首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Autosomal recessive hereditary spastic paraplegia with thin corpus callosum is a neurodegenerative disorder characterized by spastic paraparesis, cognitive impairment, and peripheral neuropathy. The neuroradiologic hallmarks are thin corpus callosum and periventricular white matter changes. Mutations in the SPG11 gene have been identified to be a major cause of autosomal recessive hereditary spastic paraplegia with thin corpus callosum and recently also proven to be responsible for juvenile parkinsonism associated with spastic paraplegia. Methods: We describe one Italian autosomal recessive hereditary spastic paraplegia with thin corpus callosum patient who unusually presented at onset, 16 years, with parkinsonism‐like features, responsive to dopaminergic therapy. Then the clinical picture evolved and became more complex. A brain magnetic resonance imaging scan showed thin corpus callosum and hyperintense T2‐weighted lesions in periventricular regions, and the 123I‐ioflupane single‐photon emission coupled tomography was abnormal. Results: Genetic analysis detected two novel mutations, a c.3664insT variant in compound heterozygosity with a c.6331insG mutation, in SPG11. Discussion: This case confirms the high genetic and clinical heterogeneity associated with SPG11 mutations. It also offers further evidence that parkinsonism may initiate autosomal recessive hereditary spastic paraplegia with thin corpus callosum and that parkinsonian symptoms can have variable dopaminergic response in these patients. © 2011 Movement Disorder Society  相似文献   

2.
Background: Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus callosum is a distinct and usually severe form of complex hereditary spastic paraplegia classified as SPG11. Recently mutations on SPG11 gene (KIAA1840), which is localized to chromosome 15q13‐q15, were shown to cause the majority of SPG11 cases. Methods: We analysed the 40 coding exons of this gene in the probands from eight families with complex ARHSP, four of these families had a thin corpus callosum and two has mild thinning. Results: Three families were identified with novel mutations in the SPG11 gene. One family was of Asian origin with a homozygous nonsense mutation and had a very severe phenotype but only very mild thinning of the corpus callosum. In the other two English families the parents were unrelated and the mutations were compound heterozygotes. In these two families the phenotype was mild and both probands had a thin corpus callosum. Conclusion: Given the probable mechanism of action of the mutations in the Spatacsin gene, we discuss the probable genotype phenotype correlations in these families. This study confirms the frequent occurrence of Spatacsin mutations in complex ARHSP with genotype phenotype effects and exposes the spectrum of clinical heterogeneity in SPG11.  相似文献   

3.
Spatacsin (SPG11) is a major mutated gene in autosomal recessive spastic paraplegia with thin corpus callosum (ARHSP‐TCC) and is responsible for juvenile Parkinsonism. To elucidate the role of spatacsin in the pathogenesis of α‐synucleinopathies, an immunohistochemical investigation was performed on the brain of patients with Parkinson's disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) using anti‐spatacsin antibody. In PD, Lewy bodies (LBs) in the brain stem were positive for spatacsin. These LBs showed intense staining in their peripheral portions and occasionally in the central cores. Lewy neurites were also spatacsin‐positive. In DLB, cortical LBs were immunolabeled by spatacsin. In MSA, glial cytoplasmic inclusions (GCI) and a small fraction of neuronal cytoplasmic inclusions (NCI) were positive for spatacsin. The widespread accumulation of spatacsin observed in pathologic α‐synuclein‐containing inclusions suggests that spatacsin may be involved in the pathogenesis of α‐synucleinopathies.  相似文献   

4.
Hereditary spastic paraplegia is composed of a heterogeneous group of neurodegenerative disorders and is classified as pure or complicated due to its clinical variability. Autosomal recessive hereditary spastic paraplegia with hypoplastic corpus callosum is a rare form of complicated hereditary spastic paraplegia. In complicated hereditary spastic paraplegia, autosomal dominant, autosomal recessive, and X-linked modes of inheritance have been noted. The diagnostic criteria of autosomal recessive hereditary spastic paraplegia with hypoplastic corpus callosum are inheritance consistent with autosomal recessive trait, slowly progressive spastic paraparesis and mental detoriation, hypoplasia of corpus callosum revealed by brain computerized tomography or magnetic resonance imaging, and exclusion of other disorders by magnetic resonance imaging of the spine and brain as well as other laboratory tests. In this report, the authors present the case of 3 affected siblings in a family from Turkey, whereas 1 child and the con-sanguineous parents were healthy. To the authors' knowledge, it is the first reported case of autosomal recessive hereditary spastic paraplegia with hypoplastic corpus callosum from Turkey.  相似文献   

5.
The hereditary spastic paraplegias (HSPs) are a group of rare disorders with the predominant clinical feature of progressive spastic paraplegia. They are subdivided into pure and complicated forms according to whether the disorder is associated with other neurological abnormalities. We report on two unrelated female Caucasian patients with complicated HSP, aged 16 and 24 years, who showed progressive gait disturbance with spasticity and ataxia as well as cognitive impairment. Onset of symptoms was at age 3 and 10 years, respectively. MRI revealed mild diffuse non-progressive T (2)-signal alterations of cerebral white matter and thinning of the body and genu of the corpus callosum. Some similarity of clinical symptoms and MRI patterns with the phenotype of Mast syndrome prompted a mutation analysis of the SPG21 gene, encoding maspardin, which revealed a wild-type sequence in both patients. Clinical and neuroradiological features in our patients are diagnostic for complicated autosomal recessive hereditary spastic paraplegia with thin corpus callosum (HSP-TCC, SPG11). This disorder, characterized by a typical MRI pattern and a progressive spastic paraplegia that may be associated with dementia and ataxia, may have an onset in early childhood and probably is one of the more common forms of complicated HSP.  相似文献   

6.
Mutations in the spatacsin gene have recently been identified as the genetic cause of autosomal–recessive spastic paraplegia (SPG) with thin corpus callosum, mapping to chromosome 15p13–21. While several nonsense and frameshift mutations as well as splice mutations have been identified, large genomic deletions have not yet been found, potentially due to the absence of an efficient analysis tool. After complete sequencing of 12 autosomal recessive hereditary spastic paraplegia patients with suggestive clinical signs, we were able to define nine SPG11 cases but were left with three patients in which only one SPG11 mutation could be identified by direct sequencing. In these patients, we performed high-resolution comparative genomic hybridization using a predesigned human chromosome 15 tiling array with an average spacing of 100 bp. Data analysis suggested heterozygous genomic deletion within the spatacsin gene in all three patients. In one patient, a relatively small genomic deletion (8.2 kb) could be validated by quantitative polymerase chain reaction (PCR) and long-range PCR, allowing the diagnosis of the deletion of exons 31 through 34. For two patients, quantitative PCR validation could not confirm a genomic deletion. As high density tiling arrays are available for the entire human genome, we suggest this approach for the screening of heterozygous genomic deletions in candidate genes down to a few kilobases.  相似文献   

7.
Thin corpus callosum has been recently observed in two patients with an autosomal dominant trait of hereditary spastic paraplegia (HSP) linked to a novel mutation in the spastin gene (SPG4). In the same two patients cerebellar atrophy has been found. Reportedly, in other members of the same family, there has been a variable presence of mental retardation. We report on the clinical and genetic investigation of an Austrian family with a novel mutation in the spastin gene. Genetic analysis of the SPG4 locus revealed a mutation (C1120A) and a known intronic polymorphism (996-47G>A) of the spastin gene. In one affected family member, previously undescribed dysplasia of the corpus callosum (CC) was found in conjunction with otherwise uncomplicated HSP. Dysplastic CC was not paralleled with cortical atrophy, cognitive impairment or other phenotypic variations. Two further affected family members showed the same mutation and polymorphism, but no evidence of CC abnormalities. We conclude that apparently pure HSP may present with MRI features of dysplastic CC. This finding extended the spastin-related phenotype which is distinct from previous reports of thin CC in HSP.  相似文献   

8.
Autosomal recessive hereditary spastic paraplegia (AR HSP) with thin corpus callosum (TCC) is a rare neurodegenerative disorder often caused by mutations in the gene encoding for spatacsin at the SPG11 locus on chromosome 15q. The disease is characterized by progressive spastic paraparesis and mental retardation which occur during the first two decades of life and frequently with peripheral neuropathy. Brain magnetic resonance imaging (MRI) reveals typical TCC with periventricular white matter changes. We describe two patients, of Turkish descent, from the same consanguineous family and affected with SPG11 in association with unusual early-onset parkinsonism. Parkinsonism occurred during the very early stages of SPG11 in both patients, being in one the inaugural symptom of the disease presented as a resting tremor with akinesia, rigidity and expressing an initial moderate levodopa-response that progressively weakened. The second patient presented a resting tremor with mild akinesia and no levodopa-response. Both patients were affected with progressive spastic paraparesis which had initially occurred at 15 and 12 years of age, respectively, in association with mild mental retardation and an axonal polyneuropathy. TCC with periventricular white matter changes (PWMC) was evident by MRI and 123I-ioflupane SPECT was abnormal. Genetic analysis detected for both patients a new c.704_705delAT, p.H235RfsX12 homozygous mutation in SPG11. This report provides evidence that parkinsonism may initiate SPG11-linked HSP TCC and that SPG11 may cause juvenile parkinsonism.  相似文献   

9.
10.
Hereditary spastic paraplegias: an update   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Hereditary spastic paraplegias are a genetically heterogeneous group of diseases. Recent advances concerning their nosology and molecular bases have greatly improved the genetic diagnosis of these diseases, with implications for genetic counselling. The recent identification of new genes and loci, however, has blurred the distinction between hereditary spastic paraplegias and other entities, such as cerebellar ataxias or leucodystrophies. Cerebral MRI and the familial history of each patient with spastic paraplegia are the minimal clinical elements needed to orient genetic testing. RECENT FINDINGS: For SPG4, the gene most frequently involved in hereditary spastic paraplegias, a novel mutational mechanism was described, which allows detection of an increased number of cases. In autosomal recessive forms, mutations in the recently identified SPG11 gene seem to account for a majority of the complex forms of the disease with atrophy of the corpus callosum. In addition, the SACS gene has been implicated in an increasing number of cases of various origins. SUMMARY: Genetic testing is progressively more complex and clinical and other information concerning the phenotype is now crucial for choosing an appropriate genetic testing procedure for each patient.  相似文献   

11.
Hereditary spastic paraplegia type 11 (SPG11) is the most common subtype of autosomal recessive hereditary spastic paraplegia (HSP), to date, there are more than 181 different KIAA1840 gene mutations detected, and yet the genetic landscape of SPG11 is far from complete. To find the clinical and genetic characteristics of SPG11, we performed a reanalysis of the clinical features and genotype-phenotype correlations in all reported studies exhibiting SPG11 mutations. A total of 339 patients were collected, their mean age at onset was 13.10 ± 3.65 years, with initial symptoms like gait disturbance (107/195, 54.87%) and mental retardation (47/195, 24.10%). Cognitive decline (228/270, 84.44%) was the most common complex manifestation stepped by dysarthria (134/195, 68.72%), neuropathy (112/177, 63.28%), amyatrophy, sphincter disturbance (60/130, 46.15%) and ataxia (90/194, 46.39%). The most common brain MRI abnormality is thinning of the corpus callosum (TCC) (173/190, 91.05%), followed by periventricular white matter changes (130/158, 82.28%), cerebral or cerebellar cortical atrophy (55/107, 51.40%). The mutational spectrum associated with KIAA1840 gene is wide, and frameshift mutations are the most common type followed by nonsense mutations. Our reanalysis demonstrated that SPG11 exhibited significant clinical and genetic heterogeneity, and no clear genotype-phenotype correlation was observed. There is no mutational hot spot in the KIAA1840 gene, which emphasizes the need to analyse the whole gene in clinical practice. In addition to conventional genetic testing methods, further mRNA analysis should be conducted on some cases to yield a definitive diagnosis.  相似文献   

12.
BackgroundHereditary spastic paraplegia is a clinically and genetically heterogeneous neurodegenerative disorder characterized by progressive spasticity of the lower limbs. Mutations in SPG11 gene have been recently identified as a major cause of hereditary spastic paraplegia with thin corpus callosum.MethodsTwo unrelated Chinese families were examined by clinical evaluation, mutation analysis of SPG11, detailed neuropsychological assessment and diffusion tensor imaging.ResultsBoth patients presented with spastic paraparesis and learning disability. Two novel and one known mutations in SPG11 were detected through genetic analysis. Cognitive impairment was found with severe deficits in domains such as executive functions and memory. Magnetic resonance imaging showed thin corpus callosum while diffusion tensor imaging revealed increased mean diffusion and decreased fractional anisotropy in the corpus callosum and subcortical white matter in frontal, temporal lobe compared with the healthy controls.ConclusionsThis study widens the spectrum of mutations in SPG11. The application of detailed neuropsychological tests and diffusion tensor imaging could detect cerebral subtle involvement even in early stage of the disease.  相似文献   

13.
Hereditary spastic paraplegias (HSP) are a heterogeneous group of neurodegenerative disorders leading to progressive spasticity of the lower limbs. Here, we describe clinical and genetic features in an Italian family affected by autosomal recessive HSP (ARHSP) with mental impairment and thin corpus callosum (TCC). In both affected subjects, genetic analysis revealed the presence of a homozygous small deletion (733_734delAT) leading to a frameshift (M245VfsX) within the coding region of SPG11 gene, encoding spatacsin. This finding is the first independent confirmation that spatacsin loss of function mutations cause ARHPS-TCC. Roberto Del Bo and Alessio Di Fonzo, These two authors equally contributed to the present work.  相似文献   

14.
Our objective was to estimate the frequency as well as to establish the clinical and neuroimaging profile of hereditary spastic paraplegia with thin corpus callosum (HSP-TCC). HSP-TCC was recognized as a specific clinical subtype of HSP and mapped to chromosome (ch) 15q13-15 in Japanese families. It has been considered rare in western countries. We assessed 45 patients with autosomal recessive HSP from 20 different families in search of clinical and imaging criteria for the diagnosis of HSP-TCC. In addition, HSP-TCC patients underwent further neurological, imaging and genetic evaluation. MRI scans were performed in a 2T scanner and sagittal T1 weighted images used for semiautomated volumetric measurements of corpus callosum, cerebellum, and brain. In seven patients, a 2-year follow-up MRI scan was performed. We genotyped seven microsatellite markers flanking the 15q13-15 candidate region and calculated two-point and multipoint LOD scores (Z). We identified 13 patients from seven unrelated families with HSP-TCC. MRI showed significant corpus callosum, cerebral and cerebellar volumetric reductions (P<0.001, P=0.03, and P=0.01, respectively). In the prospective analysis, we found progressive corpus callosum atrophy (P=0.04). Two-point and multipoint LOD scores were significantly negative for markers genotyped on ch 15q. However, independent pedigree analysis did not yield significant results. HSP-TCC was found in 35% of families with autosomal recessive HSP. MRI volumetry showed cerebral and cerebellar atrophy in association with progressive corpus callosum thinning. Genetic studies did not show evidence for linkage to ch 15q.  相似文献   

15.

Background

Previous research has indicated that corpus callosum atrophy is associated with global cognitive decline in neurodegenerative diseases, but few studies have investigated specific cognitive functions.

Objective

To investigate the role of regional corpus callosum atrophy in mental speed, attention and executive functions in subjects with age‐related white matter hyperintensities (WMH).

Methods

In the Leukoaraiosis and Disability Study, 567 subjects with age‐related WMH were examined with a detailed neuropsychological assessment and quantitative magnetic resonance imaging. The relationships of the total corpus callosum area and its subregions with cognitive performance were analysed using multiple linear regression, controlling for volume of WMH and other confounding factors.

Results

Atrophy of the total corpus callosum area was associated with poor performance in tests assessing speed of mental processing—namely, trail making A and Stroop test parts I and II. Anterior, but not posterior, corpus callosum atrophy was associated with deficits of attention and executive functions as reflected by the symbol digit modalities and digit cancellation tests, as well as by the subtraction scores in the trail making and Stroop tests. Furthermore, semantic verbal fluency was related to the total corpus callosum area and the isthmus subregion.

Conclusions

Corpus callosum atrophy seems to contribute to cognitive decline independently of age, education, coexisting WMH and stroke. Anterior corpus callosum atrophy is related to the frontal‐lobe‐mediated executive functions and attention, whereas overall corpus callosum atrophy is associated with the slowing of processing speed.Corpus callosum is the largest commissural structure consisting of white matter tracts that connect the cerebral hemispheres according to an anterior–posterior topographical organisation. Recent research using diffusion tensor magnetic resonance imaging (MRI) has augmented earlier postmortem findings of corpus callosum topography and has shown that the anterior parts of corpus callosum (rostrum and genu) connect the orbitofrontal, lateral and medial frontal cortices, whereas the body and splenium connect parietal, temporal and occipital homotopic regions.1 In neurodegenerative diseases, the corpus callosum area is markedly reduced, indicating marked axonal loss.2,3,4,5 In Alzheimer''s disease, the severity and pattern of corpus callosum atrophy have been associated with cortical neuronal loss6 independently of white matter hyperintensities (WMH).7 In vascular dementia and other ischaemic conditions, however, corpus callosum atrophy is correlated with WMH and hence may result from subcortical ischaemic damage.8,9Earlier studies have shown that corpus callosum atrophy is associated with global cognitive status,5,6,10 but, to date, few studies have investigated the role of regional corpus callosum atrophy in specific cognitive processes. Based on the topographical organisation of corpus callosum, the integrity of its subregions may reflect distinct cognitive deficits. In particular, anterior corpus callosum atrophy may be related to the frontal‐lobe‐mediated executive deficits. Previous work of the Leukoaraiosis and Disability (LADIS) Study has shown that age‐related WMH are associated with cognitive impairment in elderly subjects without dementia.11 Moreover, in these subjects, the corpus callosum area has been found to be inversely related to motor deficits and global cognitive decline.12 This study examined the independent contribution of regional corpus callosum atrophy to deficits in mental speed, attention and executive functions in a large sample of elderly subjects with WMH by using quantitative MRI analysis and targeted neuropsychological test methods. The demographic and medical background variables, and coexisting WMH were controlled by using multivariate analysis.  相似文献   

16.
The hereditary spastic paraplegias (HSP) are a heterogeneous group of genetic neurodegenerative disorders in which the main feature is progressive spasticity of the lower limbs due to pyramidal tract dysfunction. Clinically HSP are divided into two forms: a pure form that presents with progressive lower limb spasticity and weakness, sensory signs and bladder dysfunction, and a complicated form, associated with more extensive neurological and extra neurological signs as well as pathological findings on brain imaging. The clinical variability observed in HSP is supported by the large underlying genetic heterogeneity. Hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) is a frequent subtype of complicated HSP clinically characterized by a slowly progressive spastic paraparesis with cognitive impairment and thin corpus callosum (TCC). SPG11, the most frequent gene associated with HSP-TCC, encodes spatacsin, a protein of unknown function. We describe two siblings from an Arabic consanguineous family with slowly progressive spastic paraparesis, mental retardation, seizures, thin corpus callosum and periventricular white matter abnormalities. Homozygosity mapping identified a novel single candidate region of 7.3 Mb on chromosome 1p13.2-1p12. The finding of a new locus for AR-HSP-TCC further demonstrates the extensive genetic heterogeneity of this condition.  相似文献   

17.
Hereditary spastic paraplegia (HSP) type 15 is an autosomal recessive (AR) form of complicated HSP mainly characterized by slowly progressive spastic paraplegia, mental retardation, intellectual deterioration, maculopathy, distal amyotrophy, and mild cerebellar signs that has been associated with the Kjellin syndrome. The locus for this form of HSP, designated SPG15, was mapped to an interval of 19 cM on chromosome 14q22-q24 in two Irish families. We performed a clinical-genetic study of this form of HSP on 147 individuals (64 of whom were affected) from 20 families with AR-HSP. A genome-wide scan was performed in three large consanguineous families of Arab origin after exclusion of linkage to several known loci for AR-HSP (SPG5, SPG7, SPG21, SPG24, SPG28, and SPG30). The 17 other AR-HSP families were tested for linkage to the SPG15 locus. Only the three large consanguineous families showed evidence of linkage to the SPG15 locus (2.4 > Z (max) > 4.3). Recombinations in these families reduced the candidate region from approximately 16 to approximately 5 Mbases. Among the approximately 50 genes assigned to this locus, two were good candidates by their functions (GPHN and SLC8A3), but their coding exons and untranslated regions (UTRs) were excluded by direct sequencing. Patients had spastic paraplegia associated with cognitive impairment, mild cerebellar signs, and axonal neuropathy, as well as a thin corpus callosum in one family. The ages at onset ranged from 10 to 19 years. Our study highlights the phenotypic heterogeneity of SPG15 in which mental retardation or cognitive deterioration, but not all other signs of Kjellin syndrome, are associated with HSP and significantly reduces the SPG15 locus.  相似文献   

18.
19.
Hereditary spastic paraplegias (HSPs) are clinically and genetically highly heterogeneous. The key symptom of spastic paraparesis of lower limbs can be complicated by a variety of signs and symptoms including cognitive impairment, optic atrophy, cerebellar ataxia, peripheral nerve involvement, or seizures. At least 48 loci have been identified, termed SPG1-SPG48. Ten genes for autosomal dominant HSP are currently known, SPG4 being by far the most common subtype accounting for ~50% of cases. SPG3 is especially common in young-onset cases. Autosomal recessive HSP seems to be even more heterogeneous. The known 12 autosomal recessive HSP genes collectively explain about one third of cases only. The most common causes for pure autosomal recessive HSP are SPG7 and SPG5. Mental retardation and thin corpus callosum on magnetic resonance imaging point toward SPG11 and SPG15. The authors provide an overview on clinical, neurophysiologic, and neuroradiologic characteristics of the more common HSP subtypes. More details are given in the tables for quick reference, and a genetic testing strategy is proposed.  相似文献   

20.
BACKGROUND: Hereditary spastic paraplegia (HSP) with thin corpus callosum (TCC) is an autosomal recessive form of complicated HSP mainly characterized by slowly progressive spastic paraparesis and mental deterioration beginning in the second decade of life. The locus for HSP-TCC, designated SPG11, was mapped to chromosome 15q13-15 in some of the affected families from Japan, Europe, and North America, spanning an interval of 17.5 megabases (Mb). OBJECTIVE: To perform a clinical and genetic study of HSP-TCC. DESIGN AND SETTING: Case series; multi-institutional study. PATIENTS: Seven patients with HSP-TCC who belong to 3 consanguineous families of Arab origin residing in Israel. RESULTS: The 7 patients manifested a relatively similar combination of adolescence-onset cognitive decline and spastic paraparesis with TCC on brain magnetic resonance imaging. After excluding the SPG7 locus, we tested the 3 families for linkage to the SPG11, SPG21/MAST, and ACCPN loci associated with autosomal recessive disorders with TCC. Two families showed evidence for linkage to SPG11 (Z(max) = 5.55) and reduced the candidate region to 13 Mb. CONCLUSIONS: Our findings in HSP-TCC further confirm its worldwide distribution and genetic heterogeneity, and they significantly reduce the candidate SPG11 interval.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号