhabdomyosarcoma.  相似文献   

14.
Synchrotron radiation was used for low-angle X-ray diffraction to monitor structural changes produced in insect flight muscle during fixation, dehydration and embedding for electron microscopy of thin sections. Fibre bundles were fixed by cold glutaraldehyde in one of three states, namely rigor, ATP or AMPPNP, followed by additional cross-linking treatment. No heavy metals were used before embedding. During fixation-embedding, all specimens lost the continuous actin layer lines of spacing 11-5 nm, shrank 18-21% in lattice spacing, shrank 0.5-2.5% in axial spacings and showed equatorial intensity changes which were similar for all three states, while the well-sampled inner layer lines (39-13 nm) were preserved with different fidelity in each state, highest for rigor and lowest for ATP. In different AMPPNP bundles, these layer lines indicated different degrees of unexplained shift (from slight to total) towards the structure of muscle fixed in ATP. Fixation in ATP caused obvious gain of intensity on 39, 19 and 13 nm layer lines, which can be interpreted as trapping of myosin crossbridge attachments to actin; this artifact was unchanged by seven variations in fixation conditions. Fixation in rigor gave no indication of crossbridge detachment nor of the presence or alteration of any significant population of non-bridging myosin heads. X-ray monitoring allowed selection of best-preserved samples for subsequent electron microscopy. The rapid pattern-recording possible with synchrotron X-ray intensity allowed us to complete and compare experiments with many fibre bundles from a single glycerinated Lethocerus muscle.  相似文献   

15.
Summary Small length changes were imposed on pairs of sartorius muscles fromRana temporaria andRana pipiens in rigor and the mechanical and thermal responses studied. Rigor was induced by soaking the muscles overnight at 0° C in a physiological salt solution containing 1.5m sodium azide and 0.4m sodium iodoacetate. Tension was measured at both the tibial and the pelvic ends of the preparation. Muscles were held at a steady tension of 20 to 76 kN m–2 and stretches or releases of 0.02 to 0.6 mm applied in pairs, with the initial change reversed several hundred milliseconds later.Single stretches resulted in heat absorption and releases in heat production by the preparation. Net heat production resulted from complete cycles of length changes larger than 0.1 mm, whether the initial change was a stretch or a release. The heat produced by the complete cycle was attributed to the movement of the muscles over the thermopile. It was proportional to the difference in tension between the tibial and pelvic ends of the preparation and increased with the size and speed of the length change. Half the heat produced by a complete cycle of length changes was subtracted from the thermal response recorded in the first half-cycle to obtain the reversible component of the response. The reversible component was linearly related to the tension change for all sizes and speeds of length change which were studied, with the heat:tension ratio ranging from –0.0093 to –0.0179 in eleven muscles (mean –0.0128 ± 0.0009).The constancy of the heat:tension ratio in rigor muscles over a wide range of mechanical conditions indicates that the source of the thermal changes is the normal elasticity of the preparation. Since the size of the ratio is approximately the same as that measured in active muscles, the tension-dependent component of the thermal response to length changes applied to active muscles is probably also of elastic origin.  相似文献   

16.
Local activation of striated muscle fibres   总被引:80,自引:13,他引:67       下载免费PDF全文
  相似文献   

17.
Striated muscle is a tissue in which the major cytoplasmic components are spatially arranged to produce directional motion. This orientation is seen at all levels of structure, beginning with the molecular placement of characteristic proteins into 2 dissimilar types of filaments, and proceeding ultimately to the alignment of muscle fibers in the heart or an anatomically defined skeletal muscle. Generation of contractile force is accomplished by the enzymatic interaction of the 2 dissimilar protein filaments, which results ultimately in the utilization of energy (in the form of adenosine triphosphate) and the production of directional motion.  相似文献   

18.
Changes in elasticity of mammalian muscle undergoing rigor mortis   总被引:1,自引:0,他引:1  
  相似文献   

19.
Voltage clamp experiments in striated muscle fibres   总被引:48,自引:12,他引:36  
1. Membrane currents during step depolarizations were determined by a method in which three electrodes were inserted near the end of a fibre in the frog's sartorius muscle. The theoretical basis and limitations of the method are discussed.2. Measurements of the membrane capacity (C(M)) and resting resistance (R(M)) derived from the current during a step change in membrane potential are consistent with values found by other methods.3. In fibres made mechanically inactive with hypertonic solutions (Ringer solution plus 350 mM sucrose) step depolarizations produced ionic currents which resembled those of nerve in showing (a) an early transient inward current, abolished by tetrodotoxin, which reversed when the depolarization was carried beyond an internal potential of about +20 mV, (b) a delayed outward current, with a linear instantaneous current-voltage relation, and a mean equilibrium potential with a normal potassium concentration (2.5 mM) of -85 mV.4. The reversal potential for the early current appears to be consistent with the sodium equilibrium potential expected in hypertonic solutions.5. The variation of the equilibrium potential for the delayed current (V'(K)) with external potassium concentration suggests that the channel for delayed current has a ratio of potassium to sodium permeability of 30:1; this is less than the resting membrane where the ratio appears to be 100:1. V'(K) corresponds well with the membrane potential at the beginning of the negative after-potential observed under similar conditions.6. The variation of V'(K) with the amount of current which has passed through the delayed channel suggests that potassium ions accumulate in a space of between (1/3) and (1/6) of the fibre volume. If potassium accumulates in the transverse tubular system (T system) much greater variation in V'(K) would be expected.7. The delayed current is not maintained but is inactivated like the early current. The inactivation is approximately exponential with a time constant of 0.5 to 1 sec at 20 degrees C. The steady-state inactivation of the potassium current is similar to that for the sodium current, but its voltage dependence is less steep and the potential for half inactivation is 20 mV rate more positive.8. Reconstructions of ionic currents were made in terms of the parameters (m, n, h) of the Hodgkin-Huxley model for the squid axon, using constants which showed a similar dependence on voltage.9. Propagated action potentials and conduction velocities were computed for various conditions on the assumption that the T system behaves as if it were a series resistance and capacity in parallel with surface capacity and the channels for sodium, potassium and leak current. There was reasonable agreement with observed values, the main difference being that the calculated velocities and rates of rise were somewhat less than those observed experimentally.  相似文献   

20.
Activation of the contractile mechanism in striated muscle   总被引:12,自引:0,他引:12  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号