首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.  相似文献   

2.
3.
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. In most cases, the open-reading frame is disrupted which results in the absence of functional protein. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD and has recently been shown to correct the reading frame and restore dystrophin expression in vitro and in vivo. Specific exon skipping can be achieved using synthetic oligonucleotides or viral vectors encoding modified small nuclear RNAs (snRNAs), by masking important splicing sites. In this study, we demonstrate that enhanced exon skipping can be induced by a U7 snRNA carrying binding sites for the heterogeneous ribonucleoprotein A1 (hnRNPA1). In DMD patient cells, bifunctional U7 snRNAs harboring silencer motifs induce complete skipping of exon 51, and thus restore dystrophin expression to near wild-type levels. Furthermore, we show the efficacy of these constructs in vivo in transgenic mice carrying the entire human DMD locus after intramuscular injection of adeno-associated virus (AAV) vectors encoding the bifunctional U7 snRNA. These new constructs are very promising for the optimization of therapeutic exon skipping for DMD, but also offer powerful and versatile tools to modulate pre-mRNA splicing in a wide range of applications.  相似文献   

4.
5.
Antisense-induced exon skipping can restore the open reading frame, and thus correct the dystrophin deficiency that causes Duchenne muscular dystrophy (DMD), a lethal muscle wasting condition. Successful proof-of-principle in preclinical models has led to human clinical trials. However, it is still not known what percentage of dystrophin-positive fibers and what level of expression is necessary for functional improvement. This study directly address these key questions in the mdx mouse model of DMD. To achieve a significant variation in dystrophin expression, we locally administered into tibialis anterior muscles various doses of a phosphorodiamidate morpholino oligomer (PMO) designed to skip the mutated exon 23 from the mRNA of murine dystrophin. We found a highly significant correlation between the number of dystrophin-positive fibers and resistance to contraction-induced injury, with a minimum of 20% of dystrophin-positive fibers required for meaningful improvement. Furthermore, our results also indicate that a relatively low level of dystrophin expression in muscle fibers may have significant clinical benefits. In contrast, improvements in muscle force were not correlated with either the number of positive fibers or total dystrophin levels, which highlight the need to conduct appropriate functional assessments in preclinical testing using the mdx mouse.  相似文献   

6.
A promising therapeutic approach for Duchenne muscular dystrophy (DMD) is exon skipping using antisense oligonucleotides (AOs). In-frame deletions of the hinge 3 region of the dystrophin protein, which is encoded by exons 50 and 51, are predicted to cause a variety of phenotypes. Here, we performed functional analyses of muscle in the exon 52–deleted mdx (mdx52) mouse, to predict the function of in-frame dystrophin following exon 51-skipping, which leads to a protein lacking most of hinge 3. A series of AOs based on phosphorodiamidate morpholino oligomers was screened by intramuscular injection into mdx52 mice. The highest splicing efficiency was generated by a two-oligonucleotide cocktail targeting both the 5′ and 3′ splice sites of exon 51. After a dose-escalation study, we systemically delivered this cocktail into mdx52 mice seven times at weekly intervals. This induced 20–30% of wild-type (WT) dystrophin expression levels in all muscles, and was accompanied by amelioration of the dystrophic pathology and improvement of skeletal muscle function. Because the structure of the restored in-frame dystrophin resembles human dystrophin following exon 51-skipping, our results are encouraging for the ongoing clinical trials for DMD. Moreover, the therapeutic dose required can provide a suggestion of the theoretical equivalent dose for humans.  相似文献   

7.
8.
Dystrophin, the cytoskeletal protein whose defect is responsible for Duchenne muscular dystrophy (DMD), is normally expressed in both muscles and brain. Genetic loss of brain dystrophin in the mdx mouse model of DMD reduces the capacity for type A γ-aminobutyric acid (GABAA)-receptor clustering in central inhibitory synapses, which is thought to be a main molecular defect leading to brain and cognitive alterations in this syndrome. U7 small nuclear RNAs modified to encode antisense sequences and expressed from recombinant adeno-associated viral (rAAV) vectors have proven efficient after intramuscular injection to induce skipping of the mutated exon 23 and rescue expression of a functional dystrophin-like product in muscle tissues of mdx mice in vivo. Here, we report that intrahippocampal injection of a single dose of rAAV2/1-U7 can rescue substantial levels of brain dystrophin expression (15–25%) in mdx mice for months. This is sufficient to completely restore GABAA-receptor clustering in pyramidal and dendritic layers of CA1 hippocampus, suggesting exon-skipping strategies offer the prospect to investigate and correct both brain and muscle alterations in DMD. This provides new evidence that in the adult brain dystrophin is critical for the control of GABAA-receptor clustering, which may have an important role in activity-dependent synaptic plasticity in hippocampal circuits.  相似文献   

9.
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon-skipping is one of the most promising approaches for the treatment of DMD because of its capacity to correct the reading frame and restore dystrophin expression, which has been demonstrated in vitro and in vivo. In particular, peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) have recently been shown to induce widespread high levels of dystrophin expression in the mdx mouse model. Here, we report the efficiency of the PPMO-mediated exon-skipping approach in the utrophin/dystrophin double-knockout mouse (dKO) mouse, which is a much more severe and progressive mouse model of DMD. Repeated intraperitoneal (i.p.) injections of a PPMO targeted to exon 23 of dystrophin pre-mRNA in dKO mice induce a near-normal level of dystrophin expression in all muscles examined, except for the cardiac muscle, resulting in a considerable improvement of their muscle function and dystrophic pathology. These findings suggest great potential for PPMOs in systemic treatment of the DMD phenotype.  相似文献   

10.
11.
Duchenne muscular dystrophy (DMD), one of the most severe neuromuscular disorders of childhood, is caused by the absence of a functional dystrophin. Antisense oligomer (AO) induced exon skipping is being investigated to restore functional dystrophin expression in models of muscular dystrophy and DMD patients. One of the major challenges will be in the development of clinically relevant oligomers and exon skipping strategies to address many different mutations. Various models, including cell-free extracts, cells transfected with artificial constructs, or mice with a human transgene, have been proposed as tools to facilitate oligomer design. Despite strong sequence homology between the human and mouse dystrophin genes, directing an oligomer to the same motifs in both species does not always induce comparable exon skipping. We report substantially different levels of exon skipping induced in normal and dystrophic human myogenic cell lines and propose that animal models or artificial assay systems useful in initial studies may be of limited relevance in designing the most efficient compounds to induce targeted skipping of human dystrophin exons for therapeutic outcomes.  相似文献   

12.
13.
Duchenne muscular dystrophy (DMD) is caused by out-of-frame mutations of the human DMD gene. Antisense oligonucleotides (AOs) have previously been used to skip additional exons that border the deletions such that the reading frame is restored and internally truncated, but functional, dystrophin expressed. We have designed phosphorodiamidate morpholino oligomer (PMO) AOs to various exons of the human dystrophin gene. PMOs were designed to have their target sites overlapping areas of open RNA structure, as defined by hybridization-array analysis, and likely exonic splicing enhancer (ESE)/silencer sites on the target RNA. The ability of each PMO to produce exon skipping was tested in vitro in normal human skeletal muscle cells. Retrospective analysis of design parameters used and PMO variables revealed that active PMOs were longer, bound to their targets more strongly, had their target sites closer to the acceptor splice site of the exon, overlapped areas of open conformation (as defined by the hybridization or the RNA secondary structure prediction software), and could interfere with the binding of certain SR proteins. No other parameter appeared to show significant association to PMO-skipping efficacy. No design tool is strong enough in isolation; however, if used in conjunction with other significant parameters it can aid AO design.  相似文献   

14.
15.
Antisense therapy has been successful to skip targeted dystrophin exon with correction of frameshift and nonsense mutations of Duchenne muscular dystrophy (DMD). Systemic production of truncated but functional dystrophin proteins has been achieved in animal models. Furthermore, phase I/II clinical trials in United Kingdom and the Netherlands have demonstrated dystrophin induction by local and systemic administrations of antisense oligomers. However, long-term efficacy and potential toxicity remain to be determined. The present study examined 1-year systemic effect of phosphorodiamidate morpholino oligomers (PMO) treatment targeting mutated dystrophin exon 23 in mdx mice. PMO induced dystrophin expression dose-dependently and significantly improved skeletal muscle pathology and function with reduced creatine kinase (CK) levels by a regimen of 60 mg/kg biweekly administration. This regimen induced <2% dystrophin expression in the heart, but improved cardiac functions demonstrated by hemodynamics analysis. The results suggest that low levels of dystrophin induction may be able to provide detectable benefit to cardiac muscle with limited myopathy. Body weight, serum enzyme tests, and histology analysis showed no sign of toxicity in the mice treated with up to 1.5 g/kg PMO for 6 months. These results indicate that PMO could be used safely as effective drugs for long-term systemic treatment of DMD.  相似文献   

16.
17.
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. Antisense-mediated exon skipping is one of the most promising approaches for the treatment of DMD but still faces personalized medicine challenges as different mutations found in DMD patients require skipping of different exons. However, 70% of DMD patients harbor dystrophin gene deletions in a mutation-rich area or “hot-spot” in the central genomic region. In this study, we have developed 11 different U7 small-nuclear RNA, to shuttle antisense sequences designed to mask key elements involved in the splicing of exons 45 to 55. We demonstrate that these constructs induce efficient exon skipping both in vitro in DMD patients'' myoblasts and in vivo in human DMD (hDMD) mice and that they can be combined into a single vector to achieve a multi skipping of at least 3 exons. These very encouraging results provide proof of principle that efficient multiexon-skipping can be achieved using adeno-associated viral (AAV) vectors encoding multiple U7 small-nuclear RNAs (U7snRNAs), offering therefore very promising tools for clinical treatment of DMD.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene that result in the absence of functional protein. In the majority of cases these are out-of-frame deletions that disrupt the reading frame. Several attempts have been made to restore the dystrophin mRNA reading frame by modulation of pre-mRNA splicing with antisense oligonucleotides (AOs), demonstrating success in cultured cells, muscle explants, and animal models. We are preparing for a phase I/IIa clinical trial aimed at assessing the safety and effect of locally administered AOs designed to inhibit inclusion of exon 51 into the mature mRNA by the splicing machinery, a process known as exon skipping. Here, we describe a series of systematic experiments to validate the sequence and chemistry of the exon 51 AO reagent selected to go forward into the clinical trial planned in the United Kingdom. Eight specific AO sequences targeting exon 51 were tested in two different chemical forms and in three different preclinical models: cultured human muscle cells and explants (wild type and DMD), and local in vivo administration in transgenic mice harboring the entire human DMD locus. Data have been validated independently in the different model systems used, and the studies describe a rational collaborative path for the preclinical selection of AOs for evaluation in future clinical trials.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号